胡二峰,吳 娟,趙立欣,孟海波,姚宗路,湯 森
?
熱解溫度對回轉(zhuǎn)窯玉米秸稈熱解產(chǎn)物理化特性的影響
胡二峰1,吳 娟2,趙立欣1※,孟海波1,姚宗路1,湯 森3
(1.農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計研究院,農(nóng)業(yè)農(nóng)村部農(nóng)業(yè)廢棄物能源化利用重點實驗室,北京 100125; 2. 生態(tài)環(huán)境部南京環(huán)境科學(xué)研究所,南京 210042; 3. 昆明理工大學(xué)省部共建復(fù)雜有色金屬資源清潔利用國家重點實驗室,昆明 650093)
針對北方農(nóng)業(yè)秸稈廢棄物產(chǎn)量巨大且無法全部還田導(dǎo)致丟棄和露天焚燒現(xiàn)象激增等問題,該文通過搭建小型回轉(zhuǎn)窯生物質(zhì)熱解裝置考察不同熱解溫度下秸稈熱解特性,分析主要產(chǎn)物的產(chǎn)率、元素組成等理化特性指標(biāo)。結(jié)果表明:回轉(zhuǎn)窯內(nèi)熱解溫度的增加提高了熱解液相產(chǎn)物產(chǎn)率和熱解水產(chǎn)率,焦油產(chǎn)率呈先增加后降低趨勢。與此同時,熱解氣總體積逐漸增加,H2含量和CH4含量也有所提高,生物炭產(chǎn)率和熱值有所降低。當(dāng)熱解溫度從400 ℃增加至700 ℃時,焦油產(chǎn)率從12.21%增加至21.70%;當(dāng)溫度進一步增加至800 ℃時,焦油產(chǎn)率降低至20.13%;相應(yīng)的焦油熱值從400 ℃時的19 974.0 kJ/kg逐漸增加到800 ℃時的21 710.0 kJ/kg。高熱解溫度加快熱解過程中的熱傳遞,加劇生物質(zhì)大分子所含的羥基、羰基等含氧官能團的分解并促進揮發(fā)物的產(chǎn)生,進而提高了熱解液體產(chǎn)物、熱解水和焦油產(chǎn)率。過高的加熱溫度會加劇揮發(fā)分的二次反應(yīng),降低焦油產(chǎn)率;更多的含氧雜環(huán)結(jié)構(gòu)會隨著熱解溫度提高逐漸分解,因而焦油熱值逐漸增加。生物炭產(chǎn)率隨著溫度增加逐漸降低,生物炭pH值和C/N比均逐漸增加,在兼顧生物炭產(chǎn)率和應(yīng)用于炭基肥制備所需理化性質(zhì)的同時需充分考慮熱解溫度影響。
溫度;熱解;秸稈;回轉(zhuǎn)窯
河北是中國北方地區(qū)的農(nóng)業(yè)大省,農(nóng)業(yè)秸稈廢棄物產(chǎn)量巨大,其中僅2017年秸稈可收集資源量達(dá)5842萬t。北方農(nóng)作物一年兩熟、茬口緊,前茬秸稈量大且無法全部還田導(dǎo)致丟棄和露天焚燒現(xiàn)象激增,浪費了大量資源并帶來嚴(yán)重的環(huán)境污染[1-2]。秸稈屬于生物質(zhì)能源,其能源化利用過程中所排放的CO2可納入自然界碳循環(huán),秸稈的利用有助于實現(xiàn)碳減排[3-5]。熱解技術(shù)是實現(xiàn)秸稈廢棄物資源化利用的重要途徑,熱解產(chǎn)生的生物炭在土壤改良、重金屬吸附和水源凈化等方面也具有重要作用,熱解氣可用于北方炊事供暖并緩解農(nóng)村地區(qū)大量劣質(zhì)散煤利用導(dǎo)致的污染問題,熱解產(chǎn)生的焦油和木醋液等可用作燃料或化工原材料[6-9],因此該技術(shù)受到國內(nèi)外專家的廣泛關(guān)注。
