亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        生物炭強(qiáng)化有機(jī)廢棄物厭氧發(fā)酵技術(shù)研究

        2019-08-19 03:00:58趙立欣姚宗路申瑞霞
        關(guān)鍵詞:厭氧發(fā)酵廢棄物生物

        馮 晶,荊 勇,2,趙立欣,姚宗路,申瑞霞

        生物炭強(qiáng)化有機(jī)廢棄物厭氧發(fā)酵技術(shù)研究

        馮 晶1,荊 勇1,2,趙立欣1※,姚宗路1,申瑞霞1

        (1. 農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計(jì)研究院農(nóng)村能源與環(huán)保研究所,農(nóng)業(yè)農(nóng)村部農(nóng)業(yè)廢棄物能源化利用重點(diǎn)實(shí)驗(yàn)室,北京 100125; 2. 東北林業(yè)大學(xué)工程技術(shù)學(xué)院,哈爾濱 150036)

        厭氧發(fā)酵是中國(guó)有機(jī)廢棄物處理的重要技術(shù)途徑,但利用厭氧發(fā)酵技術(shù)在高負(fù)荷條件下處理有機(jī)廢棄物過(guò)程中,因有機(jī)酸、氨氮等抑制性物質(zhì)作用,易導(dǎo)致厭氧發(fā)酵運(yùn)行不穩(wěn)定,處理效率不高等問(wèn)題。生物炭是生物質(zhì)材料在無(wú)氧或缺氧條件下經(jīng)高溫?zé)峤庑纬傻亩嗫讖教假|(zhì)材料,具有比表面積高,孔隙結(jié)構(gòu)復(fù)雜,表面活性基團(tuán)豐富和導(dǎo)電性強(qiáng)等特性,并被廣泛用于厭氧發(fā)酵技術(shù)研究。近年來(lái)國(guó)內(nèi)外研究表明,生物炭能有效強(qiáng)化厭氧發(fā)酵,提高厭氧發(fā)酵過(guò)程中有機(jī)廢棄物的處理效率。然而,對(duì)于生物炭強(qiáng)化厭氧發(fā)酵技術(shù)途徑,目前仍未見(jiàn)系統(tǒng)的梳理和報(bào)道。該文對(duì)生物炭材料的化學(xué)組成、孔隙結(jié)構(gòu)、表面官能團(tuán)關(guān)鍵因素及生物炭強(qiáng)化厭氧發(fā)酵技術(shù)的重要途徑進(jìn)行了系統(tǒng)分析和歸納,從生物炭材料的理化性質(zhì)出發(fā),闡述了生物炭對(duì)于厭氧發(fā)酵技術(shù)的強(qiáng)化效果及強(qiáng)化途徑,強(qiáng)化途徑主要包括:提升系統(tǒng)緩沖能力、微生物載體作用和強(qiáng)化電子傳遞等,在此基礎(chǔ)上提出了今后生物炭強(qiáng)化有機(jī)廢棄物厭氧發(fā)酵技術(shù)的重點(diǎn)研究?jī)?nèi)容和方向,為開(kāi)發(fā)厭氧發(fā)酵強(qiáng)化技術(shù)提供指導(dǎo)。

        廢棄物;發(fā)酵;生物炭;強(qiáng)化技術(shù);研究進(jìn)展

        0 引 言

        據(jù)統(tǒng)計(jì),中國(guó)每年約產(chǎn)生21億t林業(yè)廢棄物和農(nóng)副產(chǎn)物[1],約38億t畜禽糞污[2]。當(dāng)前,中國(guó)仍有大量農(nóng)林廢棄物沒(méi)有得到有效利用,秸稈田間無(wú)序焚燒、糞污散亂排放等問(wèn)題在部分地區(qū)仍然存在。

        厭氧發(fā)酵技術(shù)被認(rèn)為是處理農(nóng)林廢棄物的重要途徑。農(nóng)林廢棄物經(jīng)過(guò)厭氧發(fā)酵可用于生產(chǎn)清潔能源沼氣,發(fā)酵剩余的沼渣、沼液也可作肥料還田。近年來(lái),中國(guó)在農(nóng)林廢棄物資源化利用領(lǐng)域普遍采用濕法厭氧發(fā)酵技術(shù),尤其是全混式厭氧發(fā)酵技術(shù)。然而,隨著中國(guó)規(guī)模化沼氣的迅速發(fā)展,農(nóng)村沼氣工程轉(zhuǎn)型升級(jí)的持續(xù)推進(jìn),發(fā)現(xiàn)全混式厭氧發(fā)酵過(guò)程易受高濃度氨氮及揮發(fā)性脂肪酸等的抑制,存在產(chǎn)氣效率低、發(fā)酵不穩(wěn)定等問(wèn)題[3-4],這也是中國(guó)規(guī)?;託夤こ踢\(yùn)行效果差的重要原因。

        生物炭作為一種新興炭材料,是農(nóng)林廢棄物高溫?zé)峤獾漠a(chǎn)物[5],一般具有比表面積高、孔隙結(jié)構(gòu)復(fù)雜、表面活性基團(tuán)豐富、導(dǎo)電性強(qiáng)等特性[6-7],近年來(lái)在厭氧發(fā)酵系統(tǒng)中的添加、應(yīng)用已經(jīng)成為當(dāng)前的研究熱點(diǎn)。眾多研究發(fā)現(xiàn),生物炭的添加可有效保持厭氧發(fā)酵過(guò)程的穩(wěn)定性,提高厭氧發(fā)酵產(chǎn)氣效率[8-10],然而,目前對(duì)添加生物炭強(qiáng)化厭氧發(fā)酵機(jī)理仍不清晰,該技術(shù)的工程化應(yīng)用也受到一定限制。本文擬通過(guò)對(duì)當(dāng)前生物炭強(qiáng)化厭氧發(fā)酵的眾多研究進(jìn)行梳理和總結(jié),為開(kāi)展厭氧發(fā)酵過(guò)程中生物炭作用機(jī)理研究,進(jìn)一步開(kāi)發(fā)生物炭強(qiáng)化厭氧發(fā)酵技術(shù)提供一定的借鑒。

        1 生物炭理化特性

        1.1 化學(xué)組成

        生物炭是由含碳量豐富的生物質(zhì)在無(wú)氧或限氧的條件下高溫?zé)峤舛玫降囊环N細(xì)粒度、多孔性的碳質(zhì)材料[11],一般由無(wú)定形碳、芳香族碳和灰分組成[12],其主要組成元素包括C、H、O、N及灰分中的Si、Al、Fe、Ti、P、Ca、Mg、Na、K和S等[13-14]。生物炭表層分布著各種官能團(tuán)、無(wú)機(jī)及金屬離子,其中含O、N、S的官能團(tuán)比較豐富[7]。生物炭中Na、K、Mg、Ca 等堿土金屬元素常以氧化物或碳酸鹽的形式存在,溶于水后呈微堿性,具有一定的酸堿緩沖特性[15]。

