王利民 王飛 邢世和
摘 要:長(zhǎng)期過量施用化肥,導(dǎo)致稻田土壤生產(chǎn)力下降,中低產(chǎn)田比重加大,已嚴(yán)重威脅糧食安全。近年來,水稻化肥綠色替代技術(shù)對(duì)農(nóng)田土壤營(yíng)養(yǎng)物質(zhì)轉(zhuǎn)化的影響已成為研究熱點(diǎn)。然而,目前系統(tǒng)研究化肥減施處理下紫云英綠肥持續(xù)回田后稻田土壤有機(jī)碳轉(zhuǎn)化的影響因子及機(jī)制還很缺乏。因此,綜述了化肥減施處理下紫云英持續(xù)回田后土壤有機(jī)碳轉(zhuǎn)化過程,并闡析了紫云英持續(xù)回田后土壤物理、化學(xué)和生物學(xué)性質(zhì)對(duì)有機(jī)碳轉(zhuǎn)化的影響及其機(jī)理,特別是闡述了與碳固定功能相關(guān)的微生物種類在有機(jī)碳轉(zhuǎn)化過程中發(fā)揮的作用,為將來有效調(diào)控水稻土有機(jī)碳轉(zhuǎn)化提供新的途徑,實(shí)現(xiàn)土壤增碳和水稻增產(chǎn)。
關(guān)鍵詞:綠肥作物;有機(jī)碳轉(zhuǎn)化;土壤理化性質(zhì);土壤微生物特性
Abstract:The excessive application of fertilizers for a long time has led to the decrease of soil productivity in rice fields and the increase of the proportion of middleand lowyield fields, which has seriously threatened the food security. In recent years, the effect of green replacement technology of rice fertilizer on soil nutrient conversion has become a research hotspot. However, at present, the influence factors and mechanism of soil organic carbon conversion after continuous return to the field of Astragalus sinicus green manure under the treatment of reduced fertilization were still lacking. Therefore, the process of soil organic carbon conversion after continuous return to the field of Astragalus sinicus under the treatment of reduced fertilization was reviewed, and then the effects of soil physical, chemical and biological properties on organic carbon conversion and its mechanism after continuous return to the field of Astragalus sinicus were analyzed. In particular, the role of microbial species related to carbon fixation in the organic carbon conversion was described, which provided a new way for effective regulation of organic carbon conversion in paddy soil in the future, so as to realize soil carbon increase and rice yield increase.
