校 亮,袁國棟,畢冬雪,韋 婧,沈冠華
?
農(nóng)林廢棄物田間曝氧水-火聯(lián)動制炭設(shè)備及技術(shù)研究
校 亮1,2,袁國棟3,4※,畢冬雪1,2,韋 婧1,沈冠華3
(1. 中國科學(xué)院煙臺海岸帶研究所,中國科學(xué)院海岸帶環(huán)境過程與生態(tài)修復(fù)重點實驗室,煙臺 264003;2. 中國科學(xué)院大學(xué),北京 100049;3. 肇慶學(xué)院環(huán)境與化學(xué)工程學(xué)院,肇慶 526061;4. 廣東大眾農(nóng)業(yè)科技有限公司,東莞 523169)
生物炭具備固碳減排、提升地力、修復(fù)污染土壤等功效,但其推廣應(yīng)用面臨著成本過高的難題。為降低其生產(chǎn)(設(shè)備與場地的運維費用)和使用成本(原料與炭品的運輸費用),該文研發(fā)田間制炭技術(shù),將生物質(zhì)就地轉(zhuǎn)化為生物炭。通過水-火聯(lián)動技術(shù),可在田間曝氧環(huán)境下制備得到生物炭。研究表明,原材料特性決定著成炭的操作工藝;其中,竹柳采用單向引燃、槽面噴水控溫、通孔噴霧成炭的方式進行,棉稈采用單向引燃與控溫、噴水橫切炭體、噴霧成炭的方式進行,蘆葦采用多位點引燃、槽面和通孔同時控溫、逐層分區(qū)噴霧成炭的方式進行。采用該技術(shù)制備的生物炭表現(xiàn)出了較好的均質(zhì)性,成炭率在30%左右;同時保存了較多的營養(yǎng)元素,如碳質(zhì)量分數(shù)介于43.49%~60.30%、氮質(zhì)量分數(shù)介于0.52%~0.86%;具有豐富的表面官能團,如羧基含量介于0.98~1.09 mol/kg、酚羥基含量介于0.53~0.59 mol/kg;具有較大的比表面積,介于16.0~262.2 m2/g。竹柳、棉稈和蘆葦在成炭過程中產(chǎn)生的煙氣經(jīng)尾氣處理系統(tǒng)處理后(PM 2.5(56、66、68g/m3)、PM 10(100、114、128g/m3))均達到排放標準。該文提供的田間制炭技術(shù)操作簡單、成本低且效率高。實踐表明,農(nóng)民在自家田里可制炭達1 t/(d·人),成本僅需162.5元/t。該文研究結(jié)果可為生物炭的推廣應(yīng)用提供參考。
生物質(zhì);廢棄物;生物炭;水-火聯(lián)動;曝氧炭化
生物炭是由生物質(zhì)在缺氧條件下經(jīng)高溫裂解生成的孔狀固體物質(zhì),有較大的比表面積、較多的含氧活性基團及一些植物營養(yǎng)元素[1]。其不僅具有改善土壤性質(zhì)、提升肥力、減輕土壤污染等農(nóng)藝和生態(tài)功能[2-7],也是增加土壤碳匯、減少N2O和CH4等溫室氣體排放的技術(shù)選項之一[8-10]。
生物炭的生產(chǎn)是生物炭研究和應(yīng)用的前提和基礎(chǔ)。熱裂解技術(shù)和水熱炭化法是當前制備生物炭的主要方法。熱裂解技術(shù)采用限氧、升溫炭化的方法,根據(jù)反應(yīng)條件可分為:700 ℃以上的快速裂解和300~500 ℃的常規(guī)裂解[11-12];水熱炭化是指利用一定溫度的飽和水,在自產(chǎn)蒸汽壓力下將生物質(zhì)轉(zhuǎn)化為富碳固體水熱焦[13-14]。目前,生物炭產(chǎn)業(yè)在中國尚處培育階段,其應(yīng)用也多見于科研用途,未能在農(nóng)業(yè)生產(chǎn)中推廣使用,主要是因為采用這2種方法制備生物炭的生產(chǎn)成本過高[15-16],這主要體現(xiàn)在原料與產(chǎn)品的運輸費用、制炭設(shè)備的購置與運行維護費用、高劑量的投加費用等多個方面[17-19]。若能在田間直接將生物質(zhì)轉(zhuǎn)化為生物炭,并將其應(yīng)用于退化土壤的改良與污染土壤的修復(fù),不僅能夠節(jié)省秸稈收集與前處理、制炭場地與設(shè)備運行維護、炭品運輸?shù)拳h(huán)節(jié)的費用,還可為年產(chǎn)約10億多噸的農(nóng)作物秸稈的綜合利用探索新的出路,又能夠為提升地力、凈化土壤、固碳減排等做出有益貢獻[20]。