        不同種類(lèi)生物炭組分存在一定差異,如糞肥源生物炭一般含有較高的N、P元素,木材源生物炭的碳和揮發(fā)性物質(zhì)含量一般高于農(nóng)業(yè)廢棄物制備的生物炭[16],灰分、N、P、K、Ca、Mg等含量卻相對(duì)較低[17],且同溫條件下,一般有機(jī)質(zhì)含量較高的污泥、糞便等生物炭灰分含量依次高于農(nóng)業(yè)廢棄物生物炭、木材源生物炭等[14-15]。不同來(lái)源與種類(lèi)的生物炭化學(xué)組成具體見(jiàn)表1。

        表1 不同生物質(zhì)原料、熱解溫度及生物炭化學(xué)成分

        1.2 孔隙結(jié)構(gòu)

        生物質(zhì)經(jīng)熱解后,組成物質(zhì)受損,結(jié)構(gòu)收縮形成更為致密的生物炭孔隙結(jié)構(gòu)[26]。根據(jù)孔徑尺寸的不同,可分為微孔(<0.8 nm)、小孔(0.8~2 nm)、中孔(>2~50 nm)和大孔(>50 nm)。復(fù)雜多樣的孔隙結(jié)構(gòu)使生物炭具有較大的孔容和比表面積,其中微孔對(duì)生物炭的比表面積貢獻(xiàn)最大[27]。

        不同的生物質(zhì)原料及熱解溫度對(duì)生物炭孔隙結(jié)構(gòu)影響比較大(見(jiàn)表2)。如DD Sewu等[6,30-31]研究發(fā)現(xiàn),相同條件下木屑生物炭的孔隙率介于稻草生物炭和韓國(guó)圓白菜生物炭之間,其比表面積卻遠(yuǎn)小于農(nóng)業(yè)廢棄物、污泥和糞便等原料熱解所得生物炭。一般生物炭的比表面積隨著溫度的升高而增大,溫度越高生物質(zhì)內(nèi)部揮發(fā)性物質(zhì)消耗的越多,生物炭表面越粗糙,孔隙結(jié)構(gòu)越復(fù)雜[17-18]。但溫度過(guò)高也會(huì)影響孔隙結(jié)構(gòu)的多樣性,如炭化溫度逐漸升至700~800 ℃時(shí),生物炭中微孔和中孔數(shù)量反而減少[20,25],其原因主要在于較高的溫度使更多的揮發(fā)性物質(zhì)被消耗,造成了微孔和中孔的損失。

        表2 不同生物質(zhì)原料及熱解溫度下生物炭孔隙結(jié)構(gòu)特征

        1.3 表面官能團(tuán)

        生物炭表面分布著豐富的官能團(tuán),如De等[34]研究發(fā)現(xiàn),生物炭在3 200~3 600 cm-1(O-H)伸縮振動(dòng)處對(duì)應(yīng)的峰值最高,在2 850~3 000 cm-1(C-H)、1 550~1 640 cm-1(酰胺)、1 350~1 480 cm-1(-C-H)、1 000~1 300 cm-1(酯)、600~800 cm-1(鹵代烷基)處也具有較強(qiáng)的峰。Chen等[31]發(fā)現(xiàn),生物炭表面官能團(tuán)波峰主要發(fā)生在3 436 cm-1(-OH)、1 591 cm-1(芳香C=O,C=C)、1 400 cm-1(C-O)和1 050 cm-1(SiO32-)處。一般生物炭表面含氧、氮、硫的官能團(tuán)較豐富,大多為負(fù)電荷且電荷分布密集,有助于加強(qiáng)生物炭表面極性及與外界物質(zhì)的陽(yáng)離子交換能力[14,35]。

        不同種類(lèi)的生物炭表層官能團(tuán)種類(lèi)或數(shù)量會(huì)存在一定的差異。如韓國(guó)圓白菜(Korean cabbage)廢棄物生物炭和木屑生物炭均在C-C、O-H、C=O、C=C-C芳香環(huán)和苯基處有特征峰,而稻草秸稈生物炭在C=O(COOH)、C=C-C(芳香環(huán))、C-O和苯基處也存在特征峰,但相對(duì)較少[28],而花生殼和松木生物炭官能團(tuán)種類(lèi)差異不顯著,但同種官能團(tuán)的豐富度略有差異[36]。此外,生物質(zhì)熱解炭化工藝,尤其是溫度對(duì)生物炭表面官能團(tuán)量具有十分重要的影響。熱解過(guò)程中,生物質(zhì)材料中大量的揮發(fā)性物質(zhì)丟失,H、O、N等元素也存在部分丟失,導(dǎo)致生物炭表面的官能團(tuán)部分損失[18],溫度越高損失越多。

        2 生物炭強(qiáng)化厭氧發(fā)酵的效果及途徑

        2.1 生物炭強(qiáng)化厭氧發(fā)酵的效果

        生物炭憑借其良好的生物理化性能,對(duì)厭氧發(fā)酵起到顯著的強(qiáng)化作用。目前,生物炭對(duì)厭氧發(fā)酵效果的提升研究主要集中在批式試驗(yàn),而在連續(xù)式厭氧發(fā)酵試驗(yàn)方面的報(bào)道較少。

        從批式試驗(yàn)的結(jié)果來(lái)看,生物炭對(duì)于厭氧發(fā)酵強(qiáng)化效果主要體現(xiàn)在縮短延滯期、提升最大產(chǎn)率以及提高累積甲烷產(chǎn)量等方面[37-38]。批式試驗(yàn)結(jié)果表明(見(jiàn)表3),生物炭投加后可縮短延滯期4%~87.4%,提高最大產(chǎn)率1.4%~70.6%,提高累積產(chǎn)甲烷體積分?jǐn)?shù)1.9%~71.7%。

        表3 不同生物質(zhì)原料生物炭產(chǎn)氣效果

        不同生物炭種類(lèi)、粒徑及添加劑量對(duì)于產(chǎn)氣效果的提升也存在一定差異[39]。在添加同種生物質(zhì)原料的生物炭條件下,甲烷的最大產(chǎn)率及延滯期的縮短量與生物炭粒徑大小成負(fù)相關(guān)[40],并隨生物炭添加量在一定范圍內(nèi)呈現(xiàn)出先上升后逐漸下降的趨勢(shì)[3,37],即粒徑越小,添加劑量越大,延滯期則越短,最大甲烷產(chǎn)率則越高,當(dāng)添加劑量達(dá)到一定值后,隨著生物炭劑量的增加,厭氧發(fā)酵強(qiáng)化效果逐漸降低[39]。不同生物炭種類(lèi)相比,木屑源生物炭比稻殼、秸稈源生物炭對(duì)縮短延滯期效果更加顯著,同時(shí)提高最大甲烷產(chǎn)率及累積甲烷產(chǎn)量也受木屑種類(lèi)的限制,但一般比稻殼、秸稈、雞糞源等生物炭提高最大甲烷產(chǎn)率顯著[41-42]。生物炭的添加,縮短了厭氧發(fā)酵的延滯期,使甲烷的產(chǎn)量及產(chǎn)率得到很大的提升,此效果也被Zhao等通過(guò)連續(xù)式厭氧發(fā)酵所證明[43]。