Key words:Green manure crop; Organic carbon conversion; Soil physical and chemical properties; Soil microbiologic properties
在水稻Oryza sativa L.種植過程中,長(zhǎng)期不合理的大量施用化肥,導(dǎo)致稻田土壤質(zhì)量退化,稻米品質(zhì)下降和農(nóng)田面源污染,已經(jīng)成為中國水稻生產(chǎn)的重要制約因素[1]。因此,研究化肥綠色替代技術(shù),實(shí)現(xiàn)稻田生態(tài)系統(tǒng)的可持續(xù)發(fā)展迫在眉睫。
紫云英Astragalus sinicus L.是中國南方稻區(qū)主要的冬種水田綠肥作物,屬于豆科黃芪屬越年生草本植物,其根瘤具有較強(qiáng)的固氮功能,能夠減少水稻氮肥用量[2-3]。此外,紫云英持續(xù)回田也向土壤中不斷輸入了新的有機(jī)碳。有機(jī)碳轉(zhuǎn)化過程關(guān)系到土壤有機(jī)碳的儲(chǔ)量和穩(wěn)定性,它既是土壤肥力的核心和可持續(xù)農(nóng)業(yè)的基礎(chǔ),又是全球碳循環(huán)的重要組成部分,已成為當(dāng)今土壤學(xué)相關(guān)領(lǐng)域的研究熱點(diǎn)之一[4]。然而,目前系統(tǒng)研究紫云英持續(xù)回田對(duì)水稻土有機(jī)碳轉(zhuǎn)化的影響及其機(jī)制還很缺乏。因此,本文系統(tǒng)綜述了紫云英-水稻長(zhǎng)期輪作下土壤有機(jī)碳轉(zhuǎn)化規(guī)律及其內(nèi)在的機(jī)理,旨在闡明紫云英持續(xù)回田后水稻土有機(jī)碳轉(zhuǎn)化及機(jī)制,同時(shí)也為水稻田化肥減施和水稻增產(chǎn)提供實(shí)踐指導(dǎo),具有重要的理論意義和應(yīng)用價(jià)值。
1 紫云英翻壓還田對(duì)水稻土有機(jī)碳轉(zhuǎn)化的影響
土壤有機(jī)碳轉(zhuǎn)化過程主要包括腐殖化過程和礦質(zhì)化過程。礦質(zhì)化作用為作物生長(zhǎng)提供營(yíng)養(yǎng)元素,并且為腐殖質(zhì)形成提供基本材料,成為腐殖化的前提。腐殖化過程就是有機(jī)碳在分解轉(zhuǎn)化過程中,又重新合成腐殖質(zhì)的過程,是有機(jī)碳從一種有機(jī)碳形式轉(zhuǎn)化為另一種有機(jī)碳形式,也叫有機(jī)碳的周轉(zhuǎn)。土壤有機(jī)碳礦化的難易程度可以通過活性有機(jī)碳組分與總有機(jī)碳(SOC)的比值進(jìn)行表征,其值越大,表明土壤有機(jī)碳活性越高,易礦化[5]。王飛等[6]利用網(wǎng)袋法模擬亞熱帶單季稻區(qū)紫云英盛花期翻壓下土壤有機(jī)碳釋放特征。結(jié)果表明,翻壓后0~20 d是紫云英有機(jī)碳釋放的高峰期,碳累積釋放率為53.3%;翻壓后20~90 d碳釋放逐漸趨于平緩,至90 d時(shí)碳累積釋放率高達(dá)90.1%。種植翻壓紫云英配施化肥處理能夠提高水稻土DOC/SOC比值,并隨著紫云英翻壓量的增加而增加,表明紫云英持續(xù)回田后土壤有機(jī)碳潛在的礦化能力得到加強(qiáng)[7-8]。Eclesia等研究表明,一方面紫云英施入土壤后,紫云英植株中含有的大量可溶性有機(jī)物能夠直接轉(zhuǎn)變成土壤活性有機(jī)碳組分,從而提高活性有機(jī)碳的相對(duì)比例;另一方面紫云英作為一種新鮮有機(jī)物料輸入土壤后,能夠產(chǎn)生正激發(fā)效應(yīng),促進(jìn)原有土壤中有機(jī)碳的分解,形成更多的土壤活性有機(jī)碳[9]。但也有研究表明,將新鮮紫云英直接加入土壤后,在其分解盛期才具有促進(jìn)土壤有機(jī)碳礦化的作用,而后期存在微弱的抑制現(xiàn)象