在自然狀態(tài)下,有薪柴、水和火就可以制炭;無須將原料烘干、粉碎等,也無須經(jīng)過漫長的高溫熱裂解過程。本文在深入分析自然界成炭、古人制炭以及傳統(tǒng)田間制炭成效的基礎(chǔ)上[21-23],經(jīng)反復(fù)試驗,提出了在田間曝氧條件下將農(nóng)林廢棄物轉(zhuǎn)化為生物炭的操作方案及其配套技術(shù)。本研究以黃河三角洲地區(qū)常見的竹柳、棉稈和蘆葦為原材料,研發(fā)將這些農(nóng)林廢棄物在田間曝氧環(huán)境下采用水-火聯(lián)動方法制備生物炭的設(shè)備和技術(shù),以期獲得性能穩(wěn)定的生物炭產(chǎn)品,旨在為生物炭的農(nóng)業(yè)和環(huán)保應(yīng)用提供技術(shù)支撐。
本研究依托黃河三角洲地區(qū),以當?shù)亓謽I(yè)局2016年冬季在林場、農(nóng)田和灘地收集的該區(qū)常見的農(nóng)林廢棄物為生物質(zhì)原料,于2017年8月在東營市河口區(qū)仙河鎮(zhèn)黃河三角洲綜合訓(xùn)練基地農(nóng)業(yè)開發(fā)利用試驗場,開展了采用水-火聯(lián)動技術(shù)在田間曝氧環(huán)境下制備生物炭試驗。
1)磚壘制炭槽體,槽體規(guī)格:10 m×2.5 m×0.6 m(長×寬×高),磚體規(guī)格:0.5 m× 0.2 m×0.2 m(長×寬×高),槽體由磚塊分3層垂向疊加壘造而成,底層與頂層磚塊沿槽長方向緊密排列,中間層的每一磚塊間隔0.15 m順次排列,形成0.15 m× 0.2 m通孔,通孔在槽體兩側(cè)錯位分布(便于引火后產(chǎn)生熱壓差、加速側(cè)壁內(nèi)空氣流通,解決槽內(nèi)深部秸稈燃燒問題),在緊鄰槽體側(cè)壁的兩端,垂直于側(cè)壁方向壘造一0.5 m長的擋墻,毗鄰擋墻部位豎立磚體一塊,以便控制橫向通氣速率[24]。農(nóng)林生物質(zhì)田間曝氧制炭槽體結(jié)構(gòu)示意圖如圖1所示。2)噴霧裝置:農(nóng)業(yè)防蟲用車帶可調(diào)壓式噴霧槍;3)探溫儀器:紅外測溫儀,型號:DT-8833(北京華盛昌),量程:?50~800 ℃,分辨率:0.1 ℃;4)其他輔助設(shè)備:鐵鍬、鐵叉。
圖1 田間曝氧制炭槽體結(jié)構(gòu)示意圖
1)集氣系統(tǒng):由①集氣罩(規(guī)格:30 cm×40 cm,弧度1/2π)、②導(dǎo)氣管(直徑10 cm、長2.5 m空心鐵皮管)、③三通閥(閥口直徑10 cm,通口互成90°角,用以將集氣罩和導(dǎo)氣管串聯(lián))、④彎管(直徑10 cm,90°彎角,用以連接縱梁和橫梁),⑤抽氣機(德鑫機械QLF50)、⑥排氣管(直徑10 cm、長1 m的空心鐵皮管)依次連接而成[25]。
本次試驗所用集氣系統(tǒng)的縱梁經(jīng)6個集氣罩由6個三通閥依次串聯(lián)8個2.5 m長的導(dǎo)氣管組合而成,縱梁與橫梁用4個彎管連接;其中一端的橫梁經(jīng)三通閥連接導(dǎo)氣管至抽氣機的進氣口,抽氣機的出氣口連接有1 m長的排氣管,共同構(gòu)成本次試驗的尾氣收集系統(tǒng),如圖2所示。尾氣收集及處理過程伴隨著制炭過程同時進行,在進行尾氣收集時,將尾氣收集系統(tǒng)嵌套在制炭槽上,啟動電動抽氣機,尾氣沿集氣罩進入導(dǎo)氣管,進而通過三通閥、彎管、抽氣機最終進入排氣管,完成尾氣收集,以備尾氣處理系統(tǒng)進行尾氣處理。