        2.2 生物炭強(qiáng)化厭氧發(fā)酵的途徑

        生物炭對(duì)于厭氧發(fā)酵效果的提升作用主要是通過(guò)提升系統(tǒng)緩沖能力[15]、微生物載體作用[40]、強(qiáng)化電子傳遞等途徑[30],目前已經(jīng)成為研究的熱點(diǎn)。

        2.2.1 提升系統(tǒng)緩沖能力

        生物炭具有豐富的孔隙,高的比表面積,同時(shí)炭表層也含有比較豐富的官能團(tuán),大量含氧、氮、硫等形式的官能團(tuán)使表面具有很強(qiáng)的極性[44],這些性質(zhì)決定了生物炭具有較強(qiáng)的吸附能力。一般而言,生物炭的吸附途徑主要包括靜電吸引、沉淀、表面絡(luò)合、離子交換[14]、范德瓦爾力及生物炭表面與環(huán)境中各種基團(tuán)、物質(zhì)形成氫鍵等[45]。如Meng等[19,34]研究發(fā)現(xiàn),通常生物炭在液體環(huán)境中會(huì)溶解析出各種水溶性化合物,形成水溶性陰離子(SO42-、PO43-等)和陽(yáng)離子(Ca2+、Mg2+等),使生物炭表面具有一定量電荷,進(jìn)一步增強(qiáng)生物炭表層的靜電吸引力及與外界的離子交換能力。同時(shí),生物炭中含有較多的堿和堿土金屬元素[18],在液體環(huán)境中呈堿性,有助于促進(jìn)厭氧消化中二氧化碳向碳酸氫鹽或碳酸鹽的轉(zhuǎn)化,灰分含量越高堿度越大,提升厭氧發(fā)酵系統(tǒng)的緩沖能力越顯著[20,46]。

        在厭氧發(fā)酵系統(tǒng)中添加生物炭,通過(guò)堿度的提升及對(duì)沼液中有機(jī)酸的吸附,可有效提升發(fā)酵系統(tǒng)的緩沖能力,保證厭氧發(fā)酵過(guò)程的穩(wěn)定運(yùn)行。一般生物炭對(duì)厭氧消化系統(tǒng)中的酸抑制具有顯著的緩解作用,生物炭中豐富的堿土金屬元素,緩解了厭氧發(fā)酵體系乙酸、丙酸、丁酸等VFAs大量生成導(dǎo)致的過(guò)度酸化[24],使溶液pH值下降有一定的延遲,有效縮短了滯后時(shí)間(約27.5%~64.4%),提高了甲烷最大產(chǎn)量(約22.4%~40.3%),這也直觀的表現(xiàn)了生物炭對(duì)VFAs的緩沖能力[3]。

        在厭氧發(fā)酵系統(tǒng)中添加生物炭,通過(guò)堿度的提升及對(duì)沼液中氨氮等抑制性物質(zhì)的吸附,可有效提升發(fā)酵系統(tǒng)的緩沖能力,保證厭氧發(fā)酵過(guò)程的穩(wěn)定運(yùn)行。生物炭對(duì)于氨氮的吸附能力一般在10 mg/g以上,且不同類(lèi)型生物炭的吸附能力也有所差異,如木素含量越高氨氮吸附量相對(duì)越小,宋婷婷等[47]對(duì)各類(lèi)生物炭氨氮吸附能力進(jìn)行了評(píng)價(jià),其中花生殼炭(16.22 mg/g)>玉米稈炭(12.64 mg/g)>竹炭(10.86 mg/g)>楊木屑炭(10.15 mg/g)。Chen等[29,48]對(duì)生物炭吸附氨氮的研究結(jié)果也表明玉米秸稈炭的吸附效果強(qiáng)于木炭,稻殼炭的吸附效果強(qiáng)于山核桃殼炭和竹炭等。

        生物炭對(duì)VFAs和氨氮的吸附及抑制緩解能力受各種因素的影響,如pH值、溫度、生物炭粒徑和劑量等。針對(duì)以上因素國(guó)內(nèi)外學(xué)者進(jìn)行了大量試驗(yàn)探索,結(jié)果表明,一定條件下隨著厭氧發(fā)酵系統(tǒng)中生物炭劑量的提升,丙酸的降解得到加強(qiáng),其質(zhì)量分?jǐn)?shù)降低到70%~85%,VFAs濃度也呈下降趨勢(shì),且生物炭質(zhì)量濃度每增加2 g/L,VFAs濃度平均下降100 mg/L[9]。劉項(xiàng)等[49]通過(guò)氨氮的吸附等溫線、吸附動(dòng)力學(xué)研究發(fā)現(xiàn),高溫條件下制得的生物炭吸附速率較低溫條件下更高(700 ℃> 500 ℃> 300 ℃),但吸附容量較低溫條件下制得的生物炭差(300 ℃>500 ℃>700 ℃),且生物炭對(duì)氨氮的吸附容量一般在近中性時(shí)較好,偏酸或堿吸附能力都會(huì)有所降低,Dang等[50-51]的研究與此相同,并發(fā)現(xiàn)在pH值為6.5時(shí)吸附容量最好。生物炭粒徑對(duì)生物炭的吸附能力也有著很大的影響。一般生物炭粒徑越小,吸附能力越強(qiáng),滯后期的減小越顯著,對(duì)厭氧發(fā)酵系統(tǒng)的緩沖效果越好[40,52]。

        同樣的,生物炭對(duì)厭氧發(fā)酵系統(tǒng)緩沖能力的提升作用,更多建立在批式厭氧發(fā)酵試驗(yàn)結(jié)果基礎(chǔ)上,而缺少在連續(xù)式厭氧發(fā)酵系統(tǒng)中的驗(yàn)證與研究,同時(shí)在連續(xù)厭氧發(fā)酵系統(tǒng)中,如何控制生物炭的使用條件以實(shí)現(xiàn)對(duì)緩沖能力進(jìn)一步強(qiáng)化,仍需開(kāi)展更深入的研究。

        2.2.2 微生物載體作用

        生物碳具有豐富的孔隙結(jié)構(gòu),添加生物炭于厭氧發(fā)酵體系中,在一定程度上為微生物提供了穩(wěn)定的載體,促進(jìn)了微生物的生存、生長(zhǎng)和繁殖,提高了微生物的數(shù)量和種群結(jié)構(gòu)的多樣性[53]。通過(guò)電子顯微鏡及微生物群落分析發(fā)現(xiàn),生物炭表面富集了大量產(chǎn)甲烷古細(xì)菌,其中以甲烷桿菌()、 甲烷鬃菌屬()、甲烷八疊球菌屬()為主,且超過(guò)古生菌總數(shù)的90%[40]。這一點(diǎn)Yang等[54]研究與此相同,并發(fā)現(xiàn),厭氧發(fā)酵過(guò)程中生物碳的添加有效提升了丙酸鹽向乙酸鹽轉(zhuǎn)化的速率,間接促進(jìn)了甲烷的生成。

