詹興堆
摘要:【目的】研究不同地區(qū)柑橘木虱種群對主要殺蟲劑的抗藥性及代謝機理,為合理選擇藥劑有效防治柑橘木虱提供依據(jù)?!痉椒ā糠謩e采用浸液法和浸蟲法測定聯(lián)苯菊酯、高效氯氰菊酯、毒死蜱、阿維菌素、啶蟲脒和噻蟲嗪等6種殺蟲劑對柑橘木虱敏感種群(SS)、福建省長泰縣種群(FJ)、廣東省梅州市大埔縣種群(GD)、湖南省新寧縣種群(HN)、江西省贛州市信豐縣種群(JX)和福建省三明市莘口鎮(zhèn)種群(SM)若蟲及成蟲的毒力,計算不同種群對供試殺蟲劑的抗性倍數(shù);通過測定不同地區(qū)柑橘木虱種群成蟲的酯酶(EST)、谷胱甘肽s-轉(zhuǎn)移酶(GSTs)和P450活性,研究其代謝機理?!窘Y(jié)果】各種群2齡若蟲對啶蟲脒的抗性倍數(shù)為9.0~19.0,對噻蟲嗪抗性倍數(shù)為7.6~18.4;各種群成蟲對啶蟲脒的抗性倍數(shù)為11.3~17.2,對噻蟲嗪的抗性倍數(shù)為5.2~12.3。其他4種供試殺蟲劑中,JX種群2齡若蟲對聯(lián)苯菊酯、高效氯氰菊酯、阿維菌素和毒死蜱的抗性倍數(shù)分別為5.4、7.3、4.7和7.6,成蟲對聯(lián)苯菊酯、高效氯氰菊酯、阿維菌素和毒死蜱的抗性倍數(shù)分別為5.9、8.2、3.6和2.9;其他種群成蟲或2齡若蟲對至少2種殺蟲劑敏感。解毒酶活性測定結(jié)果表明,HN種群、JX種群和SM種群的EST活性高于敏感種群,且差異顯著(P<0.05,下同);FJ種群、GD種群和HN種群的GSTs活性高于敏感種群,且差異顯著;除FJ種群外,其余4個種群的P450活性高于敏感品系,且差異顯著?!窘Y(jié)論】柑橘木虱若蟲期是殺蟲劑防治的關(guān)鍵時期;5個地理種群對供試6種殺蟲劑均具有不同程度的抗性,可能與柑橘木虱的EST、GSTs或P450等代謝酶活性升高相關(guān)。生產(chǎn)中應(yīng)根據(jù)當(dāng)?shù)貙嶋H合理選擇藥劑,并與其他不同作用機理的殺蟲劑輪換使用。
關(guān)鍵詞: 柑橘木虱;殺蟲劑;抗藥性;代謝機理
中圖分類號: S436.661.2;S482.3? ? ? ? ? ? ? ? ? ? 文獻標(biāo)志碼: A 文章編號:2095-1191(2019)12-2713-07
Resistance of different Diaphorina citri populations to six common insecticides
ZHAN Xing-dui
(Sanming City Agricultural and Rural Bureaue, Sanming, Fujian? 365000, China)
Abstract:【Objective】Resistance and metabolism mechanism of Diaphorina citri populations to main insecticides were studied to provide reference for the choice of insecticides in D. citri control. 【Method】Direct immersion method and dipping method were used to test the toxicities of bifenthrin, cypermethrin, chlorpyrifos, abamectin, acetamiprid and thia-methoxam to larvae and adults of the six pest populations, including susceptible population(SS), Fujianchangtai population(FJ), Guangdongmeizhou population(GD), Hunanxinning population(HN), Jiangxixifeng population(JX) and Sanmingxingkou population(SM). Resistance ratios of different populations to the tested insecticides were calculated, and activities of esterase(EST), glutathione S-transferase(GSTs) and P450 of D. citri populations were also measured for metabolic mechanism research. 【Result】Resistance ratios to acetamiprid and thiamethoxam of 2nd larvae from different populations ranged from 9.0 to 19.0 and 7.6 to 18.4 respectively, and the adults ranged from 11.3 to 17.2 and 5.2 to 12.3, respectively. The 2nd larvae of JX population developed 5.4-, 7.3-, 4.7- and 7.6-time resistance to bifenthrin, cypermethrin, aba-mectin and chlorpyrifos, while the adults developed 5.9-, 8.2-, 3.6- and 2.9-time resistance to bifenthrin, cypermethrin, abamectin and chlorpyrifos.The adults or 2nd larvae of other populations indicated susceptible to at least two tested insecticides. Significant difference was observed in esterase activities between HN population, JX population or SM population and susceptible population(P<0.05, the same below). GSTs activities of FJ population, GD population or HN population was significantly higher than susceptible population. Apart feom FJ population, P450 activity of the rest four populations was significantly higher than susceptible population. 【Conclusion】The best period for D. citr control should be larvae pe-riod. All collected five populations develop different levels of resistance to the six selected insecticides, which may relate to the improvement of EST, GSTs and P450 activities. Efficient insecticides that suit the local situation should be selected to control the pest in practice and may rotate with other different mechanism insecticides.