2)尾氣處理系統(tǒng):由①機械阻隔除塵系統(tǒng)(煙塵過濾裝置,核心部件為煙塵過濾網(wǎng),沿氣體走向依次為1、0.5、0.25和0.10 mm,煙塵過濾網(wǎng)設(shè)置在排氣管的內(nèi)部)、②電除塵系統(tǒng)(尾氣燃燒再處理裝置,由220 V農(nóng)用直流電瓶、多組相變壓器(將220 V直流電壓升至10 000 V)、火線網(wǎng)、接地線、震蕩開關(guān)等組成)、③化學(xué)除塵系統(tǒng)(煙塵及尾氣噴淋裝置,包含噴淋裝置和淋洗液(飽和石灰水和飽和紅黏土泥漿水))依次連接而成(圖3)。
1.集氣罩 2.導(dǎo)氣管 3.三通閥 4.彎管 5.抽氣機 6.排氣管
1.Gas collecting cover 2.Airway 3.Three-way valve 4.Bent pipe 5.Air pump 6.Exhaust pipe
圖2 煙氣收集系統(tǒng)
Fig.2 Flue gas collection system
1.機械除塵系統(tǒng) 2.化學(xué)除塵系統(tǒng) 3.電除塵系統(tǒng)
1.Mechanical dust removal system 2.Chemical dust removal system 3.Electric dust removal system
注:0.5 mm、0.25 mm、0.10 mm分別為煙塵過濾網(wǎng)的孔徑。
Note: 0.5 mm, 0.25 mm, and 0.10 mm are the diameter of apertures in the soot filter, respectively.
圖3 尾氣處理系統(tǒng)
Fig.3 Flue gas treatment system
其中,機械除塵系統(tǒng)用以阻隔煙塵顆粒,起過濾大顆粒的作用;電除塵裝置用以引燃未充分燃燒的煙塵及氣體,起促進完全燃燒的作用;化學(xué)除塵系統(tǒng)用以噴淋殘余的煙塵顆粒和中和尾氣(如CO2、SO2等)。最后,采用BR-Smart-126S便攜式環(huán)境監(jiān)測儀測定經(jīng)尾氣處理系統(tǒng)處理后煙氣的PM 2.5、PM 10及揮發(fā)性有機碳(volatile organic carbon,VOCs)等指標的含量,監(jiān)測煙氣排放是否達標,煙氣監(jiān)測在制炭過程中每5 min進行1次,取數(shù)據(jù)平均值進行表示。
1)成炭率:采用炭化處理前、后物料干質(zhì)量的質(zhì)量差進行計算;2)灰分:樣品在馬弗爐中經(jīng)800 ℃灰化處理4 h后其殘余灰渣含量占總物料質(zhì)量的百分比表征[26];3)pH值:按生物炭與去離子水質(zhì)量體積比1:5混合(160 r/min下震蕩24 h),靜置1 h后用pH計(Five Easy Plus,METTLER TOLEDO)測定[27];4)元素組成:元素分析儀(Vario Micro cube,德國Elementar)測定;5)官能團:酸堿滴定法[28];6)比表面積測定用氮氣吸附BET法在全自動比表面積和孔徑分布分析儀(Autosorb-iQ,美國Quantachrome)上進行。