        生物炭理化性質(zhì)對(duì)生物炭的載體作用有著重要的影響。生物炭復(fù)雜的孔隙結(jié)構(gòu)、高的比表面積,有助于吸附周?chē)h(huán)境的可溶性有機(jī)物、氣體和無(wú)機(jī)營(yíng)養(yǎng)物,同時(shí)生物炭表層易分解的碳、氮物質(zhì)也可為微生物生長(zhǎng)提供有效的碳源和氮源[55-57]。如陳志良等[16]對(duì)比分析了農(nóng)林業(yè)廢棄物生物炭與糞肥源生物炭對(duì)微生物的富集作用,結(jié)果表明糞肥源生物炭由于表層含有較高的營(yíng)養(yǎng)元素更有利于微生物的附著。另外,一些細(xì)菌可在生物炭表層孔隙深處生存,對(duì)過(guò)酸環(huán)境表現(xiàn)出一定的抵抗力。然而,生物炭表層微量的重金屬元素、吸附周?chē)h(huán)境的金屬離子、生物炭表層的生物質(zhì)焦油中所含的各類(lèi)化合物等,可能會(huì)通過(guò)化學(xué)阻斷的方式抑制底物的利用,導(dǎo)致生物炭表層的酶活性發(fā)生改變,從而對(duì)表層微生物表現(xiàn)出一定的選擇性[55,58-59]。

        生物炭具有很好的載體作用,使大量微生物得到富集,有效強(qiáng)化了厭氧發(fā)酵的性能及產(chǎn)氣能力。然而生物炭富集微生物的條件及機(jī)理仍不明確,生物炭表層微生物菌群種類(lèi)及其多樣性、微生物分布方面雖有大量研究,但微生物間的聯(lián)系仍不夠清晰,需結(jié)合微生物菌群特性通過(guò)高通量測(cè)序、宏基因組手段等作更深入的研究與探索。

        2.2.3 強(qiáng)化電子傳遞

        厭氧發(fā)酵中揮發(fā)性脂肪酸氧化細(xì)菌和產(chǎn)甲烷菌之間穩(wěn)定且快速的跨物種電子轉(zhuǎn)移,包括傳統(tǒng)的H2、甲酸途徑和直接種間電子轉(zhuǎn)移(direct interspecific electron transfer,DIET)等[60-61],是甲烷生成的重要途徑[62],具體見(jiàn)圖1。H2是氫型產(chǎn)甲烷菌還原 CO2生成甲烷的直接電子供體,對(duì)厭氧發(fā)酵的進(jìn)行具有至關(guān)重要的作用,由于產(chǎn)甲烷菌的耗 H2及產(chǎn)H2過(guò)程主要與NAD+/NADH、FAD/FADH2,F(xiàn)d(ox)/Fd(red)(,鐵氧化還原蛋白)或輔酶 F420/F420-H2等氧化還原中間體的相互轉(zhuǎn)化相偶聯(lián)[63],所以耗氫型產(chǎn)甲烷途徑具有一定的限制。有時(shí),甲酸亦可替代H2承載電子轉(zhuǎn)移的任務(wù)(見(jiàn)圖1b)。適當(dāng)提高H2分壓和甲酸濃度,能有效促進(jìn)H2、甲酸途徑電子的轉(zhuǎn)移,加快有機(jī)質(zhì)的降解和甲烷的產(chǎn)生。

        厭氧微生物的直接種間電子轉(zhuǎn)移(DIET)機(jī)制,即電子不需要借助H2和甲酸等媒介直接從一種微生物直接傳遞給另一種微生物,已經(jīng)被證明存在于硫還原地桿菌()和金屬還原地桿菌()的共培養(yǎng)體系中[62],且DIET可能是生物電化學(xué)系統(tǒng)產(chǎn)甲烷的重要機(jī)制也被Zhao等[43]通過(guò)焦磷酸測(cè)序、FISH等手段首次揭示。同時(shí),通過(guò)有效富集土桿菌及產(chǎn)生生物電的細(xì)菌也為DIET的強(qiáng)化提供了一種新方法。

        圖1 微生物種間電子轉(zhuǎn)移的途徑[62-64]

        近年來(lái),在生物炭強(qiáng)化厭氧發(fā)酵技術(shù)的研究中,已經(jīng)有學(xué)者發(fā)現(xiàn)生物炭的添加可以促進(jìn)厭氧發(fā)酵體系中DIET機(jī)制的形成,進(jìn)而促進(jìn)厭氧發(fā)酵效率的提升。生物炭添加至厭氧發(fā)酵系統(tǒng)后,在一定程度上為微生物提供了穩(wěn)定的載體,各種微生物(如產(chǎn)氫、甲酸及利用CO2的氫營(yíng)養(yǎng)產(chǎn)甲烷菌等微生物)得到富集[3],利用電子顯微鏡發(fā)現(xiàn)大量微生物無(wú)序的附著于生物炭表面而非完全以嚴(yán)格的物理接觸形式聚集在一起[10],微生物群落分析表明,碳材料可富集氫利用產(chǎn)甲烷菌、致電菌、等可直接進(jìn)行種間電子轉(zhuǎn)移的產(chǎn)甲烷菌,由于生物炭的高導(dǎo)電性,在一定程度上能提供效率更高的微生物電子傳遞路徑,使電子供體通過(guò)生物炭將電子更高效的轉(zhuǎn)移到電子受體上,增強(qiáng)了互營(yíng)菌與產(chǎn)甲烷菌之間的電子交換,實(shí)現(xiàn)了直接種間電子轉(zhuǎn)移(DIET)的潛在增強(qiáng)[54,65],此觀點(diǎn)也被Liu等[66-67]利用產(chǎn)甲烷菌和不能產(chǎn)生H2或甲酸的通過(guò)共培養(yǎng)研究所證明。

        微生物種間電子傳遞效率隨著電導(dǎo)率的提升而增強(qiáng)[68],在厭氧發(fā)酵過(guò)程中添加生物炭提高了固液體系的電導(dǎo)率,可增強(qiáng)互營(yíng)菌與產(chǎn)甲烷菌之間的電子交換,從而促進(jìn)了厭氧發(fā)酵體系中底物的降解及揮發(fā)性脂肪酸的生成。同時(shí),生物炭添加,也提高了丙酸的降解速率,并加快乙酸向甲烷的轉(zhuǎn)化等[65],進(jìn)一步緩解了厭氧發(fā)酵的酸化程度,提升了甲烷的產(chǎn)量及產(chǎn)率。生物炭富集微生物的同時(shí),強(qiáng)化了微生物種間電子傳遞的效率,但目前對(duì)氫/甲酸途徑和直接種間電子轉(zhuǎn)移途徑對(duì)厭氧發(fā)酵的貢獻(xiàn)率及主導(dǎo)性還不清晰,未來(lái)還需要更深入的研究。