Key words: Diaphorina citri; insecticides; resistance; metabolic mechanism
0 引言
【研究意義】柑橘木虱(Diaphorina citri Kuwayama)屬昆蟲綱(Insect)半翅目(Hemiptera)木虱科(Liviidae),是蕓香科(Rutaceae)植物新梢期的重要害蟲,也是柑橘毀滅性病害柑橘黃龍病(Huanglongbing)的主要傳播媒介(姚林建等,2018),柑橘木虱的擴散直接影響柑橘黃龍病的傳播發(fā)生(Hall et al.,2007),因此有效控制柑橘木虱是阻止黃龍病擴散蔓延的主要途徑?;瘜W(xué)防治具有殺蟲速度快、高效及防治范圍廣等優(yōu)點,是目前防治柑橘木虱的首選措施(Boina and Bloomquist,2015),每年定期噴藥4~5次清除柑橘園及周圍寄主上的柑橘木虱,可有效控制柑橘木虱和柑橘黃龍病(毛潤乾等,2013)。但柑橘木虱寄主種類多、發(fā)生世代多、產(chǎn)卵量大、世代重疊嚴(yán)重(Halbert and Manjunath,2004),再加上殺蟲劑的頻繁使用,使柑橘木虱對殺蟲劑的敏感性下降,面臨抗藥性風(fēng)險(Kanga et al.,2016)。因此,明確柑橘木虱對不同殺蟲劑的抗藥性及代謝機理,對合理用藥防治柑橘木虱具有重要意義?!厩叭搜芯窟M展】多類殺蟲劑對柑橘木虱具有很好的防治作用,按照作用方式可分為廣譜性殺蟲劑和選擇性殺蟲劑,廣譜性殺蟲劑主要有有機磷類(毒死蜱)、擬除蟲菊酯類(高效氯氰菊酯)和氨基甲酸酯類(西維因);選擇性殺蟲劑主要有新煙堿類(吡蟲啉)、阿維菌素、季酮酸酯類(螺蟲乙酯)、多殺菌素、昆蟲生長調(diào)節(jié)劑(除蟲脲)和雙酰胺類(氯蟲苯甲酰胺)。國外對柑橘木虱的抗藥性監(jiān)測研究報道較多,Tiwari等(2011)、Coy等(2016)、Kanga等(2016)研究表明佛羅里達柑橘木虱對毒死蜱、馬拉硫磷和噻蟲嗪等已產(chǎn)生不同程度的抗藥性;Vázquez-García等(2013)測定了墨西哥2個地區(qū)柑橘木虱成蟲對5類11種殺蟲劑的抗性,結(jié)果表明,柑橘木虱成蟲對有機磷類和煙堿類殺蟲劑的抗性達高抗水平;Chen和Lukasz(2017)研究了柑橘木虱對8種常見藥劑抗藥性的快速檢測方法。國內(nèi)對柑橘木虱的研究主要集中在高效藥劑的篩選方面(孟幼青等,2017;程曉琴等,2018),對其抗藥性監(jiān)測的研究較少。鄧明學(xué)等(2012)測定了廣西柑橘木虱對4種新煙堿類殺蟲劑的交互抗性。而代謝抗性是害蟲對化學(xué)藥劑產(chǎn)生抗性的主要途徑,是柑橘木虱對殺蟲劑間產(chǎn)生交互抗性的主要原因之一(Tiwari et al.,2011)。【本研究切入點】目前登記用于柑橘木虱防治的殺蟲劑共有19種產(chǎn)品(農(nóng)業(yè)農(nóng)村部農(nóng)藥檢定所,2019),有效成分包括高效氯氰菊酯、聯(lián)苯菊酯、螺蟲乙酯、吡丙醚、毒死蜱、噻嗪酮、喹硫磷、阿維菌素和噻蟲嗪等9種。國內(nèi)柑橘主產(chǎn)區(qū)柑橘木虱對已登記殺蟲劑的抗性水平研究較少,而明確田間柑橘木虱種群對已登記殺蟲劑的抗藥性水平,對于指導(dǎo)田間合理選擇殺蟲劑防治柑橘木虱意義重大?!緮M解決的關(guān)鍵問題】選擇對柑橘木虱成蟲和幼蟲均有效的高效氯氰菊酯、聯(lián)苯菊酯、毒死蜱、阿維菌素和噻蟲嗪等6種殺蟲劑,測定不同地區(qū)柑橘木虱對6種殺蟲劑的敏感性,研究柑橘木虱對藥劑的代謝機理,為合理使用殺蟲劑防治柑橘木虱及延緩害蟲抗藥性的產(chǎn)生提供科學(xué)依據(jù)。