近年來國內(nèi)外學(xué)者對生物質(zhì)開展了大量熱解技術(shù)的研究工作,如加拿大Ensyn公司的循環(huán)流化床工藝[10]、Dynamotive公司的鼓泡流化床工藝[11]、Karlsruhe理工學(xué)院和Mississippi State大學(xué)開發(fā)的螺旋反應(yīng)器[12]、荷蘭Twente大學(xué)開發(fā)的旋轉(zhuǎn)錐反應(yīng)器[13]。國內(nèi)華中科技大學(xué)開發(fā)了移動床生物質(zhì)熱解多聯(lián)產(chǎn)技術(shù)[14],山東理工大學(xué)研發(fā)了離心分離陶瓷球熱載體下行床反應(yīng)器,農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計研究院開發(fā)了內(nèi)加熱連續(xù)式生物質(zhì)熱解裝備等[12]。相比于其他熱解技術(shù),外熱式回轉(zhuǎn)窯生物質(zhì)熱解技術(shù)工藝簡單、原料適應(yīng)性強、操作簡單,技術(shù)更為成熟[15]。該技術(shù)不僅廣泛用于生物質(zhì)熱解,也用于其他廢棄物處理,并在工業(yè)上得到充分驗證[16-18]。李水清等主要考查了回轉(zhuǎn)窯內(nèi)稻殼和木塊熱解產(chǎn)物分布和性質(zhì),研究發(fā)現(xiàn)熱解溫度增加有利于燃?xì)猱a(chǎn)率的提高,炭產(chǎn)率逐漸降低且H和O元素比C元素容易脫除[19-20]。De Conto等在回轉(zhuǎn)窯內(nèi)開展了象草熱解試驗研究,發(fā)現(xiàn)轉(zhuǎn)速的提高有助于提高生物油產(chǎn)率,生物炭呈現(xiàn)低電導(dǎo)率和高pH值[21]。然而針對北方農(nóng)作物秸稈熱解特性研究,尤其是回轉(zhuǎn)窯內(nèi)玉米秸稈熱解特性的相關(guān)報道較少,進一步精確定量焦油產(chǎn)率、表征產(chǎn)物特性有待深入研究。
本文搭建了小型實驗室回轉(zhuǎn)窯熱解裝置,針對北方地區(qū)農(nóng)作物秸稈廢棄物,通過內(nèi)置熱電偶與反應(yīng)物料的實時接觸,實現(xiàn)對溫度和反應(yīng)時間等條件的精準(zhǔn)控制,考察不同溫度下熱解產(chǎn)物特性并為回轉(zhuǎn)窯熱解技術(shù)的研發(fā)和放大提供理論依據(jù),為京津冀廢棄物能源化利用產(chǎn)業(yè)化發(fā)展提供技術(shù)支撐。
試驗采用北京市大興區(qū)禮賢鎮(zhèn)當(dāng)季玉米秸稈,其工業(yè)分析和元素分析結(jié)果見表1,揮發(fā)分含量可達(dá)到82.44%。入料粒度保證在0.250~0.425 mm,并密封保存。
表1 秸稈工業(yè)分析和元素分析
試驗流程如圖1所示,回轉(zhuǎn)窯反應(yīng)管內(nèi)直徑100 mm,長510 mm;電爐加熱功率為3 kW,轉(zhuǎn)速為0~20 r/min;加熱電爐最高設(shè)定溫度可達(dá)1 100 ℃,采用電阻絲加熱。本裝置包括3個部分:供氣系統(tǒng)、反應(yīng)系統(tǒng)、產(chǎn)物凈化及收集系統(tǒng)等。試驗前先將熱解氣的冷卻、吸收等后處理系統(tǒng)連接好并檢查氣密性,然后將秸稈裝入反應(yīng)器中,并與熱解氣冷卻、吸收系統(tǒng)相連。打開氮氣瓶吹掃反應(yīng)系統(tǒng)的空氣,設(shè)定好轉(zhuǎn)速、熱解溫度等面板控制程序,反應(yīng)開始計時。秸稈熱解產(chǎn)生的氣相產(chǎn)物逸出后經(jīng)過冷凝器深度冷卻后收集到大部分焦油和水,而熱解氣中的輕焦油由浸在冰水浴中的丙酮瓶吸收。熱解氣經(jīng)過濕式流量計計量后分析氣體組成。