        3 結(jié)論及展望

        生物炭作為一類(lèi)新型厭氧發(fā)酵酸化緩沖功能材料,具有較高的比表面積,復(fù)雜的孔隙結(jié)構(gòu),豐富的元素成分和表面活性基團(tuán),也具有很強(qiáng)的吸附結(jié)合能力等,可有效提升對(duì)厭氧發(fā)酵系統(tǒng)酸、氨等抑制物質(zhì)的緩沖能力。生物炭表面復(fù)雜的孔隙結(jié)構(gòu)與豐富的碳、氮等營(yíng)養(yǎng)元素為厭氧微生物提供良好的生長(zhǎng)載體,并提高了厭氧發(fā)酵系統(tǒng)內(nèi)微生物的豐富度。且生物炭具有良好的導(dǎo)電性能,可作為潛在的厭氧微生物種間電子傳遞的介質(zhì),為厭氧發(fā)酵系統(tǒng)在高濃度VFAs條件下保持穩(wěn)定產(chǎn)氣提供了新的途徑。以上3點(diǎn)是生物炭投加對(duì)厭氧發(fā)酵系統(tǒng)的主要促進(jìn)方式。同時(shí)生物炭來(lái)源廣泛、成本較低,其在厭氧發(fā)酵領(lǐng)域的應(yīng)用前景光明。目前,國(guó)內(nèi)外關(guān)于生物炭在厭氧發(fā)酵中的應(yīng)用研究已有很多,但仍不夠深入,需在以下幾個(gè)方面進(jìn)一步開(kāi)展工作:

        1)厭氧消化過(guò)程中氨氮與揮發(fā)性脂肪酸共存,兩者對(duì)厭氧發(fā)酵具有協(xié)同拮抗作用,而生物炭對(duì)兩者競(jìng)爭(zhēng)吸附、共吸附及解吸的效果和機(jī)理仍待研究。

        2)生物炭可富集厭氧微生物,但其表面富集微生物的群落結(jié)構(gòu)及其對(duì)厭氧發(fā)酵過(guò)程的促進(jìn)作用仍不清晰。

        3)生物炭的添加導(dǎo)致的微生物種間電子傳遞機(jī)制仍需要進(jìn)一步闡明,對(duì)應(yīng)的應(yīng)用技術(shù)的研發(fā)仍需進(jìn)一步深入。

        4)生物炭對(duì)厭氧發(fā)酵具有一定的強(qiáng)化作用,但生物炭通過(guò)何種強(qiáng)化途徑對(duì)厭氧發(fā)酵性能更具有主導(dǎo)性仍不清晰,需要在連續(xù)厭氧發(fā)酵試驗(yàn)中進(jìn)行研究與驗(yàn)證。

        5)目前,生物炭強(qiáng)化厭氧發(fā)酵的研究仍依賴于實(shí)驗(yàn)室規(guī)模的小試試驗(yàn),在中試規(guī)模乃至工程運(yùn)行中如何實(shí)現(xiàn)生物炭強(qiáng)化厭氧發(fā)酵效果仍需要進(jìn)行驗(yàn)證,并對(duì)生物炭強(qiáng)化厭氧發(fā)酵性能以及技術(shù)經(jīng)濟(jì)性進(jìn)行評(píng)價(jià)研究。

        [1] 陳衛(wèi)紅,石曉旭. 我國(guó)農(nóng)林廢棄物的應(yīng)用與研究現(xiàn)狀[J]. 現(xiàn)代農(nóng)業(yè)科技,2017(18):148-149. Chen Weihong, Shi Xiaoxu. Application and research status of agriculture and forestry waste in China[J]. Modern Agricultural Science and Technology, 2017(18): 148-149. (in Chinese with English abstract)

        [2] 王火根,黃弋華,張彩麗. 畜禽養(yǎng)殖廢棄物資源化利用困境及治理對(duì)策:基于江西新余第三方運(yùn)行模式[J]. 中國(guó)沼氣,2018,36(5):105-111. Wang Huogen, Huang Yuhua, Zhang Caili. Difficulties in the utilization of livestock and poultry breeding resources and countermeasures: Based on the third party operation mode of Jiangxi Xinyu[J]. China Biogas, 2018, 36(5): 108-114. (in Chinese with English abstract)

        [3] Wang G, Qian L, Xin G, et al. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar: Performance and associated mechanisms[J]. Bioresource Technology, 2018, 250: 812.

        [4] Fuchs W, Wang X, Gabauer W, et al. Tackling ammonia inhibition for efficient biogas production from chicken manure: Status and technical trends in Europe and China[J]. Renewable and Sustainable Energy Reviews, 2018, 97: 186-199.

        [5] Xiu S, Shahbazi A, Li R. Characterization, modification and application of biochar for energy storage and catalysis: A review[J]. Trends in Renewable Energy, 2017, 3: 86-101.

        [6] Shen Y, Linville J L, Ignacio-De Leon P A A, et al. Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar[J]. Journal of Cleaner Production, 2016, 135: 1054-1064.

        [7] 陳靜文,張迪,吳敏,等. 兩類(lèi)生物炭的元素組分分析及其熱穩(wěn)定性[J]. 環(huán)境化學(xué),2014,33(3):417-422. Chen Jingwen, Zhang Di, Wu Min, et al. Analysis of elemental composition and thermal stability of two types of biochar[J]. Environmental Chemistry, 2014, 33(3): 417-422. (in Chinese with English abstract)

        [8] Linville Jessica L, Shen Yanwen, Ignacio-de Leon Patricia A, et al. In-situ biogas upgrading during anaerobic digestion of food waste amended with walnut shell biochar at bench scale. [J]. Waste Management & Research: The Journal of The International Solid Wastes and Public Cleansing Association, ISWA, 2017, 35(6): 669-679. (in Chinese with English abstract)

        [9] Xu J, Mustafa A M, Lin H, et al. Effect of hydrochar on anaerobic digestion of dead pig carcass after hydrothermal pretreatment[J]. Waste Management, 2018, 78: 849-856.

        [10] Gómez X, Meredith W, Fernández C, et al. Evaluating the effect of biochar addition on the anaerobic digestion of swine manure: application of py-gc/ms [J]. Environmental Science & Pollution Research, 2018, 25: 1-12.

        [11] 孫媛媛. 蘆竹活性炭的制備、表征及吸附性能研[D]. 濟(jì)南:山東大學(xué),2014. Sun Yuanyuan. Preparation, Characterization and Adsorption Properties of Activated Carbon from[D]. Jinan: Shandong University, 2014. (in Chinese with English abstract)

        [12] 張千豐,王光華. 生物炭理化性質(zhì)及對(duì)土壤改良效果的研究進(jìn)展[J]. 土壤與作物,2012,1(4):219-226. Zhang Qianfeng, Wang Guanghua. Research progress in physical and chemical properties of biochar and its effects on soil improvement[J]. Soil and Crops, 2012, 1(4): 219-226. (in Chinese with English abstract)

        [13] 卜曉莉,薛建輝. 生物炭對(duì)土壤生境及植物生長(zhǎng)影響的研究進(jìn)展[J]. 生態(tài)環(huán)境學(xué)報(bào),2014,23(3):535-540. Xiaoli Bu, Jianhui Xue. Research progress on the effects of biochar on soil habitat and plant growth[J]. Acta Ecologica Sinica, 2014, 23(3): 535-540. (in Chinese with English abstract)

        [14] Shen Yanwen, Jessica L Linville, Meltem Urgun-Demirtas, et al. Producing pipeline-quality biomethane via anaerobic digestion of sludge amended with corn stover biochar with in-situ CO2removal[J]. Applied Energy, 2015, 158: 300-309.