1 材料與方法
1. 1 試驗材料
1. 1. 1 供試藥劑及試劑 供試殺蟲劑:95%高效氯氰菊酯(南京紅太陽股份有限公司)、90%聯(lián)苯菊酯(美國富美實公司)、98%毒死蜱(山東華陽和樂農(nóng)藥有限公司)、98%噻蟲嗪(瑞士先正達作物保護有限公司)、94%阿維菌素(浙江海正化工股份有限公司)和99%啶蟲脒(寧波三江益農(nóng)化學(xué)有限公司產(chǎn)品)。其他試劑均為美國Sigma-Aldrich公司產(chǎn)品。
1. 1. 2 供試柑橘木虱種群 柑橘木虱敏感種群(SS)于2011年采于福建省福州市福飛路九里香,于室內(nèi)用蘆柑(Citrus Poonensis Hort. ex Tanaka)苗不接觸農(nóng)藥繼代飼養(yǎng)超過50代。不同田間地理種群分別采集于福建省長泰縣五四農(nóng)場(東經(jīng)117°47′49.98″,北緯24°45′13.12″;2019年5月16日從蜜桔上采集,簡記為FJ)、廣東省梅州市大埔縣三河鎮(zhèn)匯城村(東經(jīng)116°33′53.31″,北緯24°24′6.65″;2019年5月20日從蜜柚上采集,簡記為GD)、湖南省新寧縣清江橋鄉(xiāng)天京村(東經(jīng)110°57′3.05″,北緯26°35′36.77″;2019年5月11日從臍橙上采集,簡記為HN)、江西省贛州市信豐縣西坌村(東經(jīng)114°38′38.94″,北緯26°06′22.64″;2019年5月25日從臍橙上采集,簡記為JX)和福建省三明市莘口鎮(zhèn)爐洋村(東經(jīng)117°37′1.29″,北緯26°06′55.23″;2019年4月24日從臍橙上采集,簡記為SM),在室內(nèi)用蘆柑苗飼養(yǎng)1代后,第2代用于毒力測定。柑橘木虱的飼養(yǎng)及生物測定均于溫度(25±1)℃、相對濕度(65±5)%、光周期L∶D=16 h∶8 h條件下進行。
1. 2 試驗方法
1. 2. 1 柑橘木虱生物測定方法 取供試藥劑,分別先用少量丙酮使其完全溶解,制成母液,再加蒸餾水將各母液稀釋至設(shè)定濃度,每個配比設(shè)5~6個濃度,溶液中加入0.1% Triton X-100作為乳化劑;以蒸餾水為對照,加入同等體積的0.1% Triton X-100。2齡若蟲采用浸葉法,將含有2齡若蟲的柑橘嫩梢在不同濃度藥液中浸漬10 s,取出后用濾紙吸干多余藥液,將柑橘嫩梢用濕潤的脫脂棉保濕。成蟲采用葉碟法,將成蟲麻醉,然后用殺蟲劑浸潤木虱全身,放入葉碟中,每處理不少于20頭,每個濃度3~4次重復(fù)。24 h后觀察2齡若蟲和成蟲的存活情況。
1. 2. 2 柑橘木虱成蟲總蛋白含量測定 參照Wu等(2007)的考馬斯亮藍(lán)G-250法進行測定。
1. 2. 3 柑橘木虱成蟲的酯酶(EST)活性測定 以4-硝基苯基乙酸酯為底物測定柑橘木虱的酯酶活性(劉斌,2015)。先將36 mg 4-硝基苯基乙酸酯溶于1.0 mL氰化甲烷中形成200 mol/L的儲存液;將50 μL 4-硝基苯基乙酸酯儲存液滴入10 μL磷酸鈉緩沖液(0.1 mol/L,pH 7.4)最終形成濃度為995 μmol/L 4-硝基苯基乙酸酯的反應(yīng)混合液(即制即用);在96孔板上,將225 μL反應(yīng)混合液和10 μL蛋白樣品加入一個反應(yīng)孔中,以磷酸緩沖液為陰性對照;將反應(yīng)板放入數(shù)據(jù)讀取儀,在25 ℃和405 nm下每20 s讀取數(shù)據(jù)一次,共讀取數(shù)據(jù)5 min;最后計算平均每毫克蛋白的酯酶活性。