[10]??傊显朴⒕G肥持續(xù)翻壓還田既可以通過改變土壤有機(jī)碳的投入數(shù)量和質(zhì)量,直接影響有機(jī)碳平衡,也能夠通過影響土壤物理、化學(xué)、生物學(xué)性質(zhì)等內(nèi)在屬性,間接影響土壤有機(jī)碳轉(zhuǎn)化。
2 紫云英翻壓還田后影響土壤有機(jī)碳轉(zhuǎn)化的因素
2.1 紫云英翻壓還田后影響土壤有機(jī)碳轉(zhuǎn)化的非生物因素
2.1.1 土壤物理性狀 團(tuán)聚體是土壤結(jié)構(gòu)和功能的基本單位,其形成與有機(jī)碳的轉(zhuǎn)化和穩(wěn)定性密切相關(guān)[11]。首先,土壤初級(jí)顆粒和粉粒大小的團(tuán)聚體通過腐殖質(zhì)、氧化物、非晶體鋁硅酸鹽等穩(wěn)定性膠結(jié)劑形成微團(tuán)聚體;然后,微團(tuán)聚體再通過含碳量高的不穩(wěn)定的真菌菌絲、根系和植物多糖等膠結(jié)劑黏結(jié)形成大團(tuán)聚體(>0.25 mm)。因此,大團(tuán)聚體固碳量更高,在生物和環(huán)境因素作用下,大團(tuán)聚體包裹的有機(jī)碳又逐漸被降解,其形態(tài)和結(jié)構(gòu)發(fā)生改變,并與粉黏粒結(jié)合重新形成微團(tuán)聚體,此時(shí)團(tuán)聚體對(duì)有機(jī)碳的物理保護(hù)進(jìn)一步加強(qiáng)[12-13]。種植翻壓紫云英綠肥可以促進(jìn)水稻土大團(tuán)聚體的形成[14]。此外,土壤質(zhì)地和孔隙度可以影響土壤微生物的種類、數(shù)量和活性,從而間接影響土壤有機(jī)碳的轉(zhuǎn)化過程[15-16]。
2.1.2 土壤化學(xué)性質(zhì) 土壤pH會(huì)影響微生物的生長(zhǎng),在酸性土壤中微生物種類受到限制,以真菌為主,減慢了有機(jī)物碳的分解[17-18]。多年冬種紫云英對(duì)湖南紫潮泥土和江西黃泥田兩種典型雙季稻土pH值未有明顯的影響[19]。但是,Wang等[20]對(duì)赤紅壤水稻土和黃泥田水稻土進(jìn)行研究卻發(fā)現(xiàn),種植利用紫云英可以提高土壤pH值。種植翻壓紫云英結(jié)合減施化肥處理4年后單季稻土pH值無顯著性變化,但8年后土壤pH值出現(xiàn)明顯升高[21-22]。由此可見,關(guān)于種植翻壓紫云英對(duì)土壤pH值的影響并不一致,主要由于pH值受到種植年限、氣候條件和土壤類型等綜合因素的共同作用。
鐵鋁氧化物的巨大比表面積對(duì)土壤有機(jī)碳的積累和穩(wěn)定性具有重要作用,還可以通過腐殖質(zhì)表面的羥基或羧基與礦物表面進(jìn)行配位體交換,與胡敏酸、富里酸形成穩(wěn)定的有機(jī)無機(jī)復(fù)合體[23]。Wisman等
[24]通過對(duì)德國中部土壤碳及其吸附保存進(jìn)行研究顯示,鐵鋁氧化物是該地區(qū)土壤有機(jī)碳穩(wěn)定的基礎(chǔ),其主要作用機(jī)理是靜電吸引、氫鍵和配位體交換反應(yīng)。在火山灰土中這種保護(hù)作用變得更加明顯[25]。鐵鋁氧化物在中國南方水稻土固碳過程中也發(fā)揮了重要的作用,但這種作用在不同土壤和不同粒徑團(tuán)聚體中有所差別,以紅壤性水稻土大粒徑團(tuán)聚體的保護(hù)較強(qiáng)[26]。