        [15] 謝祖彬,劉琦,許燕萍,等. 生物炭研究進(jìn)展及其研究方向[J]. 土壤,2011,43(6):857-861. Xie Zubin, Liu Qi, Xu Yanping, et al. Research progress and research direction of biochar[J]. Soil, 2011, 43(6): 857-861. (in Chinese with English abstract)

        [16] 陳志良,袁志輝,黃玲,等. 生物炭來(lái)源、性質(zhì)及其在重金屬污染土壤修復(fù)中的研究進(jìn)展[J]. 生態(tài)環(huán)境學(xué)報(bào),2016,25(11):1879-1884. Chen Zhiliang, Yuan Zhihui, Huang Ling, et al. Research progress on the source and properties of biochar and its remediation in heavy metal contaminated soils[J]. Acta Ecologica Sinica, 2016, 25(11): 1879-1884. (in Chinese with English abstract)

        [17] 高繼平,隋陽(yáng)輝,霍軼瓊,等. 生物炭用作水稻育苗基質(zhì)的研究進(jìn)展[J]. 作物雜志,2014(2):16-21. Gao Jiping, Sui Yanghui, Huo Yiqiong, et al. Research progress of biochar as a substrate for rice seedlings[J]. Crops, 2014(2): 16-21. (in Chinese with English abstract)

        [18] Ho Shih-Hsin, ChenYidi, Yang Zhongkai, et al. High-efficiency removal of lead from wastewater by biochar derived from anaerobic digestion sludge[J]. Bioresource Technology, 2017, 246:142-149.

        [19] Meng Jun, Wang Lili, Liu Xingmei, et al. Physicochemical properties of biochar produced from aerobically composted swine manure and its potential use as an environmental amendment[J]. Bioresource Technology, 2013, 142(Complete): 641-646.

        [20] Zhao Shixiang, Ta Na, Wang Xudong. Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material[J/OL]. Energies, 2017, 10: 1293. doi: 10.3390/en10091293.

        [21] Park Cho, Ok Kim, Heo Delaune Seo. Comparison of single and competitive metal adsorption by pepper stem biochar[J]. Archives of Agronomy and Soil Science, 2016, 62(5): 617-632.

        [22] Chen H, Lin G, Wang X, et al. Physicochemical properties and hygroscopicity of tobacco stem biochar pyrolyzed at different temperatures[J/OL]. Journal of Renewable & Sustainable Energy, 2016, 8(1): 013112. doi:10.1063/1.4942784.

        [23] Li Chunxing, Wang Xingdong, Zhang Guangyi, et al. A process combining hydrothermal pretreatment, anaerobic digestion and pyrolysis for sewage sludge dewatering and co-production of biogas and biochar: Pilot-scale verification[J]. Bioresource Technology, 2018, 254: 187-193.

        [24] Wang D, Ai J, Shen F, et al. Improving anaerobic digestion of easy-acidification substrates by promoting buffering capacity using biochar derived from vermicompost[J]. Bioresour Technol, 2017, 227: 286-296.

        [25] Zheng Xuebo, Yang Zhiman, Xu Xiaohui, et al. Characterization and ammonia adsorption of biochar prepared from distillers' grains anaerobic digestion residue with different pyrolysis temperatures[J]. Journal of Chemical Technology & Biotechnology, 2017, 93 (1): 198–206.

        [26] 吳志丹,尤志明,江福英,等. 不同溫度和時(shí)間炭化茶樹(shù)枝生物炭理化特征分析[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào),2015,31(4):583-588. Wu Zhidan, You Zhiming, Jiang Fuying, et al. Physical and chemical characteristics of carboniferous tea branches at different temperatures and time[J]. Journal of Ecology and Rural Environment, 2015, 31(4): 583-588. (in Chinese with English abstract)

        [27] 申衛(wèi)博,張?jiān)?,汪自慶,等. 木材制備生物炭的孔結(jié)構(gòu)分析[J]. 中國(guó)粉體技術(shù),2015,21(2):24-27,31. Shen Weibo, Zhang Yun, Wang Ziqing. Pore structure analysis of biochar prepared from wood[J]. China Powder Technology, 2015, 21(2): 24-27, 31. (in Chinese with English abstract)

        [28] Divine D Sewu, Patrick Boakye, Seung H Woo. Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste[J]. Bioresource Technology, 2017, 224: 206-213.

        [29] Chen Wei, Liao Xindi, Wu Yinbao, et al. Effects of different types of biochar on methane and ammonia mitigation during layer manure composting[J]. Waste Management, 2017, 61: 506-515.

        [30] Park Jeong-Hoon, Kang Hyun-Jin, Park Kang-Hee, et al. Direct interspecies electron transfer via conductive materials: A perspective for anaerobic digestion applications[J]. Bioresource Technology, 2018, 254: 300-311 .

        [31] Chen Tingwei, Luo Ling, Deng Shihuai, et al. Sorption of tetracycline on H3PO4modified biochar derived from rice straw and swine manure[J]. Bioresource Technology, 2018, 267:431-437.

        [32] Kizito S, Wu S B, Kirui W K, et al. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. [J]. Science of the Total Environment, 2015, 505: 102-112.

        [33] 丁文川,朱慶祥,曾曉嵐,等. 不同熱解溫度生物炭改良鉛和鎘污染土壤的研究[J]. 科技導(dǎo)報(bào),2011,29(14):22-25. Ding Wenchuan, Zhu Qingxiang, Zeng Xiaoyu, et al. Study on the improvement of lead and cadmium contaminated soil by different pyrolysis temperature biochar[J]. Science and Technology Review, 2011, 29(14): 22-25. (in Chinese with English abstract)

        [34] De D, Santosha S, Aniya V, et al. Assessing the applicability of an agro-industrial waste to engineered bio-char as a dynamic adsorbent for fluoride sorption[J]. Journal of Environmental Chemical Engineering, 2018, 6(2): 2998-3009.

        [35] 張華. 柚皮基活性炭制備及吸附應(yīng)用機(jī)理研究[D]. 南寧:廣西大學(xué),2013. Zhang Hua. Study on Preparation and Adsorption Mechanism of Pomelo-Based Activated Carbon[D]. Nanning: Guangxi University, 2013. (in Chinese with English abstract)

        [36] 周丹丹,吳文衛(wèi),趙婧,等. 花生殼和松木屑制備的生物炭對(duì)Cu2+的吸附研究[J]. 生態(tài)環(huán)境學(xué)報(bào),2016,25(3):523-530. Zhou Dandan, Wu Wenwei, Zhao Jing, et al. Adsorption of Cu2+by biochar prepared from peanut shell and pine wood chips[J]. Acta Ecologica Sinica, 2016, 25(3): 523-530. (in Chinese with English abstract)

        [37] Pan Junting, Ma Junyi, Liu Xiaoxia, et al. Effects of different types of biochar on the anaerobic digestion of chicken manure[J]. Bioresource Technology, 2019, 275: 258-265.

        [38] Luo C, Fan L, Shao L, et al. Corrigendum to “Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes”[J]. Water Research, 2015, 68: 710-718.

        [39] Li Q, Xu M, Wang G, et al. Biochar assisted thermophilic co-digestion of food waste and waste activated sludge under high feedstock to seed sludge ratio in batch experiment[J]. Bioresour Technol, 2017, 249: 1009-1016.