1. 2. 4 柑橘木虱成蟲的谷胱甘肽S-轉(zhuǎn)移酶(GSTs)活性測定 參考Tiwari等(2012)的方法,室溫下取2.7 mL的磷酸鉀緩沖液(0.1 mol/L,pH 6.5)、0.1 mL GSH和0.1 mL酶液加入比色杯中,用UV-120-02型分光光度計在340 nm下調(diào)零,然后加入0.1 mL 1-氯-2,4-二硝基苯(CDNB)使反應(yīng)開始,用U-135C型數(shù)據(jù)記錄儀采集數(shù)據(jù)。
1. 2. 5 柑橘木虱成蟲的P450活性測定 以3,3',5,5'-四甲基聯(lián)苯胺(TMB)作為與細(xì)胞色素P450反應(yīng)的底物測定柑橘木虱的P450活性(劉斌,2015)。先將100 mg TMB溶于5.0 mL甲醇和15.0 mL乙酸鈉緩沖液(0.25 mol/L,pH 5.0)形成TMBZ溶液;反應(yīng)總體積為315 μL;反應(yīng)液中包括10 mL蛋白樣品、80 μL磷酸鉀緩沖液(0.625 mol/L,pH 7.2)、25 μL 3%雙氧水和200 μL TMBZ溶液;25 ℃下反應(yīng)2 h后在650 nm下讀取數(shù)據(jù)。血紅素過氧化物酶的活性由細(xì)胞色素C標(biāo)準(zhǔn)曲線換算。
1. 3 統(tǒng)計分析
運用SPSS 16.0中的Probit程式分別計算致死中濃度(LC50)和殺死90%個體所需濃度(LC90)及95%置信區(qū)間。將藥劑對6個柑橘木虱田間種群的LC50與敏感種群的LC50進行比較,計算抗性倍數(shù)??剐员稊?shù)=田間種群的LC50/敏感種群的LC50。抗性標(biāo)準(zhǔn)劃分:抗性倍數(shù)0~5.0倍為耐藥力變化和操作誤差,表明對藥劑敏感,未產(chǎn)生抗性;5.0~10.0倍為低等抗性;10.0~40.0倍為中等抗性;40.0~160.0倍為高等抗性;160.0倍以上為極高抗性。用SPSS 16.0對酶活性的均值進行差異顯著性分析。
2 結(jié)果與分析
2. 1 不同地理種群柑橘木虱2齡若蟲對不同殺蟲劑的抗藥性
由表1可知,6種殺蟲劑對柑橘木虱2齡若蟲SS種群的毒力順序為:聯(lián)苯菊酯>噻蟲嗪>啶蟲脒>阿維菌素>高效氯氰菊酯>毒死蜱。FJ、GD和HN種群對聯(lián)苯菊酯的抗性倍數(shù)均小于5.0,處于敏感水平;JX和SM種群對聯(lián)苯菊酯的抗性倍數(shù)在5.0~10.0,處于低等抗性水平。FJ種群對高效氯氰菊酯的抗性倍數(shù)小于5.0,處于敏感水平;GD、HN、JX和SM種群對高效氯氰菊酯的抗性倍數(shù)在5.0~10.0,處于低等抗性水平。JX種群對毒死蜱的抗性倍數(shù)為7.6,處于低等抗性水平,其他4個種群對毒死蜱的抗性倍數(shù)均小于5.0,處于敏感水平。HN種群對阿維菌素的抗性倍數(shù)為6.1,處于低等抗性水平,其他4個種群對阿維菌素的抗性倍數(shù)均小于5.0,處于敏感水平。FJ、JX和SM種群對噻蟲嗪的抗性倍數(shù)在5.0~10.0,處于低等抗性水平;GD和HN種群對噻蟲嗪的抗性倍數(shù)在10.0~40.0,處于中等抗性水平。FJ種群對啶蟲脒的抗性倍數(shù)為9.0,處于低等抗性水平,其他4個種群對啶蟲脒的抗性倍數(shù)在10.0~40.0,處于中等抗性水平。