在田間用磚塊壘造規(guī)格為10 m×2.5 m×0.6 m(長×寬×高)的槽體,槽體兩側(cè)錯位分布的通孔起兩方面作用,一方面作引火點、并在秸稈燃燒后與槽體深部秸稈、外界空氣等產(chǎn)生熱壓差,加速空氣流通;另一方面為木質(zhì)素類秸稈成炭折斷跌落于槽底后提供噴霧通道、為纖維素類秸稈成炭后分區(qū)制炭提供噴霧通道。槽體兩端的擋墻和豎立磚塊依據(jù)物料燃燒狀況適當開閉,起加速/限制空氣流通的作用。圖4展示了田間曝氧環(huán)境下采用水-火聯(lián)動技術(shù)制備生物炭的過程。
圖4 制炭槽填料
供試竹柳樹枝每槽計900 kg,其多為不規(guī)則柱狀枝條,直徑介于0.5~6.0 cm,長50~400 cm。將竹柳枝條隨機填充至制炭槽體內(nèi),每隔20cm填充層進行踩踏壓實。竹柳樹枝的制炭引火過程采用槽體端口引燃的方式進行。自槽體一端用固體酒精引燃物料,受熱壓差的作用,明火會以類似于潮退的方式自引燃端向槽體的另一端蔓延。起初,細枝條燃燒,并在自身重力作用下節(jié)段式(5~8 cm)跌落,而粗枝條仍以明火的形式懸空燃燒;此時,啟動車帶噴霧器轉(zhuǎn)軸,開啟噴槍閥門,透過槽體兩側(cè)通孔進行首輪噴霧操作,確保跌落的細枝條成炭。隨后,緊貼槽面噴射水汽,控制懸空燃燒粗枝條的明火,同時借助噴水沖擊力將粗枝條表面生成的龜裂狀炭體剝離,促進枝條內(nèi)部木質(zhì)部分的燃燒。待新一輪的枝條跌落后,沿通孔噴射水汽,確保跌落的枝條成炭,如此往復(fù),待槽內(nèi)枝條完全成炭后終止。單槽制炭用時約30 min,耗水約150 L。
供試棉花秸稈每槽計450 kg,其多為不規(guī)則柱狀莖稈,直徑介于1.0~2.0 cm,長60~80 cm。將棉花秸稈隨機填充至制炭槽體內(nèi),每隔20 cm填充層進行踩踏壓實。棉花秸稈的制炭引火過程采用槽體端口引燃的方式進行。自槽體一端用固體酒精引燃物料,受熱壓差的作用,明火會以類似于潮退的方式自引燃端向槽體的另一端蔓延。因棉花秸稈物料形狀較為均一,明火燃燒可快速將秸稈高溫裂解并齊茬式跌落。依據(jù)燃燒形式,棉花秸稈的噴霧成炭過程采用異壓控水操作的方式進行。啟動車帶噴霧器轉(zhuǎn)軸,開啟噴槍閥門。將1號噴槍調(diào)至最大壓力,呈霧狀水汽,用以控制明火火勢;將2號噴槍調(diào)至最大壓力,呈柱狀水體,用以截斷已成炭體;將3號噴槍調(diào)至中等壓力,用以噴滅跌落炭體。棉花秸稈制炭過程自引燃端至槽體末端進行,直至槽內(nèi)秸稈全部成炭,單槽制炭用時約40 min、耗水約250 L。
供試蘆葦秸稈每槽計600 kg,其多為規(guī)則的柱狀莖稈,直徑介于0.3~0.5 cm,長60~100 cm。將蘆葦秸稈隨機填充至制炭槽體內(nèi),每隔20 cm填充層進行踩踏壓實。因蘆葦稈徑較小、填充緊實,蘆葦秸稈的制炭引火過程采用多位點引燃的方式進行。在槽體兩端及側(cè)壁錯位通孔處引燃物料,此時,點狀明火會以片狀形式蔓延,直至槽內(nèi)與空氣直接接觸的物料表面完全燃燒。啟動車帶噴霧器轉(zhuǎn)軸,開啟噴槍閥門,將1、2、3號噴槍調(diào)至最大壓力,呈霧狀水汽。1、2號噴槍用以控制槽體左、右側(cè)壁通孔處明火,即透過槽體兩側(cè)通孔進行噴水控火操作,3號噴槍用以控制槽面明火,即沿槽面進行噴水控火操作。三管齊下,促使暗火內(nèi)延,逐層剝離成炭。該過程中,錯位的通孔在暗火內(nèi)延和噴水壓力作用下最終被連通,將槽內(nèi)物料截斷為多個塊區(qū),各塊區(qū)暗火繼續(xù)內(nèi)延,噴霧后分塊區(qū)成炭。單槽制炭用時約90 min、耗水約500 L。