        [40] Nms S, Zhu M, Zhang Z, et al. Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste[J]. Bioresource Technology, 2016, 219: 29-36.

        [41] Fagbohungbe M O, Herbert B M J, Hurst L, et al. Impact of biochar on the anaerobic digestion of citrus peel waste[J]. Bioresource Technology, 2016, 216: 142-149.

        [42] Zhao Zhiqiang, Zhang Yaobin, Woodard T L, et al. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials[J]. Bioresource Technology, 2015, 191: 140-145.

        [43] Zhao Zhiqiang, Zhang Yaobin, Wang Liying, et al. Potential for direct interspecies electron transfer in an electric anaerobic system to increase methane production from sludge digestion[J]. Scientific reports, 2015. doi:10.1038/srep11094

        [44] Matthew Essandoh, Bidhya Kunwar, Charles U. Pittman, et al. Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar[J]. Chemical Engineering Journal, 2015, 265: 219-227.

        [45] Kangkan Roy, Kapil Mohan Verma, Kumar Vikrant, et al. Removal of patent blue (V) dye using indian bael shell biochar: Characterization, application and kinetic studies[J]. Sustainability, 2018, 10(7): 2669. doi:10.3390/su10082669.

        [46] 蔣旭濤,遲杰. 鐵改性生物炭對(duì)磷的吸附及磷形態(tài)的變化特征[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2014,33(9):1817-1822. Jiang Xutao, Chi Jie. Adsorption of phosphorus by iron modified biochar and changes of phosphorus forms[J]. Journal of Agro-Environment Science, 2014, 33(9): 1817-1822. (in Chinese with English abstract)

        [47] 宋婷婷,賴欣,王知文,等. 不同原料生物炭對(duì)銨態(tài)氮的吸附性能研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2018,37(3):576-584 Song Tingting, Lai Xin, Wang Zhiwen, et al. Adsorption properties of different raw materials biochar for ammonium nitrogen[J]. Journal of Agro-Environment Science, 2018, 37 (3): 576-584. (in Chinese with English abstract)

        [48] 索桂芳,呂豪豪,汪玉瑛,等. 不同生物炭對(duì)氮的吸附性能[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2018,37(6):1193-1202. Suo Guifang, Lü Haohao, Wang Yuxi, et al. Adsorption of nitrogen by different biochars[J]. Journal of Agro-Environment Science, 2018, 37(6): 1193-1202. (in Chinese with English abstract)

        [49] 劉項(xiàng),南紅巖,安強(qiáng). 刺桐生物炭對(duì)水中氨氮和磷的吸附[J].農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),2018(1):66-73. Liu Xiang, Nan Hongyan, An Qiang. Adsorption of ammonia nitrogen and phosphorus in water by prickly ash biochar[J]. Journal of Agricultural Resources and Environment, 2018(1): 66-73. (in Chinese with English abstract)

        [50] Dang Y, Sun D, Woodard T L, et al. Stimulation of the anaerobic digestion of the dry organic fraction of municipal solid waste (OFMSW) with carbon-based conductive materials[J]. Bioresource Technology, 2017, 238: 30-38.

        [51] Zhang Y, Yu F, Cheng W, et al. Adsorption equilibrium and kinetics of the removal of ammoniacal nitrogen by zeolite X/activated carbon composite synthesized from elutrilithe[J/OL]. Journal of Chemistry, 2017. doi:10.1155/2017/1936829.

        [52] Fan Lü, Cheng Luohao, Mingshao Li, et al. Biochar alleviates combined stress of ammonium and acids by firstly enrichingand then[J]. Water Research, 2016, 90: 34-43.

        [53] Zhao H Q, Liu Q, Wang Y X, et al. Biochar enhanced biological nitrobenzene reduction with a mixed culture in anaerobic systems: Short-term and long-term assessments[J]. Chemical Engineering Journal, 2018, 351: 912-921.

        [54] Yang Yafei, Zhang Yaobin, Li Zeyu, et al. Adding granular activated carbon into anaerobic sludge digestion to promote methane production and sludge decomposition[J]. Journal of Cleaner Production, 2017, 149: 1101-1108.

        [55] 韓光明. 生物炭對(duì)不同類(lèi)型土壤理化性質(zhì)和微生物多樣性的影響[D]. 沈陽(yáng):沈陽(yáng)農(nóng)業(yè)大學(xué),2013. Guangming Han. Effects of Biochar on Physical and Chemical Properties and Microbial Diversity of Different Types of Soil[D]. Shenyang: Shenyang Agricultural University, 2013. (in Chinese with English abstract)

        [56] 李喜鳳. 稻殼炭與有機(jī)肥配施對(duì)蘋(píng)果園土壤有機(jī)碳組分及微生物活性的影響[D]. 楊凌:西北農(nóng)林科技大學(xué),2016. Li Xifeng. Effects of Combined Application of Rice Husk and Organic Manure on Soil Organic Carbon Fraction and Microbial Activity in Apple Orchard[D]. Yangling: Northwest A&F University, 2016. (in Chinese with English abstract)

        [57] Preeti Sharma, Uma Melkania. Biosurfactant-enhanced hydrogen production from organic fraction of municipal solid waste using co-culture ofand Enterobacter aerogenes[J]. Bioresource Technology, 2017, 243: 566-572.

        [58] Johannes Lehmann, Stephen Joseph. Biochar for Environmental Management: Science, Technology and Implementation[M]. 2 nd Edition. Lonclon: Taylor 8. 2015.

        [59] Vrieze J D, Devooght A, Walraedt D, et al. Enrichment of Francis Group Methanosaetaceae, on carbon felt and biochar during anaerobic digestion of a potassium-rich molasses stream[J]. Applied Microbiology & Biotechnology, 2016, 100(11): 5177-5187.

        [60] Zhao Zhiqiang, Zhang Yaobin, Dawn E. Holmes, et al. Potential enhancement of direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate with biochar in up-flow anaerobic sludge blanket reactors[J]. Bioresource Technology, 2016, 209: 148-156.

        [61] Shen Liang, Zhao Qingchuan, Wu Xuee, et al. Corrigendum to: “Interspecies electron transfer in syntrophic methanogenic consortia: From cultures to bioreactors” [J]. Renewable and Sustainable Energy Reviews, 2016, 54: 1358-1367.