2. 2 不同地理種群柑橘木虱成蟲對不同殺蟲劑的抗藥性
由表2可知,6種殺蟲劑對柑橘木虱成蟲SS種群的毒力排序為:噻蟲嗪>啶蟲脒>阿維菌素>聯(lián)苯菊酯>高效氯氰菊酯>毒死蜱。FJ、GD和HN種群對聯(lián)苯菊酯的抗性倍數(shù)均小于5.0,處于敏感水平;JX和SM種群對聯(lián)苯菊酯的抗性倍數(shù)在5.0~10.0,處于低抗水平。FJ和JX種群對高效氯氰菊酯的抗性倍數(shù)在5.0~10.0,處于低等抗性水平;GD、HN和SM種群對高效氯氰菊酯的抗性倍數(shù)均小于5.0,處于敏感水平。FJ、GD、HN、JX和SM種群對毒死蜱和阿維菌素的抗性倍數(shù)均小于5.0,處于敏感水平。FJ和JX種群對噻蟲嗪的抗性倍數(shù)在5.0~10.0,處于低等抗性水平;GD、HN和SM種群對噻蟲嗪的抗性倍數(shù)在10.0~40.0,處于中等抗性水平。FJ、GD、HN、JX和SM種群對啶蟲脒的抗性倍數(shù)在10.0~40.0,處于中等抗性水平。
2. 3 不同地理種群柑橘木虱成蟲的代謝酶比較結(jié)果
由圖1可知,SS、FJ、GD、HN、JX和SM種群柑橘木虱成蟲的EST活性均值分別為115.20±18.43、108.21±12.23、127.94±18.19、139.24±18.93、126.03±14.71和141.47±17.18 μmol/(L·min·mg pro)。方差分析結(jié)果表明,HN和SM種群的EST活性顯著高于SS種群(P<0.05,下同),其他田間種群的EST活性與SS種群相當(dāng),差異不顯著(P>0.05,下同)。
由圖2可知,SS、FJ、GD、HN、JX和SM種群柑橘木虱成蟲的GSTs活性均值分別為115.57±8.02、141.12±10.77、166.22±19.47、149.43±14.20、133.77±13.24和128.27±11.13 μmol/(L·min·mg pro)。方差分析結(jié)果表明,F(xiàn)J、GD和HN種群的GSTs活性顯著高于SS種群,JX和SM種群的GSTs活性與SS種群相當(dāng),差異不顯著。
對柑橘木虱的P450活性檢測結(jié)果(圖3)顯示,SS、FJ、GD、HN、JX和SM種群柑橘木虱成蟲的P450活性均值分別為0.73±0.03、0.81±0.10、0.92±0.05、0.88±0.09、0.86±0.06和0.85±0.09 U/mg pro。方差分析結(jié)果表明,GD、HN、JX和SM種群的P450活性均顯著高于SS種群,F(xiàn)J種群的P450活性與SS種群相當(dāng),差異不顯著。
3 討論
本研究結(jié)果表明,聯(lián)苯菊酯對柑橘木虱所有田間種群、高效氯氰菊酯對除SM種群外的其他4個田間種群、毒死蜱對除JX種群外的其他4個田間種群、啶蟲脒和噻蟲嗪對除GD種群外的其他4個種群2齡若蟲的毒力均高于成蟲,而柑橘木虱主要通過成蟲擴散(Sakamaki,2005;Boinaet al.,2009),且成蟲歷期也顯著高于其他蟲態(tài)歷期(許長藩等,1994),因此,在田間使用上述藥劑防治柑桔木虱時,應(yīng)將春季第一代若蟲期作為重點防治期,以期更好地防止柑橘木虱羽化成蟲擴散。不同地區(qū)柑橘木虱種群對殺蟲劑的敏感性差異較明顯,如FJ種群和GD種群對聯(lián)苯菊酯、高效氯氰菊酯、毒死蜱和阿維菌素等殺蟲劑的敏感性較高,而JX種群的抗性譜最廣,對除阿維菌素外的其他5種供試殺蟲劑均產(chǎn)生不同程度的抗藥性,因此JX種群在柑橘木虱發(fā)生盛期應(yīng)選擇阿維菌素進行防治。柑橘木虱地區(qū)間種群的抗藥性差異在其他柑橘產(chǎn)區(qū)也存在(Siddharth et al.,2011),可能與用藥種類和施藥次數(shù)有關(guān)(龔佑輝,2009)。