土壤有機(jī)碳的轉(zhuǎn)化還與其自身的結(jié)構(gòu)存在關(guān)聯(lián)。不同結(jié)構(gòu)的有機(jī)碳化學(xué)穩(wěn)定性不同,抗性較強(qiáng)的碳類型能夠在土壤中相對(duì)累積[27]。此外,不同基團(tuán)有機(jī)碳也代表了不同的物質(zhì)來源和腐殖化途徑,烷氧碳和烷基碳是植物殘?bào)w的主要結(jié)構(gòu)。烷氧碳是易分解的碳類型;烷基碳主要來自于脂類、軟木質(zhì)、蠟質(zhì)等,相對(duì)難以分解,而且容易與土壤黏粒結(jié)合。植物根系或凋落物烷基碳含量平均為73.2%,是土壤有機(jī)質(zhì)的主要組成部分[28]。芳香碳和羰基碳結(jié)構(gòu)主要是有機(jī)質(zhì)代謝和氧化的產(chǎn)物,其中芳香碳是難分解的有機(jī)碳,可能是微生物的次級(jí)代謝產(chǎn)物,也可能是植物來源的殘留物選擇性保留,如環(huán)狀結(jié)構(gòu)的植物木質(zhì)素和不飽和烯烴結(jié)構(gòu)[29]。
2.2 紫云英翻壓還田后影響土壤有機(jī)碳轉(zhuǎn)化的生物因素
2.2.1 土壤微生物特性 不僅有機(jī)碳的分子結(jié)構(gòu)會(huì)影響土壤有機(jī)碳的轉(zhuǎn)化,而且微生物在有機(jī)碳轉(zhuǎn)化過程中也發(fā)揮重要的功能。在土壤微生物的作用下,復(fù)雜的土壤有機(jī)碳被分解成簡(jiǎn)單的無機(jī)化合物,直接減少了土壤有機(jī)碳的含量,同時(shí)也為合成復(fù)雜的腐殖質(zhì)提供物質(zhì)基礎(chǔ),增強(qiáng)了土壤有機(jī)碳的穩(wěn)定性。與細(xì)菌相比,真菌不管是其自身物質(zhì)或其代謝產(chǎn)物均有利于土壤有機(jī)碳積累,因此真菌主導(dǎo)的微生物群落會(huì)增強(qiáng)土壤有機(jī)碳的穩(wěn)定性[17]。在水稻土中存在豐富的自養(yǎng)微生物,其具有可觀的CO2同化潛力,因此稻田生態(tài)系統(tǒng)是陸地生態(tài)系統(tǒng)中極其活躍且固碳潛力巨大的碳庫之一[30]。通過克隆文庫、TRFLP及定量PCR等分子生物學(xué)技術(shù),對(duì)稻田土壤固碳微生物群落組成、結(jié)構(gòu)和數(shù)量進(jìn)行分析,表明土壤固碳細(xì)菌的優(yōu)勢(shì)種群可能是紅假單胞菌、慢生根瘤和勞爾氏菌等,其中參與水稻土CO2光合同化的功能基因(cbbL)豐度為0.04~1.3×108 copies·g-1[31]。而且,連續(xù)31年翻壓紫云英還田增加了水稻根際土壤不動(dòng)桿菌屬(Acinetobacter)、假單胞菌屬(Pseudomonas)等有益細(xì)菌的數(shù)量[32]。此外,紫云英綠肥和化肥配施還能顯著提高真菌和放線菌的數(shù)量[33],因?yàn)樽显朴⒕G肥結(jié)合化肥配施,降低了紫云英綠肥的碳氮比值,進(jìn)而加快了土壤微生物繁殖[34]。然而,紫云英翻壓量超過22500 kg·hm-2時(shí),腐解時(shí)間延長(zhǎng),在腐解過程中易引起土壤氧化還原電位下降,產(chǎn)生大量的H2S等有毒物質(zhì),從而降低土壤微生物數(shù)量[35]。因此,紫云英翻壓量并非越大越好,適量紫云英綠肥與減量化肥配施才能獲得良好的微生態(tài)環(huán)境,促進(jìn)土壤微生物生長(zhǎng)繁殖。