        [62] Baek G, Kim J, Lees C, et al. Role and potential of direct interspecies electron transfer in anaerobic digestion[J/OL]. Energies, 2018, 11(1): 107. doi:10.3390/en11010107

        [63] 張杰,陸雅海. 互營(yíng)氧化產(chǎn)甲烷微生物種間電子傳遞研究進(jìn)展[J]. 微生物學(xué)通報(bào),2015,42(5):920-927. Zhang Jie, Lu Yahai. Research progress in inter-species electron transfer between oxidized methanogenic microorganisms[J]. Bulletin of Microbiology, 2015, 42(5): 920-927. (in Chinese with English abstract)

        [64] 黃玲艷,劉星,周順桂. 微生物直接種間電子傳遞:機(jī)制及應(yīng)用[J]. 土壤學(xué)報(bào),2018,55(6):1313-1324. Huang Lingyan, Liu Xing, Zhou Shungui. Direct interspecific electron transfer of microorganisms: Mechanism and application[J]. Acta Pedologica Sinica, 2018, 55(6): 1313-1324. (in Chinese with English abstract)

        [65] 張文亞. 鐵及活性炭對(duì)污水厭氧處理的強(qiáng)化[D]. 大連:大連理工大學(xué),2017. Zhang Wenya. Strengthening of Anaerobic Treatment of Wastewater by Iron and Activated Carbon[D]. Dalian: Dalian University of Technology, 2017. in Chinese with English abstract)

        [66] Liu Fanghua, Amelia-Elena Rotaru, Pravin M Shrestha, et al. Promoting direct interspecies electron transfer with activated carbon[J]. Energy & Environmental Science, 2012, 5(10): 8982-8989

        [67] Chen Shanshan, Amelia Elena Rotaru, Pravin Malla Shrestha, et al. Promoting interspecies electron transfer with biochar[J]. Sci Rep, 2014, 4: 5019. Doi: 10. 1038/srep05019.

        [68] Liu Yuhao, He Pinjing, Shao Liming, et al. Significant enhancement by biochar of caproate production via chain elongation[J]. Water Research, 2017, 119: 150-159.

        Research progress on biochar enhanced anaerobic fermentation technology of organic wastes

        Feng Jing1, Jing Yong1,2, Zhao Lixin1※, Yao Zonglu1, Shen Ruixia1

        (1.,,,,100125,; 2.,,150036,)

        Anaerobic fermentation is an important technical way to deal with organic wastes in China. However, in the process of treating organic wastes under high load conditions by anaerobic fermentation technology, it is easy to cause anaerobic fermentation operation unstable and the efficiency of organic waste treatment is not high due to the inhibitory substances such as the high concentration of organic acid and ammonia nitrogen. Biochar is a multi-aperture carbonaceous material formed by high-temperature pyrolysis of biomass materials under the anaerobic or anoxic conditions. Biochar has many excellent properties, such as the high specific surface area, good conductivity, mass transfer and heat transfer performance. At the same time, biochar also contains a lot of ash, and the abundant ash contains a lot of elements such as calcium and magnesium, which makes the biochar have good adsorption and ion exchange performance. As an additive for anaerobic fermentation, it can effectively improve the pH value, alkalinity and the acid buffer capacity of the anaerobic fermentation system, and alleviate the inhibition of the excessive production of methane by the volatile fatty acids during the lag period. It can cause the adhesion of microorganisms and had a certain microbial carrier effect. Addition of biochar can effectively solve the problems of the low efficiency of gas production and unstable fermentation in current anaerobic fermentation, and biochar is now widely used in anaerobic fermentation technology research. In recent years, the research status of domestic and foreign showed that biochar could effectively strengthen anaerobic fermentation under certain conditions and improve the treatment efficiency of organic wastes in anaerobic fermentation process. However, for the biochar-enhanced anaerobic fermentation technology approach, there were still no systematic reviewed and reported. In this paper, the chemical composition, surface pore structure, key factors of surface functional groups and important ways of biochar-enhanced anaerobic fermentation technology of biochar materials were systematically analyzed and summarized. Based on the physical and chemical properties of biochar materials, biochar was described. For example, the effects of different types, different particle sizes and different amounts of additive biochar on anaerobic fermentation. And the intensive pathways of anaerobic fermentation technology mainly included: Biochar could effectively improve the buffer capacity of the system, it had a certain microbial carrier function, and it could strengthen the interspecific electron transport of microorganisms. On this basis, the focus of research on anaerobic fermentation technology of organic wastes in the future was proposed. At the same time, it also provided support for the in-depth development of biochar enhanced anaerobic fermentation technology.

        wastes; fermentation; biochar; strengthening pathway; research progress

        2018-12-30

        2019-06-10

        現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系專項(xiàng)資金資助

        馮 晶,博士,高級(jí)工程師,研究方向?yàn)橛袡C(jī)廢棄物資源化利用技術(shù)研究。Email:fengjing0204@sina.com

        趙立欣,博士,研究員,主要從事農(nóng)業(yè)廢棄物能源化研究。Email:zhaolixin5092@163.com

        10.11975/j.issn.1002-6819.2019.12.031

        X71;X72

        A

        1002-6819(2019)-12-0256-09

        馮 晶,荊 勇,趙立欣,姚宗路,申瑞霞. 生物炭強(qiáng)化有機(jī)廢棄物厭氧發(fā)酵技術(shù)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(12):256-264. doi:10.11975/j.issn.1002-6819.2019.12.031 http://www.tcsae.org

        Feng Jing, Jing Yong, Zhao Lixin, Yao Zonglu, Shen Ruixia. Research progress on biochar enhanced anaerobic fermentation technology of organic wastes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(12): 256-264. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.12.031 http://www.tcsae.org

        猜你喜歡
        厭氧發(fā)酵廢棄物生物
        生物多樣性
        制造了全世界三分之一廢棄物的產(chǎn)業(yè)
        生物多樣性
        上上生物
        餐廚垃圾厭氧發(fā)酵熱電氣聯(lián)供系統(tǒng)優(yōu)化
        新型醫(yī)療廢棄物焚化艙
        電子廢棄物
        世界博覽(2020年19期)2020-10-30 10:02:46
        第12話 完美生物
        航空世界(2020年10期)2020-01-19 14:36:20
        法國(guó)梧桐落葉、香樟青葉與豬糞混合厭氧發(fā)酵特性的探究
        “廢棄物”中有孩子的快樂(lè)
        91羞射短视频在线观看| 国产在线精品一区二区| 国产一在线精品一区在线观看| 日本高清色惰www在线视频| 一区二区在线观看日本免费| 午夜福利理论片在线观看播放| 40岁大乳的熟妇在线观看| 伊人22综合| 一区二区视频网站在线观看| 日本亚洲视频一区二区三区| 又大又粗又爽18禁免费看| 亚洲91av| 一区二区三区在线观看日本视频| 国产成人自拍视频播放| 人妻无码中文字幕| 一本色道久久99一综合| 国产在线观看网址不卡一区 | 凹凸世界视频a一二三| 国产精品久久久久久久久绿色| 一本大道久久东京热无码av| 国产欧美日本亚洲精品一4区| av中文字幕性女高清在线| 麻豆md0077饥渴少妇| 又粗又大又黄又爽的免费视频| 国产极品喷水视频| 高潮内射主播自拍一区| 男人进去女人爽免费视频 | 精品中文字幕在线不卡| 国产欧美日韩一区二区三区 | 日韩av激情在线观看| 亚洲自偷自偷偷色无码中文| 日产精品一区二区免费| 美女丝袜美腿玉足视频| 丰满人妻熟妇乱又伦精品软件 | 亚洲1区第2区第3区在线播放 | 国产亚洲精品aaaaaaa片| 无码人妻中文中字幕一区二区| 不卡免费在线亚洲av| 国自产精品手机在线观看视频 | 日韩人妻无码一区二区三区| 99精品国产闺蜜国产在线闺蜜|