采用非接觸式紅外測溫儀探測結(jié)果顯示,同槽物料不同部位的炭體(每2 m槽長內(nèi)探測1次、共計5次)和同一物料分批入槽制得的炭(同一物料在同一槽體內(nèi)以相同填充量分3次制炭)的成炭溫度較為均一,竹柳秸稈的成炭溫度介于485~527 ℃((502±14.3) ℃),棉花秸稈的成炭溫度介于487~493 ℃((491±1.8) ℃),蘆葦秸稈的成炭溫度介于274~282 ℃((277±3.0) ℃)。一般而言,在物源一致的條件下,生物炭的性質(zhì)主要受成炭溫度影響[29-34]。試驗結(jié)果表明,采用水-火聯(lián)動技術(shù)在田間曝氧環(huán)境下制備生物炭的成炭溫度表現(xiàn)出了較好的同槽均一性和異槽同質(zhì)性。也就是說,采用田間水-火聯(lián)動曝氧技術(shù)能夠制備出性能穩(wěn)定的生物炭產(chǎn)品。
田間曝氧環(huán)境下制備的生物炭均表現(xiàn)出較高的成炭率(24.3%~37.4%),保存了較多的N(0.52%~0.86%)。(表1)。農(nóng)林生物質(zhì)于田間經(jīng)水-火聯(lián)動技術(shù)在曝氧環(huán)境下制備的生物炭的基本理化性質(zhì)如表1所示,3種廢棄物生物炭都呈現(xiàn)堿性pH值。更為重要的是,獲得的生物炭比表面積較大(16.0~262.2 m2/g),且含有豐富的表面官能團,羧基-COOH含量介于0.98~1.09 mol/kg、酚羥基phenolic-OH含量介于0.53~0.59 mol/kg。因此,它們具備吸附劑的基本屬性和較大的陽離子交換能力。
生物炭基本理化性質(zhì)分析結(jié)果表明,采用水-火聯(lián)動技術(shù)在田間曝氧環(huán)境下制備生成的生物炭,有較大的比表面積和豐富的官能團,顯然不同于秸稈直接燃燒所得的草木灰。制炭成本是決定生物炭應(yīng)用前景的關(guān)鍵因素,在田間曝氧環(huán)境下采用水-火聯(lián)動技術(shù)來制備生物炭不僅成本低廉、效率高、產(chǎn)率高,生產(chǎn)成本僅需162.5元/t、效率達1 t/(d·人)(表2);且技術(shù)上操作簡單易學(xué),制備的生物炭質(zhì)地也較為均一。
表1 田間制備的生物炭的基本理化性質(zhì)
表2 田間制炭成本核算
煙氣收集及尾氣處理系統(tǒng)的具體指標參數(shù)、操作規(guī)程以及運行原理詳見1.3部分。尾氣處理系統(tǒng)運行過程中,制炭煙氣會經(jīng)集氣罩進入導(dǎo)氣管,通過抽氣機帶動進入排氣管。煙氣經(jīng)排氣管后通過機械除塵、電除塵和化學(xué)除塵過程,之后排放至空氣中。監(jiān)測數(shù)據(jù)表明(表3),制炭煙氣經(jīng)尾氣處理系統(tǒng)后,其PM 2.5、PM 10及VOCs含量均大幅降低。如竹柳在成炭過程中,PM 2.5自314降至56g/m3,PM 10自502降至100g/m3,VOCs自0.119降至0.001 mg/m3;棉稈在成炭過程中,PM 2.5自320降至66g/m3,PM 10自544降至114g/m3,VOCs自0.169降至0.080 mg/m3;蘆葦在成炭過程中,PM 2.5自949降至68g/m3,PM 10自999降至128g/m3,VOCs自0.243降至0.084 mg/m3。結(jié)合空氣質(zhì)量標準數(shù)據(jù),煙氣經(jīng)尾氣處理系統(tǒng)后排放至大氣中的煙氣量符合國家大氣污染管控標準,制炭過程中煙氣排放對周圍環(huán)境空氣質(zhì)量的影響在可控的范圍內(nèi)[35]。
表3 煙氣排放情況
注:環(huán)境本底值為制炭開始前試驗田塊所在區(qū)域的大氣污染物濃度。
Note: Environmental background value is the atmospheric pollutant concentration in the test field before biochar production.