本研究所采集的5個柑橘木虱田間種群均對啶蟲脒和噻蟲嗪產(chǎn)生了抗性。啶蟲脒和噻蟲嗪均屬于新煙堿類殺蟲劑,是防治柑橘木虱的主要藥劑,正面臨抗藥性的嚴(yán)重威脅(Siddharth et al.,2011)。鄧明學(xué)等(2012)研究發(fā)現(xiàn),生產(chǎn)中從未施用過噻蟲嗪和呋蟲胺等新煙堿類殺蟲劑地區(qū)的柑橘木虱種群已對這些藥劑產(chǎn)生低抗至中等水平抗性,且新煙堿類殺蟲劑間也存在一定的交互抗性;Vázquez-García等(2013)監(jiān)測發(fā)現(xiàn),墨西哥中西部地區(qū)柑橘木虱對吡蟲啉的抗性倍數(shù)最高達4265.5倍,且噻蟲嗪與吡蟲啉存在交互抗性,本研究結(jié)果與上述研究結(jié)果相似?,F(xiàn)階段,新煙堿類殺蟲劑中僅有啶蟲脒和噻蟲嗪登記可用于防治柑橘木虱(農(nóng)業(yè)農(nóng)村部農(nóng)藥檢定所,2019),當(dāng)有其他新煙堿類殺蟲劑,如氟吡呋喃酮、噻蟲啉和唑蟲酰胺等登記于防治木虱時,需進行抗藥性風(fēng)險評估,確認(rèn)毒力后方可推廣使用。
本研究還從代謝途徑研究了柑橘木虱不同種群解毒酶的差異,對解毒酶活性的測定結(jié)果顯示,與敏感種群相比,不同種群柑橘木虱的解毒酶活性存在差異,表明EST、GSTs或P450活性提高可能是該種群對殺蟲劑敏感性產(chǎn)生差異的主要機理。除了解毒代謝,昆蟲的抗藥性還可分為生理抗性(表皮穿透作用降低)和靶標(biāo)敏感性(乙酰膽堿酯酶活性降低)(劉斌,2015)等,今后需進一步利用分子生物學(xué)等手段探究柑橘木虱的抗藥性機理。
4 結(jié)論
不同地理種群柑橘木虱若蟲和成蟲對6種供試藥劑的敏感性存在差異,而除阿維菌素外其他5種藥劑對大多數(shù)種群柑橘木虱若蟲的毒力高于成蟲。5個地理種群柑橘木虱對新煙堿類殺蟲劑均產(chǎn)生不同程度的抗藥性,可能與EST、GSTs或P450等代謝酶活性升高相關(guān)。因此,應(yīng)將柑橘木虱若蟲期作為防治主要時期,并根據(jù)當(dāng)?shù)貙嶋H合理選擇藥劑,同時注意不同作用機理的藥劑輪換使用。
參考文獻:
程曉琴,趙政,夏長秀,嚴(yán)翔,章日華,張宏宇. 2018. 葉噴和土施化學(xué)藥劑對柑橘木虱的防效研究[J]. 應(yīng)用昆蟲學(xué)報,55(4):646-653. [Cheng X Q,Zhao Z,Xia C X,Yan X,Zhang R H,Zhang H Y. 2018. Comparison of the effectiveness of applying different pesticides to foliar spraying and soil-drench to control Diaphorina citri Kuwayama[J]. Chinese Journal of Applied Entomology,55(4):646-653.]