1.水箱;2.柱塞泵;3.蒸汽發(fā)生器;4.氮氣氣瓶;5.氣體預(yù)熱器;6.氣體混合預(yù)熱器;7.進氣口;8.旋轉(zhuǎn)接頭;9.齒輪;10.散熱片;11.加熱爐;12.反應(yīng)管;13.輥子;14.快裝法蘭;15.封頭;16.托輥;17.變頻電機;18.配電柜;19.壓力表;20.熱電偶;21.冷凝系統(tǒng);22.收集瓶;23,24,25.丙酮洗瓶;26.過濾器;27,32,34.閥門;28.放空瓶;29. 真空泵;30. 流量計;31.碳酸氫鈉洗瓶;33.硅膠洗瓶; 35.色譜儀
1.Water tank 2.Plunger pump 3.Steam generator 4.Nitrogen gas cylinder 5.Gas preheater 6.Gas mixing preheater 7.Air intakes 8.Rotary joint 9.Gear 10.Cooling fins 11.Furnace 12.Reactor 13.Roller 14.Fast flange 15.End socket 16.Touch roll 17.Motor 18.Power distribution cabinet 19.Pressure gauges 20.Thermocouple 21.Condenser 22.Collection bottle 23,24,25.Acetone washing bottles 26.Filter 27,32,34.Valve 28.Empty bottle 29. Vacuum pump 30. Wet-type flow meter 31. Sodium bicarbonate washing bottle 33.Silica gel washing bottle 35.Gas chromatogram
圖1 試驗裝置示意圖
Fig.1 Schematic diagram of experimental system
由于反應(yīng)器中心安裝熱電偶可實時監(jiān)控物料溫度,當(dāng)回轉(zhuǎn)窯內(nèi)物料達(dá)到設(shè)定反應(yīng)溫度時電爐斷電。冷凝瓶中收集到的焦油和水用傾倒法分出水并分別計量。反應(yīng)器出口管路、冷凝器及冷凝瓶用丙酮清洗,得到的液體經(jīng)過濾后與丙酮吸收瓶中溶液合并,使用減壓旋轉(zhuǎn)蒸發(fā)器蒸出溶劑,得到的油品與之前冷凝瓶中的焦油合并稱質(zhì)量,根據(jù)分出的水量計算無水焦油產(chǎn)量,并合并計算總產(chǎn)水量。試驗結(jié)束并待反應(yīng)器冷卻后,取出生物炭稱質(zhì)量并密封保存。除非特別指明,所有產(chǎn)率相對于干基秸稈質(zhì)量。管壁中殘留的焦油可通過構(gòu)建閉路循環(huán)系統(tǒng)收集,采用水浴加熱丙酮洗滌管壁后回流進入收集瓶,再進行分離提純。
試驗中產(chǎn)生的熱解氣樣通過 Agilent Micro-3000微型氣相色譜檢測其中的各組分摩爾含量(主要檢測H2、CH4、CO、CO2、C2H4、C2H6、C3H6、C3H8等)。生物炭和焦油使用美國Perkin Elmer公司PE 2400型元素分析儀進行C、H、N、S、O元素的測定。生物炭使用上海昌吉XRY-1B氧彈熱量儀測量熱值,工業(yè)分析參照國標(biāo)GB/T 28731-2012,生物炭的pH值按照《GB/T 12496.7-1999木質(zhì)活性炭試驗方法pH值的測定》方法測定[22]。
回轉(zhuǎn)窯生物質(zhì)熱解裝置部分參數(shù)詳見表2,選用電阻絲加熱的電爐作為生物質(zhì)熱解的主要能量來源。