中國理論生物質(zhì)資源大約為50億t/a,其中農(nóng)作物秸稈10億多噸[20],其可再生性和有害物質(zhì)(如重金屬)含量低等屬性使得生物質(zhì)具有營養(yǎng)元素和有機質(zhì)循環(huán)利用等生態(tài)學(xué)意義,可通過秸稈還田將有機質(zhì)和養(yǎng)分歸還至土壤。但由于秸稈直接還田會影響下季作物生長及增加土傳病蟲害等原因,實際上不容易推廣;而秸稈炭化還田可為生物質(zhì)歸還土壤提供新的技術(shù)選項。
已有學(xué)者指出缺氧條件下的高溫熱裂解技術(shù)效率低、成本高[4,18-19],就目前而言,很難推廣應(yīng)用。為解決此難題,本課題組研制出了適合中國農(nóng)業(yè)和環(huán)保用途的生物炭制備技術(shù)。本文研發(fā)的田間制炭設(shè)備及技術(shù),可通過水-火聯(lián)動方法在曝氧環(huán)境下將廢棄生物質(zhì)轉(zhuǎn)化為生物炭。本技術(shù)突破了傳統(tǒng)高溫裂解技術(shù)需要建立工廠和炭爐來制備生物炭的局限,規(guī)避了原材料和生物炭產(chǎn)品的運輸費用、省去了倉儲成本、不需要昂貴的設(shè)備,制炭效率大幅提升且不再受場地的限制。該方法制成的炭品性能相對穩(wěn)定,保存了較多的營養(yǎng)元素、含有豐富的表面官能團和較大的比表面積。
該技術(shù)能夠讓農(nóng)民在自己的地里用自家的秸稈以易學(xué)的技術(shù)制備出生物炭,用于當?shù)剞r(nóng)業(yè)生產(chǎn)和環(huán)境修復(fù),以實現(xiàn)提升地力、減輕污染等國家戰(zhàn)略目標;也可將生物炭產(chǎn)品外銷,變廢為寶,增加農(nóng)村就業(yè)、提高農(nóng)民收入;助力鄉(xiāng)村振興和農(nóng)村環(huán)境綜合整治。
1)農(nóng)林廢棄物田間曝氧水-火聯(lián)動制炭技術(shù)依托側(cè)壁留有通孔的制炭槽體,輔助以水-火聯(lián)動技術(shù),可在田間實現(xiàn)生物質(zhì)的曝氧碳化。竹柳采用單向引燃、槽面噴水控溫、通孔噴霧成炭的方式進行,棉稈采用單向引燃與控溫、噴水橫切炭體、噴霧成炭的方式進行,蘆葦采用多位點引燃、槽面和通孔同時控溫、逐層分區(qū)噴霧成炭的方式進行。
2)采用水-火聯(lián)動技術(shù)制備的生物炭表現(xiàn)出了較好的均質(zhì)性,成炭率在30%左右;同時保存了較多的營養(yǎng)元素,碳質(zhì)量分數(shù)介于43.49%~60.30%之間、氮質(zhì)量分數(shù)介于0.52%~0.86%之間;具有豐富的表面官能團,如羧基含量介于0.98~1.09 mol/kg之間、酚羥基含量介于0.53~0.59 mol/kg之間;且具有較大的比表面積,比表面積介于16.0~262.2 m2/g之間。竹柳、棉稈和蘆葦在成炭過程中產(chǎn)生的煙氣經(jīng)尾氣處理系統(tǒng)處理后(PM 2.5(56、66、68g/m3)、PM 10(100、114、128g/m3))均達到排放標準。
3)田間水-火聯(lián)動制炭技術(shù)簡單易學(xué)、農(nóng)民可操作,其生產(chǎn)成本僅需162.5 元/t,可為生物炭的農(nóng)業(yè)和環(huán)保應(yīng)用提供技術(shù)支持。
[1] Antal M J, Gronli M. The art, science, and technology of charcoal production[J]. Industrial & Engineering Chemistry Research, 2003, 42(8): 1619-1640.
[2] Johannes L, Matthias C R, Janice T. Biochar effects on soil biota: A review[J]. Soil Biology& Biochemistry, 2011, 43: 1812-1836.
[3] Gul S, Whalen J K, Thomas B W, et al. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions[J]. Agriculture Ecosystems & Environment, 2015, 206: 46-59.
[4] Jeffery S, Bezemer T M, Cornelissen G, et al. The way forward in biochar research: Targeting trade-offs between the potential wins[J]. Global Change Biology Bioenergy, 2015, 7(1): 1-13.
[5] Tan X F, Liu Y G, Zeng G M, et al. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere, 2015, 125: 70-85.
[6] Ding Y, Liu Y X, Wu W X, et al. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns[J]. Water Air Soil Pollution, 2010, 213: 47-55.
[7] Wu W D, Li J H, Lan T, et al. Unraveling sorption of lead in aqueous solutions by chemically modified biochar derived from coconut fiber: A microscopic and spectroscopic investigation[J]. Science of the Total Environment, 2017, 576: 766-774
[8] Lehmann J. Bio-energy in the black[J]. Frontiers in Ecology and the Environment, 2007, 5: 381-387.
[9] Wu M X, Feng Q B, Sun X, et al. Rice () plantation affects the stability of biochar in paddy soil[J/OL]. Scientific Reports, 2015, 5: 10001. Doi: 10.10381 Screp10001
[10] 劉玉學(xué),劉微,吳偉祥,等. 土壤生物質(zhì)炭環(huán)境行為與環(huán)境效應(yīng)[J]. 應(yīng)用生態(tài)學(xué)報,2009,20(4):977-982.