2.2.2 土壤酶活性 土壤微生物可以合成和釋放大量的酶于土壤中[36]。土壤中各種酶活性的強(qiáng)弱,直接影響到土壤有機(jī)碳的轉(zhuǎn)化。RubisCO(核酮糖二磷酸縮化酶)能把空氣中的CO2連接到植物內(nèi)的五碳糖上,變成1個(gè)六碳糖,然后再平分成2個(gè)三碳的磷酸甘油酸,最后,一部分磷酸甘油酸重新合成五碳糖,供碳固定循環(huán),另一部分磷酸甘油酸用于合成蔗糖等有機(jī)物[37]。纖維素酶和β葡萄糖苷酶能夠?qū)⒗w維素類物質(zhì)催化分解為易溶于水的纖維二糖、果糖和葡萄糖等小分子糖類物質(zhì)[38]。蔗糖酶也可以將土壤中的蔗糖水解成葡萄糖和果糖[39]。土壤酚氧化酶可以將酚類物質(zhì)轉(zhuǎn)化為醌類,降低甚至消除了土壤酚類物質(zhì)對(duì)纖維素酶、蔗糖酶和β葡萄糖苷酶等水解酶類的毒害作用,提高它們的活性,從而促進(jìn)活性有機(jī)碳的形成[40]。反之,酚氧化酶活性的降低會(huì)加速土壤中可溶性酚類物質(zhì)的累積,從而抑制水解酶類的活性,減少其對(duì)土壤有機(jī)碳的分解,有利于土壤有機(jī)碳的固存[38]。此外,用絕對(duì)酶活性與土壤微生物生物量(MBC)的比值表征相對(duì)酶活性,能夠消除微生物對(duì)酶活性的影響,該比值越高表明酶催化活性越強(qiáng),可以更加準(zhǔn)確地評(píng)價(jià)不同施肥措施對(duì)酶活性的影響[41]。與對(duì)照相比,隨著紫云英翻壓量的增加,相對(duì)蔗糖酶和相對(duì)β葡萄糖苷酶活性均顯著增強(qiáng),而相對(duì)酚氧化酶和相對(duì)過氧化物酶活性明顯減弱[8]。外源大量紫云英綠肥的輸入,不僅能夠?yàn)橥寥浪饷柑峁└嗟哪举|(zhì)素類底物,還可以為這類酶提供更多的附著位點(diǎn),改善酶促反應(yīng)的微域環(huán)境條件,有助于增加酶活性;但同時(shí)紫云英植株中富含酚類底物,會(huì)逐漸減少土壤微生物群落對(duì)于來自土壤自身營(yíng)養(yǎng)的依賴性,導(dǎo)致相對(duì)酚氧化酶活性的降低[8]。Yuan等[31]研究顯示,稻田土壤的RubisCO酶活性顯著高于旱地,表明水稻土自養(yǎng)微生物具有更強(qiáng)的碳同化能力。
3 展望
綜上所述,雖然國內(nèi)外學(xué)者對(duì)紫云英-雙季稻輪作土壤有機(jī)碳轉(zhuǎn)化過程的研究很多,但較少涉及紫云英-單季稻輪作土壤。在紫云英-單季稻輪作系統(tǒng)中,紫云英腐解時(shí)間、紫云英翻壓量、植株養(yǎng)分吸收利用狀況及環(huán)境條件與紫云英-雙季稻輪作存在很大差異。目前,有關(guān)紫云英連續(xù)還田后單季稻土有機(jī)碳轉(zhuǎn)化及其影響機(jī)制尚不十分清楚,尤其是土壤樣本中與碳固定功能相關(guān)的微生物有哪些,以及這些微生物在有機(jī)碳轉(zhuǎn)化過程中的作用如何,是今后研究的重點(diǎn)方向。
參考文獻(xiàn):
[1]高菊生,徐明崗,董春華,等.長(zhǎng)期稻-稻-綠肥輪作對(duì)水稻產(chǎn)量及土壤肥力的影響[J].作物學(xué)報(bào),2013,39(2):343-349.
[2]林多胡,顧榮申.中國紫云英[M].福州:福建科學(xué)技術(shù)出版社,2000.
[3]劉亞柏,王潤(rùn)芳.氮磷鉀對(duì)紅花草固氮根瘤菌生長(zhǎng)及種植后土壤肥力的影響[J].中國農(nóng)學(xué)通報(bào),2015,31(36):220-225.
[4]潘根興,李戀卿,張旭輝.土壤有機(jī)碳庫與全球變化研究的若干前沿問題:兼開展中國水稻土有機(jī)碳固定研究的建議[J].南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2002,25(3):100-109.
[5]呂茂奎,謝錦升,周艷翔,等.紅壤侵蝕地馬尾松人工林恢復(fù)過程中土壤非保護(hù)性有機(jī)碳的變化[J].應(yīng)用生態(tài)學(xué)報(bào),2014,25(1):37-44.
[6]王飛,林誠,李清華,等.亞熱帶單季稻區(qū)紫云英不同翻壓量下有機(jī)碳和養(yǎng)分釋放特征[J].草業(yè)學(xué)報(bào),2012,21(4):319-324.