鄧明學(xué),潘振興,譚有龍,唐際飛,覃旭,陳貴峰,唐明麗. 2012. 柑橘木虱對4種新煙堿類殺蟲劑的交互抗性[J]. 農(nóng)藥,51(2):153-155. [Deng M X,Pan Z X,Tan Y L,Tang J F,Qin X,Chen G F,Tang M L. 2012. Cross-resistance of Asian citrus psylla to 4 neonicotinoid insecticides[J]. Agrochemicals,51(2):153-155.]
龔佑輝. 2009. 多殺菌素對西花薊馬的亞致死效應(yīng)研究[D].北京:中國農(nóng)業(yè)科學(xué)院. [Gong Y H. 2009. Sublethal effect of spirosad to Frankliniella occidentalis(Pergande)[D]. Beijing:Chinese Academy of Agricultural Sciences.]
劉斌. 2015. 柑橘木虱對殺蟲劑敏感性檢測及抗藥性相關(guān)基因分析[D]. 重慶:西南大學(xué).[Liu B. 2015. Detection of insecticides susceptibility and analyses of insecticides resistance-related genes[D]. Chongqing:Southwest University.]
毛潤乾,吳東,何勇,陳世偉,賢家旭,鄭基煥. 2013. 防治果園周邊柑橘木虱控制黃龍病效果研究[J]. 環(huán)境昆蟲學(xué)報,35(4):445-451. [Mao R Q,Wu D,He Y,Chen S W,Xian J X,Zheng J H. 2013. Study on control effectiveness of Huanglongbing based on eradication of Asian ci-trus psyllid Diaphorina citri Kuwayama surrounding ci-trus orchard[J]. Journal of Environmental Entomology,35(4):445-451.]
孟幼青,馬海芹,李艷敏,袁亦文,夏成鵬,徐冰潔,黃友解,宋際徽,章合凱. 2017. 幾種殺蟲劑對柑橘木虱防治的效果[J]. 浙江農(nóng)業(yè)科學(xué),58(8):1429-1431. [Meng Y Q,Ma H Q,Li Y M,Yuan Y W,Xia C P,Xu B J,Huang Y J,Song J H,Zhang H K. 2017. Control efficacy of several insecticides to Diaphorina citri[J]. Journal of Zhejiang Agricultural Sciences,58(8):1429-1431.]
農(nóng)業(yè)農(nóng)村部農(nóng)藥檢定所. 2019. 農(nóng)藥登記數(shù)據(jù)[OL]. 中國農(nóng)藥信息網(wǎng). http://www.chinapesticide.org.cn/hysj/index.jhtml. [Institute for the Control of Agrochemicals,Ministry of Agriculture and Rural Affairs. 2019. Pesticides re-gistered data[OL]. China Pesticide Information Network http://www.chinapesticide.org.cn/hysj/index.jhtml.]