Liu Yuxue, Liu Wei, Wu Weixiang, et al. Environmental behavior and effect of biomass derived black carbon in soil: A review[J]. Chinese Journal of Applied Ecology, 2009, 20(4): 977-982. (in Chinese with English abstract)
[11] Dinesh M, Charles U, Pittman J, et al. Pyrolysis of wood/biomass for bio-oil: A critical review[J]. Energy and Fuels, 2006, 20(3): 848-889.
[12] Wu W D, Li J H, Niazi N K, et al. Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments[J]. Environmental Science and Pollution Research, 2016, 23: 22890-22896.
[13] Libra J A, Ro K S, Kammann C, et al. Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis[J]. Biofuels, 2011, 2(1): 89-124.
[14] Kang S, Li X L, Fan J, et al. Characterization of hydro chars produced by hydrothermal carbonization of lignin, cellulose, D-xylose, and wood meal[J]. Industrial & Engineering Chemistry Research, 2012, 51: 9023-9031.
[15] 袁帥,趙立欣,孟海波,等. 生物炭主要類型、理化性質(zhì)及其研究展望[J]. 植物營養(yǎng)與肥料學(xué)報,2016,22(5):1402-1417.
Yuan Shuai, Zhao Lixin, Meng Haibo, et al. The main types of biochar and their properties and expectative researches[J]. Journal of Plant and Fertilizer, 2016, 22(5): 1402-1417. (in Chinese with English abstract)
[16] Marou?ek J, Vochozka M, Plachy J, et al. Glory and misery of biochar [J]. Clean Technologies and Environmental Policy, 2017, 19(2): 311-317.
[17] 叢宏斌,趙立欣,孟海波,等. 生物質(zhì)連續(xù)炭化中試系統(tǒng)產(chǎn)物特性及其運行效果評估[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(22):199-205.
Cong Hongbin, Zhao Lixin, Meng Haibo, et al. Product characteristics and operation evaluation of biomass continuous pyrolysis pilot-scale plant [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(22): 199-205. (in Chinese with English abstract)
[18] Blackwell P, Reithmuller G, Collins M. Biochar Application to Soil[M]//Biochar for Environmental Management: Science and Technology. London: Taylor and Francis, 2009.
[19] Saifullah, Dahlawi S, Naeem A, et al. Biochar application for the remediation of salt-affected soils: Challenges and opportunities[J]. Science of the Total Environment, 2018, 625: 320-335.
[20] 王亞靜,王飛,石祖梁,等. 基于農(nóng)業(yè)供給側(cè)結(jié)構(gòu)性改革背景的秸稈資源與利用研究[J]. 中國農(nóng)業(yè)資源與區(qū)劃,2017,38(6):13-20.
Wang Yajing, Wang Fei, Shi Zuliang, et al. Straw resources and its utilization in China from the perspective of agricultural supply-side structural reform[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(6): 13-20. (in Chinese with English abstract)
[21] Harder B. Smoldered-Earth policy: Created by ancient Amazonian natives, fertile, dark soils retain abundant carbon[J]. Science, 2006, 169(9): 133.
[22] Marris E. Putting the carbon back: Black is the new green[J]. Nature, 2006, 442(7103): 624-626.
[23] 校亮,韋婧,袁國棟,等. 田間“限氧噴霧”制備生物炭技術(shù)與炭質(zhì)表征[J]. 西南大學(xué)學(xué)報:自然科學(xué)版,2019,41(6):15-20.
Xiao Liang, Wei Jing, Yuan Guodong, et al. Biochars made in the field using coupled oxygen-limiting and mist-spraying technique and their properties[J]. Journal of Southwest University: Natural Science Edition, 2019, 41(6): 15-20. (in Chinese with English abstract)
[24] 袁國棟,校亮. 一種可移動式田間原位耗氧制備生物炭的設(shè)備與方法:201711396526.6[P]. 2017-12-22.
[25] 袁國棟,校亮,馮麗蓉,等. 一種用于田間制炭尾氣處理的可移動式系統(tǒng)及使用該系統(tǒng)處理制炭尾氣的方法:201811229011.1[P]. 2018-12-04.
[26] 鮑士旦. 土壤農(nóng)化分析[M]. 北京:中國農(nóng)業(yè)出版社,2000:258-260.