[7]劉春增,常單娜,李本銀,等.種植翻壓紫云英配施化肥對(duì)稻田土壤活性有機(jī)碳氮的影響[J].土壤學(xué)報(bào),2017,54(3):657-669.
[8]李增強(qiáng),張賢,王建紅,等.紫云英施用量對(duì)土壤活性有機(jī)碳和碳轉(zhuǎn)化酶活性的影響[J].中國土壤與肥料,2018,(4):14-20.
[9]ECLESIA R P,JOBBAGY E G,JACKSON R B,et al.Stabilization of new carbon inputs rather than old carbon decomposition determines soil organic carbon shifts following woody or herbaceous vegetation transitions[J].Plant and Soil,2016,409(1-2):99-116.
[10]蔡道基,毛伯清.紫云英對(duì)土壤有機(jī)質(zhì)分解和積累的影響[J].土壤通報(bào),1980(3):19-23.
[11]OLIVEIRA M,BARRé P,TRINDADE H,et al.Different efficiencies of grain legumes in crop rotations to improve soil aggregation and organic carbon in the shortterm in a sandy Cambisol[J].Soil and Tillage Research,2019(186):23-35.
[12]DE OLIVEIRA FERREIRA A,DE MORAES Sá J C,LAL R,et al.Macroaggregation and soil organic carbon restoration in a highly weathered Brazilian Oxisol after two decades under notill[J].Science of the Total Environment,2018(621):1559-1567.
[13]DHALIWAL J,KUKAL S S,SHARMA S.Soil organic carbon stock in relation to aggregate size and stability under treebased cropping systems in Typic Ustochrepts[J].Agroforestry Systems,2018,92(2):275-284.
[14]何春梅,鐘少杰,李清華,等.種植翻壓紫云英對(duì)耕層土壤結(jié)構(gòu)性能及有機(jī)碳含量的影響[J].江西農(nóng)業(yè)學(xué)報(bào),2014,(12):32-34,37.
[15]LA CECILIA D,RILEY W J,MAGGI F.Biochemical modeling of microbial memory effects and catabolite repression on soil organic carbon compounds[J].Soil Biology and Biochemistry,2019(128):1-12.
[16]NAVEED M,HERATH L,MOLDRUP P,et al.Spatial variability of microbial richness and diversity and relationships with soil organic carbon,texture and structure across an agricultural field[J].Applied Soil Ecology,2016(103):44-55.
[17]KALLENBACH C M,F(xiàn)REY S D,GRANDY A S.Direct evidence for microbialderived soil organic matter formation and its ecophysiological controls[J].Nature Communications,2016(7):13630.
[18]LI Y,LI Y,CHANG S X,et al.Linking soil fungal community structure and function to soil organic carbon chemical composition in intensively managed subtropical bamboo forests[J].Soil Biology and Biochemistry,2017(107):19-31.
[19]王艷秋,高嵩涓,曹衛(wèi)東,等.多年冬種紫云英對(duì)兩種典型雙季稻田土壤肥力及硝化特征的影響[J].草業(yè)學(xué)報(bào),2017,26(2):180-189.
[20]WANG Y,TANG C,WU J,et al.Impact of organic matter addition on pH change of paddy soils[J].Journal of Soils and Sediments,2013,13(1):12-23.
[21]顏志雷,方 宇,陳濟(jì)琛,等.連年翻壓紫云英對(duì)稻田土壤養(yǎng)分和微生物學(xué)特性的影響[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2014,20(5):1151-1160.
[22]方宇,王飛,賈憲波,等.綠肥配施減量化肥對(duì)土壤固氮菌群落的影響[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2018,37(9):1933-1941.
[23]KLEBER M,SOLLINS P,SUTTON R.A conceptual model of organomineral interactions in soils:selfassembly of organic molecular fragments into zonal structures on mineral surfaces[J].Biogeochemistry,2007,85(1):9-24.
[24]WISMAN C L S,PUTTMANN W.Soil carbon and its sorptive preservation in central Germany[J].European Journal of Soil Science,2005(56):65-76.