表2 回轉(zhuǎn)窯反應(yīng)系統(tǒng)操作參數(shù)
試驗前回轉(zhuǎn)窯內(nèi)裝入秸稈180 g,設(shè)定氮氣流速200 mL/min,維持吹掃30 min。試驗設(shè)定轉(zhuǎn)速2 r/min,通過控制面板設(shè)定熱解反應(yīng)溫度后開始計時。冷凝器深度冷卻設(shè)定?15 ℃。每一試驗都進行平行試驗,各產(chǎn)物的產(chǎn)率重復(fù)性誤差小于0.5%。
如圖2a、b所示,熱解液體產(chǎn)率隨著熱解溫度的升高呈逐漸增加趨勢,相應(yīng)的熱解水產(chǎn)率也有所增加。當(dāng)溫度從400 ℃增加到800 ℃時,熱解液體產(chǎn)率從29.03%增加到41.86%,相應(yīng)的熱解水產(chǎn)率從16.81%增加到21.73%。
溫度的增加使得焦油產(chǎn)率先增加再降低,焦油熱值逐漸增加,詳見圖2c、d。當(dāng)熱解溫度從400℃增加至700 ℃時,焦油產(chǎn)率從12.21%增加至21.70%,此時焦油產(chǎn)率最高;當(dāng)溫度進一步增加到800 ℃時,焦油產(chǎn)率降低至20.13%。相應(yīng)的焦油熱值從400 ℃時的19 974.0 kJ/kg逐漸增加到21 710.0 kJ/kg。熱解溫度的提高加快了熱解過程中熱傳遞,加劇了生物質(zhì)大分子所含的羥基、羰基等含氧官能團的分解進而促進揮發(fā)物的產(chǎn)生,提高了熱解液體產(chǎn)物、熱解水和焦油產(chǎn)率。然而過高的溫度加劇了揮發(fā)分的二次反應(yīng),降低了焦油產(chǎn)率;更多的含氧雜環(huán)結(jié)構(gòu)會隨著熱解溫度提高逐漸分解,因而焦油熱值逐漸增加。通過對比市售0#柴油主要物化性質(zhì)[5],表3詳列了生物質(zhì)焦油與柴油物化性質(zhì)差異,焦油相比于柴油的熱值較低且具有更低的氫元素含量。
圖2 熱解液體、熱解水、焦油產(chǎn)率和焦油熱值變化
表3 生物質(zhì)焦油與0#柴油物化性質(zhì)對比
熱解溫度的增加可以使玉米秸稈逸出更多的揮發(fā)分,進而提高了熱解氣體積,相應(yīng)的熱解氣組成中的H2和CH4含量也逐漸增加,詳見圖3 a。當(dāng)溫度從400 ℃增加到800 ℃時,H2和CH4體積分?jǐn)?shù)分別從0.47%和0.74%顯著增加至16.72%和14.71%。當(dāng)熱解溫度從700 ℃增加至800 ℃時,H2體積分?jǐn)?shù)從6.00%急劇增加至16.72%,上述變化是由于熱解溫度的提高加劇了熱解氣相產(chǎn)物二次反應(yīng),使得雜環(huán)結(jié)構(gòu)分解轉(zhuǎn)變?yōu)闅怏w小分子等,熱解氣總體積從25.0 L顯著增加至31.6 L也間接驗證了該結(jié)論。
如圖4所示,生物炭產(chǎn)率隨著熱解溫度的增加而逐漸降低,其熱值隨之降低。當(dāng)熱解溫度從400 ℃增加到800 ℃時,生物炭產(chǎn)率從42.37%降低至29.51%,熱值從22 575.0 kJ/kg降低至20 813.0 kJ/kg。生物炭的元素組成隨溫度變化顯著,結(jié)果詳見圖5。其中,生物炭C元素含量隨溫度增加逐漸增高,H元素含量逐漸降低,N元素含量略有降低。當(dāng)熱解溫度從400 ℃增加到800 ℃時,生物炭C元素質(zhì)量分?jǐn)?shù)從58.80%增加至62.64%,H元素質(zhì)量分?jǐn)?shù)從5.04%降低至1.59%。