許長藩,夏雨華,柯沖. 1994. 柑桔木虱生物學(xué)特性及防治研究[J]. 植物保護學(xué)報,21(1):53-56. [Xu C F,Xia Y H,Ke C. 1994. Study on the biology and control of citrus psylla[J]. Acta Phytophylacica Sinica,21(1):53-56.]
姚林建,易龍,李雙花,陳毅群. 2018. 不同溫度組合熱處理治療柑橘黃龍病的田間效果分析[J]. 南方農(nóng)業(yè)學(xué)報,49(7):1346-1350. [Yao L J,Yi L,Li S H,Chen Y Q. 2018. Efficacy of heat treatment in controlling citrus Huanglongbing by different temperatrues combinations in field[J]. Journal of Southern Agriculture,49(7):1346-1350.]
Boina D R,Bloomquist J R. 2015. Chemical control of the Asian citrus psyllid and of huanglongbing disease in citrus[J]. Pest Management Science,71(6): 808-823.
Boina D R,Meyer W L,Onagbola E O,Stelinski L L. 2009. Quantifying dispersal of Diaphorina citri(Hemiptera: Psyllidae) by immunomarking and potential impact of unmanaged groves on commercial citrus management[J]. Environmetal Entomology,38:1250-1258.
Chen X D,Lukasz L S. 2017. Rapid detection of insecticide resistance in Diaphorinacitri(Hemiptera: Liviidae) populations,using a bottle bioassay[J]. Florida Entomologist,100(1):124-133.
Coy M R,Liu B,Stelinski L L. 2016. Reversal of insecticide resistance in Florida populations of Diaphorinacitri(Hemiptera: Liviidae)[J]. Florida Entomologist,99: 26-32.
Halbert S E,Manjunath K L. 2004. Asian citrus psyllid(Sternorryncha:Psyllidae) and greening disease of citrus: A li-terature review and assessment of risk in Florida[J]. Flo-rida Entomologist,87:330-353.
Hall D G,Hentz M G,Ciomperlik M A. 2007. A comparison of traps and stem tap sampling for monitoring adult Asian citrus psyllid(Hemiptera: Psyllidae) in citrus[J]. Florida Entomologist,90:327-334.
Kanga L H B,Eason J,Haseeb M,Qureshi J,Stansly P. 2016. Monitoring for insecticide resistance in Asian citrus psyllid(Hemiptera: Psyllidae) populations in Florida[J]. Journal of Economic Entomology,109: 832-836.
Sakamaki Y. 2005. Possible migration of the Asian citrus psyllid,Diaphorinacitri Kuwayama(Homoptera:Psyllidae),between and within islands[J]. Occas Pap Kagoshima University Research Center,42:121-125.
Siddharth T,Rajinder S M,Michael E R,Lukasz L S. 2011. Insecticide resistance in field populations of Asian citrus psyllid in Florida[J]. Pest Management Science,67: 1258-1268.
Tiwari S,Mann R S,Rogers M E,Stelinski L L. 2011. Insecticide resistance in field populations of Asian citrus psyllid in Florida[J]. Pest Management Science,67(10):1258-1268.
Tiwari S,Stelinski L L,Rogers M E. 2012. Biochemical basis of organophosphate and carbamate resistance in Asian ci-trus psyllid[J]. Journal of Economic Entomology,105(2): 540-548.
Vázquez-García M,Velázquez-Monreal J,Medina-Urrutia V M,Cruz-Vargas C,Sandoval-Salazar M,Virgen-Calleros G,Torres-Morán J P. 2013. Insecticide resistance in adult Diaphorinacitri Kuwayama from lime orchards in central west Mexico[J]. Southwestern Entomologist,38(4): 579-596.
Wu H H,Yang M L,Guo Y P,Xie Z G,Ma E B. 2007. Comparisons of malathion susceptibility,target sensitivity and detoxification enzyme activity in nine field populations of Oxya chinensis(Orthoptera: Acrididae)[J]. Journal of Economic Entomology,100(4): 1409-1415.
(責(zé)任編輯 麻小燕)