[25]SIX J,CONANT R T,PAUL E A,et al.Stabilization mechanisms of soil organic matter:Implications for Csaturation of soils[J].Plant and Soil,2002(241):155-176.
[26]ZHENG T,YANG J,ZHANG J,et al.Factors contributing to aggregate stability at different particle sizes in ultisols from Southern China[J].Journal of Soils and Sediments,2019,19(3):1342-1354.
[27]LARIONOVA A A,ZOLOTAREVA B N,KVITKINA A K,et al.Assessing the stability of soil organic matter by fractionation and 13C isotope techniques[J].Eurasian Soil Science,2015,48:157-168.
[28]BAUMANN K,MARSCHNER P,KUHN T K,et al.Microbial community structure and residue chemistry during decomposition of shoots and roots of young and mature wheat(Triticum aestivum L.)in sand[J].European Journal of Soil Science,2011(62):666-675.
[29]郭素春,郁紅艷,朱雪竹,等.長(zhǎng)期施肥對(duì)潮土團(tuán)聚體有機(jī)碳分子結(jié)構(gòu)的影響[J].土壤學(xué)報(bào),2013(5):922-930.
[30]陳曉娟,吳小紅,簡(jiǎn)燕,等.農(nóng)田土壤自養(yǎng)微生物碳同化潛力及其功能基因數(shù)量、關(guān)鍵酶活性分析[J].環(huán)境科學(xué),2014,35(3):1144-1150.
[31]YUAN H Z,GE T D,ZOU S Y,et al.Effect of land use on the abundance and diversity of autotrophic bacteria as measured by ribulose1, 5biphosphate carboxylase/oxygenase(RubisCO)large subunit gene abundance in soils[J].Biology and Fertility of Soils,2013,49(5):609-616.
[32]ZHANG X X,ZHANG R J,GAO J S,et al.Thirtyone years of ricericegreen manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria[J].Soil Biology and Biochemistry,2017(104):208-217.
[33]XIE Z,ZHOU C,SHAH F,et al.The role of Chinese Milk Vetch as cover crop in complex soil nitrogen dynamics in rice rotation system of South China[J].Scientific Reports,2018,8(1):12061.
[34]FANG Y,WANG F,JIA X B,et al.Distinct responses of ammoniaoxidizing bacteria and archaea to green manure combined with reduced chemical fertilizer in a paddy soil[J].Journal of Soils and Sediments,2019,19(4):1613-1623.
[35]劉祥臣,趙海英,李本銀,等.紫云英翻壓量和漚田時(shí)間對(duì)覆膜水稻返青期植株的影響[J].中國土壤與肥料,2012(3):90-93.
[36]ZENG P,GUO Z,XIAO X,et al.Effects of treeherb coplanting on the bacterial community composition and the relationship between specific microorganisms and enzymatic activities in metal(loid)contaminated soil
[J].Chemosphere,2019(220):237-248.
[37]WEIGMANN K.Fixing carbon:To alleviate climate change,scientists are exploring ways to harness nature′s ability to capture CO2 from the atmosphere[J].EMBO Reports,2019,20(2):e47580.
[38]LI S,ZHANG S,PU Y,et al.Dynamics of soil labile organic carbon fractions and Ccycle enzyme activities under straw mulch in Chengdu Plain[J].Soil and Tillage Research,2016(155):289-297.
[39]WICKINGS K,GRANDY A S,REED S C,et al.The origin of litter chemical complexity during decomposition[J].Ecology Letters,2012,15(10):1180-1188.
[40]QI R,LI J,LIN Z,et al.Temperature effects on soil organic carbon,soil labile organic carbon fractions,and soil enzyme activities under longterm fertilization regimes[J].Applied Soil Ecology,2016(102):36-45.
[41]RAIESI F,BEHESHTI A.Soil specific enzyme activity shows more clearly soil responses to paddy rice cultivation than absolute enzyme activity in primary forests of northwest Iran[J].Applied Soil Ecology,2014(75):63-70.
(責(zé)任編輯:柯文輝)