更高熱解溫度使得玉米秸稈逸出更多的揮發(fā)分,加劇碳縮合使得無定型結(jié)構(gòu)與官能團橋聯(lián)形成芳香結(jié)構(gòu)的碳骨架,降低了生物炭產(chǎn)率和生物炭熱值。生物炭堿性主要是由于所含的碳酸鹽晶體所致[23-25],圖6對比了生物炭中2種主要堿金屬氧化物含量變化(生物炭金屬元素含量為生物炭氟到92鈾元素的百分比)。熱解溫度從400 ℃增加到800℃時,生物炭中CaO相對含量從18.79%逐漸降低至11.45%,而K2O相對含量從36.99%降低至30.95%,相應(yīng)的生物炭pH值也從9.97增加至11.48(圖5),因此對于需要同時兼顧生物炭產(chǎn)率和pH值時,應(yīng)充分考慮熱解溫度的影響。
圖3 主要氣體組成與氣體體積變化
圖4 生物炭產(chǎn)率、熱值及pH值隨熱解溫度的變化
圖5 生物炭元素分析
圖6 生物炭中CaO和K2O相對含量隨熱解溫度的變化
生物炭可調(diào)節(jié)土壤酸堿度,有效緩解土壤酸化板結(jié)、有機質(zhì)含量下降等問題[26]。傳統(tǒng)堆肥周期長且不徹底、堆肥腐熟度不高、碳氮元素流失嚴(yán)重[27]。添加生物炭可有效增加空氣通透性并提高腐熟程度,提高堆肥效率和產(chǎn)品質(zhì)量。圖7對比了不同條件下生物炭C/N和H/O比的變化。堆肥過程中C/N過高會降低微生物繁殖速度,導(dǎo)致發(fā)酵時間長、有機物分解速度慢、堆肥腐殖化系數(shù)低。C/N過低則會損失有機氮并散發(fā)難聞的氣味,碳氮比值約為25最為適宜[28]。熱解溫度的提高使生物炭的C/N比逐漸增加,相應(yīng)的生物炭H/O有所降低,這主要是由于熱解過程中大量揮發(fā)分逸出所致,該結(jié)果也與生物炭熱值結(jié)果變化相吻合。當(dāng)熱解溫度從400 ℃增加到800 ℃時,生物炭C/N比從21.02增加至28.60;當(dāng)熱解溫度為600 ℃,生物炭C/N比為24.85,應(yīng)用于堆肥過程中炭基肥制備較為適宜。
圖7 生物炭C/N比和H/O比
本文通過搭建小型回轉(zhuǎn)窯生物質(zhì)熱解反應(yīng)器,結(jié)合熱解油氣分離系統(tǒng)、氣體凈化系統(tǒng)和產(chǎn)物收集系統(tǒng)等,采用玉米秸稈為原料、集成溫控程序和平臺對物料熱解溫度的精準(zhǔn)控制,建立了秸稈熱解產(chǎn)物分析方法,試驗過程中設(shè)備運行良好。
熱解溫度對回轉(zhuǎn)窯內(nèi)秸稈熱解特性影響顯著,溫度的增加提高了熱解液相產(chǎn)物產(chǎn)率和熱解水產(chǎn)率,相應(yīng)的焦油產(chǎn)率呈先增加后降低的趨勢。當(dāng)熱解溫度為700 ℃時,焦油產(chǎn)率最高,約為21.70%;當(dāng)溫度進一步增加到800 ℃時,焦油產(chǎn)率降低至20.13%。生物炭熱值和產(chǎn)率逐漸降低,相應(yīng)的生物炭產(chǎn)率從42.37%降低至29.51%。熱解過程中更多的含氧雜環(huán)隨著熱解溫度提高逐漸分解,因而焦油熱值逐漸增加,生物炭H/O逐漸降低。
生物炭pH值呈堿性,熱解溫度的提高使得生物炭pH值逐漸增加,相應(yīng)的C元素含量逐漸增加,H元素含量逐漸降低,這主要是由于熱解溫度的增加逸出更多揮發(fā)分并加劇碳縮合形成芳香結(jié)構(gòu)的碳骨架。當(dāng)熱解溫度為600 ℃時制備的生物炭應(yīng)用于堆肥過程中炭基肥制備較為適宜。
[1] 方放,王飛,石祖梁,等. 京津冀秸稈養(yǎng)分資源及秸稈焚燒氣體污染物排放定量估算[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(3):1-6.
Fang Fang, Wang Fei, Shi Zuliang, et al. Quantitative estimation on straw nutrient resources and emission of pollutants from straw burning in Beijing-Tianjin-Hebei region[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 1-6. (in Chinese with English abstract)
[2] 方放,李想,石祖梁,等. 黃淮海地區(qū)農(nóng)作物秸稈資源分布及利用結(jié)構(gòu)分析[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(2):228-234.
Fang Fang, Li Xiang, Shi Zuliang, et al. Analysis on distribution and use structure of crop straw resources in Huang-Huai-Hai Plain of China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(2): 228-234. (in Chinese with English abstract)
[3] Clare A, Shackley S, Jose S, et al. Competing uses for China’s straw: The economic and carbon abatement potential of biochar[J]. Gcb Bioenergy, 2015, 7(6): 1272-1282.
[4] Karampinis E, Kourkoumpas D S, Grammelis P, et al. New power production options for biomass and cogeneration[J]. Wiley Interdisciplinary Reviews: Energy and Environment, 2015, 4(6): 471-485.
[5] 馬騰,郝彥輝,姚宗路,等. 秸稈水熱生物炭燃燒特性評價[J]. 農(nóng)業(yè)機械學(xué)報,2018,49(12):340-346.
Ma Teng, Hao Yanhui, Yao Zonglu, et al. Evaluation on combustion characteristics of straw hydrothermal bio-char[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(12): 340-346. (in Chinese with English abstract)
[6] Pan G X, Li L Q, Liu X Y, et al. Industrialization of biochar from biomass pyrolysis: A new option for straw burning ban and green agriculture of China[J]. Science & Technology Review, 2015, 33(13): 92-101.
[7] Guo F, Li X, Liu Y, et al. Catalytic cracking of biomass pyrolysis tar over char-supported catalysts[J]. Energy Conversion and Management, 2018, 167: 81-90.
[8] Clare A, Shackley S, Jose S, et al. Competing uses for China’s straw: The economic and carbon abatement potential of biochar[J]. Gcb Bioenergy, 2015, 7(6): 1272-1282.
[9] Cha J S, Park S H, Jung S C, et al. Production and utilization of biochar: A review[J]. Journal of Industrial and Engineering Chemistry, 2016, 40: 1-15.
[10] Bridgwater T. Biomass for energy[J]. Journal of the Science of Food and Agriculture, 2006, 86(12): 1755-1768.
[11] Wu C Z, Yin X L, Yuan Z H, et al. The development of bioenergy technology in China[J]. Energy, 2010, 35(11): 4445-4450.
[12] 胡二峰,趙立欣,吳娟,等. 生物質(zhì)熱解影響因素及技術(shù)研究進展[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(14):212-220.
Hu Erfeng, Zhao Lixin, Wu Juan, et al. Research advance on influence factors and technologies of biomass pyrolysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 212-220 . (in Chinese with English abstract)
[13] Lédé J. Comparison of contact and radiant ablative pyrolysis of biomass[J]. Journal of Analytical and Applied Pyrolysis, 2003, 70(2): 601-618.
[14] 韓菲,柳鋒,楊晴,等. 生物質(zhì)熱解多聯(lián)產(chǎn)系統(tǒng)的能值分析[J]. 太陽能學(xué)報,2015,36(12):3060-3065.
Han Fei, Liu Feng, Yang Qing, et al. Energy analysis of biomass pyrolytic poly-generation system[J]. Acta Energiae Solaris Sinica, 2015, 36(12): 3060-3065. (in Chinese with English abstract)
[15] Pr?ll T, Al Afif R, Schaffer S, et al. Reduced local emissions and long-term carbon storage through pyrolysis of agricultural waste and application of pyrolysis char for soil improvement[J]. Energy Procedia, 2017, 114: 6057-6066.
[16] Pr?ll T, Al Afif R, Schaffer S, et al. Reduced local emissions and long-term carbon storage through pyrolysis of agricultural waste and application of pyrolysis char for soil improvement[J]. Energy Procedia, 2017, 114: 6057-6066.
[17] Rodríguez L, Cerrillo M I, García-Albiach V, et al. Domestic sewage sludge composting in a rotary drum reactor: Optimizing the thermophilic stage[J]. Journal of Environmental Management, 2012, 112: 284-291.
[18] Kern S, Halwachs M, Kampichler G, et al. Rotary kiln pyrolysis of straw and fermentation residues in a 3MW pilot plant-Influence of pyrolysis temperature on pyrolysis product performance[J]. Journal of Analytical and Applied Pyrolysis, 2012, 97: 1-10.
[19] 李水清,李愛民. 生物質(zhì)廢棄物在回轉(zhuǎn)窯內(nèi)熱解研究:Ⅰ. 熱解條件對熱解產(chǎn)物分布的影響[J]. 太陽能學(xué)報,2000,21(4):333-340.
Li Shuiqing, Li Aimin. Pyrolysis of the biomass wastes pyrolysis in a rotary kiln Ⅰ: Influences of reaction conditions on pyrolysis product distribution[J]. Acta Energiae Solaris Sinica, 2000, 21(4): 333-340. (in Chinese with English abstract)
[20] 李水清,李愛民. 生物質(zhì)廢棄物在回轉(zhuǎn)窯內(nèi)熱解研究:Ⅱ. 熱解終溫對產(chǎn)物性質(zhì)的影響[J]. 太陽能學(xué)報,2000,21(4):341-348.
Li Shuiqing, Li Aimin. Pyrolysis of the biomass wastes in a rotary kiln Ⅱ: Impacts of final pyrolysis temperature on products properties[J]. Acta Energiae Solaris Sinica, 2000, 21(4): 341-348. (in Chinese with English abstract)
[21] De Conto D, Silvestre W P, Baldasso C, et al. Performance of rotary kiln reactor for the elepH value ant grass pyrolysis[J]. Bioresource Technology, 2016, 218: 153-160.
[22] 簡敏菲,高凱芳,余厚平. 不同裂解溫度對水稻秸稈制備生物炭及其特性的影響[J]. 環(huán)境科學(xué)學(xué)報,2016,36(5):1757-1765.
Jian Minfei, Gao Kaifang, Yu Rongping. Effects of different pyrolysis temperature on the preparation and characteristics of biochar from rice straw[J]. Transactions of the Acta Scientiae Circumstantiae, 2016, 36(5): 1757-1765. (in Chinese with English abstract)
[23] Yuan J H, Xu R K, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011, 102(3): 3488-3497.
[24] Fuertes A B, Arbestain M C, Sevilla M, et al. Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonisation of corn stover[J]. Soil Research, 2010, 48(7): 618-626.
[25] Silber A, Levkovitch I, Graber E R. Dependent mineral release and surface properties of corn straw biochar: Agronomic implications[J]. Environmental Science & Technology, 2010, 44(24): 9318-9323.
[26] 陳坤,徐曉楠,彭靖,等. 生物炭及炭基肥對土壤微生物群落結(jié)構(gòu)的影響[J]. 中國農(nóng)業(yè)科學(xué),2018,51(10):1920-1930.
Chen Kun, Xu Xiaonan, Peng Jing, et al. Effects of biochar and biochar-based fertilizer on soil microbial community structure[J]. Transactions of the Scientia Agricultura Sinica, 2018, 51(10): 1920-1930. (in Chinese with English abstract)
[27] 羅淵,袁京,李國學(xué),等. 種子發(fā)芽試驗在低碳氮比堆肥腐熟度評價方面的適用性[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2016,35(1):179-185.
Luo Yuan, Yuan Jing, Li Guoxue, et al. Applicability of seed germination test to evaluation of low C/N compost maturity[J]. Transactions of the Journal of Agro-Environment Science, 2016, 35(1): 179-185. (in Chinese with English abstract)
[28] 斯琴畢力格. C/N比對好氧堆肥過程中堆體內(nèi)部主要指標(biāo)變化的影響[D]. 哈爾濱:東北農(nóng)業(yè)大學(xué),2017.
Siqin Bilige. Effect of C/N on Change of Internal Main Indicators during Aerobic Composting[D]. Harbin: Northeast Agricultural University, 2017. (in Chinese with English abstract)
Evaluation on pyrolysis characteristics of straw in rotary kiln
Hu Erfeng1, Wu Juan2, Zhao Lixin1※, Meng Haibo1, Yao Zonglu1, Tang Sen3
(1.100125,; 2.210042,; 3.,,650093,)
Hebei is a largely agricultural province in northern China, and the crop straw amount was 58.42 million in 2017. Pyrolysis technology is an important way to realize the utilization of crop straw resources. The biochar produced also plays an important role in soil improvement, heavy metal adsorption, and water purification, especially it can regulate soil pH value and effectively alleviate soil acidification and alkalinity and other organic matter content. Pyrolysis gas can be used for heating in the north and alleviating the pollution caused by the use of a large number of inferior loose coal in rural areas. Pyrolysis liquids and wood vinegar can be used as fuels or chemical raw materials. Therefore, the pyrolysis technology has received extensive attention from experts at home and abroad. To investigate the pyrolysis characteristics of corn straw under different temperature conditions and analyze the physical and chemical properties of pyrolysis products, this paper proposed a rotary kiln. The results showed that increasing pyrolysis temperature raised the yields of pyrolysis liquid products and water, but decreased the yield and high heating value (HHV) of biochar. The tar yield increased first and then decreased with the rising of temperature. When the pyrolysis temperature increased from 400 to 700 ℃, the tar yield rose from 12.21% to 21.70%, when the temperature increased to 800 ℃, the tar yield reduced to 20.13%. The tar HHV escalated from 19 974.0 to 21 710.0 kJ/kg with the increase in pyrolysis temperature from 400 to 800 ℃. More oxygen-containing heterocyclic structures such as hydroxyl and carbonyl groups gradually decomposed with the increase of pyrolysis temperature, thus raising the tar HHV. However, the excessively high temperature exacerbated the secondary reaction of volatiles, and therefore reduced the tar yield. The pyrolysis gas volume, H2and CH4content increased with the rising of temperature, but the biochar yield and HHV decreased, while biochar pH value and C/N ratio presented an increasing trend. The increase of pyrolysis temperature gradually increased the C/N ratio of biochar, and the corresponding biochar H/O decreased, which was mainly due to the escape of a large amount of volatiles during pyrolysis. When the pyrolysis temperature increased from 400 to 800 ℃, the C/N ratio of biochar increased from 21.02 to 28.60. When the pyrolysis temperature was 600 ℃, the C/N ratio of biochar was 24.85, which was suitable for composting process and production of carbon-based fertilizer. The results of this study provide a reference for biochar application in agricultural production and composting of agricultural wastes.
temperature; pyrolysis; straw; rotary kiln
2019-01-21
2019-05-29
國家玉米產(chǎn)業(yè)技術(shù)體系任務(wù)委托協(xié)議(CARS-02-31),博士后基金(2018M631422),農(nóng)業(yè)農(nóng)村部重點實驗室課題“烘焙預(yù)處理對秸稈熱解產(chǎn)物特性影響的規(guī)律研究”
胡二峰,博士,主要從事農(nóng)業(yè)生物環(huán)境與能源工程方面技術(shù)研究。Email:huerfeng@qq.com
趙立欣,研究員,主要從事生物質(zhì)能資源開發(fā)利用技術(shù)與政策研究。Email:zhaolixin5092@163.com
10.11975/j.issn.1002-6819.2019.11.027
TK6; TQ013
A
1002-6819(2019)-11-0233-06
胡二峰,吳 娟,趙立欣,孟海波,姚宗路,湯 森. 熱解溫度對回轉(zhuǎn)窯玉米秸稈熱解產(chǎn)物理化特性的影響[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(11):233-238. doi:10.11975/j.issn.1002-6819.2019.11.027 http://www.tcsae.org
Hu Erfeng, Wu Juan, Zhao Lixin, Meng Haibo, Yao Zonglu, Tang Sen. Evaluation on pyrolysis characteristics of straw in rotary kiln[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(11): 233-238. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.11.027 http://www.tcsae.org