[27] 王群. 生物質(zhì)源和制炭溫度對生物炭構(gòu)效的影響[D]. 上海:上海交通大學(xué),2013.
Wang Qun. Influence of Biomass Feedstocks and Production Temperatures on the Structure-Activities of Biochar[D]. Shanghai: Shanghai Jiao Tong University, 2013. (in Chinese with English abstract)
[28] International Humic Substances Society (IHSS). [2019-06-01]. https://www.humicsubstances.org/acidity.html.
[29] 王煌平,張青,章贊德,等. 不同熱解溫度限氧制備的禽畜糞便生物炭養(yǎng)分特征[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(20):233-239.
Wang Huangping, Zhang Qing, Zhang Zande, et al. Nutrient characteristics of biochar prepared from animal manures at different temperature with limited oxygen[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 233-239. (in Chinese with English abstract)
[30] Katyal S, Thambimuthu K, Valix M. Carbonisation of bagasse in a fixed bed reactor: Influence of process variables on char yield and characteristics[J]. Renewable Energy, 2003, 28: 713-725.
[31] Lehmann J, Gaunt J, Rondon M. Biochar sequestration in terrestrial ecosystems: A review[J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11: 403-427.
[32] Yue Y, Lin Q M, Xu Y Q, et al. Slow pyrolysis as a measure for rapidly treating cow manure and the biochar characteristics[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 355-361.
[33] Wei J, Tu C, Yuan G D, et al. Pyrolysis temperature-dependent changes in the characteristics of biochar-borne dissolved organic matter and its copper binding properties[J/OL]. Bulletin of Environmental Contamination and Toxicology, 2018. Doi: 10.1007/s00128-018-2392-7.
[34] 劉朝霞,牛文娟,楚合營,等. 秸稈熱解工藝優(yōu)化與生物炭理化特性分析[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(5):196-203.
Liu Zhaoxia, Niu Wenjuan, Chu Heying, et al. Process optimization for straws pyrolysis and analysis of biochar physiochemical properties[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(5): 196-203. (in Chinese with English abstract)
[35] 中華人民共和國生態(tài)環(huán)境部. 中華人民共和國國家標準:環(huán)境空氣質(zhì)量標準:GB3094-2012[S]. 2012.
Equipment and technology of field preparation of biochars from agricultural and forest residues under aerobic conditions with water-fire coupled method
Xiao Liang1,2, Yuan Guodong3,4※, Bi Dongxue1,2, Wei Jing1, Shen Guanhua3
(1./,264003,; 2.,100049,; 3,,526061,; 4.,, 523169,)
Biochar has been reported for its beneficial effects on soil carbon sequestration, soil fertility improvement, and the immobilization of metal and organic contaminants in soils. Its large-scale agricultural and environmental application, however, is constrained by its highproduction cost in association with expensive equipment and operations and its high transportation cost of moving agricultural and forest residues to biochar production plant and delivering biochar to the end users. Exploring a technology for directed conversion from agricultural and forest residues to biochar in the field for local applications can significantly reduce the production and transportation costs of biochar, thus helping its applications.By mimicking the nature, where only agricultural and forest residues, water and fire were required for biomass carbonization and charcoal formation, a method for biochar production in the field was proposed and described in details. Briefly, this involved an aerobic process of biomass carbonization in a brick-constructed trough, and the formation of biochar by a fire-water coupled method. The carbonization process had the dual features: combustion on the surface of biomass and oxygen-limiting pyrolysis inside of the biomass. Three operational processes of aerobic carbonization and its termination were used to suit the production of biochars from different types of residues: 1) Largebranches were ignited at one direction of the trough for aerobic carbonization, followed by a water-mist spray for immediate termination of the carbonization; 2) Medium-size cotton stalk was ignited at one direction for carbonization and then sprayed by a water column to crosscut formed biochar; 3) Small hollow reed straw was ignited at multiple directions, then water mist was sprayed layer by layer on biomass. The dislocated holes on side walls of brick trough performed as ignition points, channels for water mist and air ventilation channels. The biochars produced in the field by the proposed technology were characterized in this study. The biochars were relatively homogeneous, and the conversion rates from biomass to biochar were about 30%. Carbon content of biochar was 43.49%-60.30%, and nitrogen content was 0.52%-0.86%. The biochar also contained the abundant surface functional groups, with a carboxyl group content of 0.98-1.09 mol/kg and a phenolic hydroxyl group content of 0.53-0.59 mol/kg, and the specific surface area of the biochars varied between 16.0 and 262.2 m2/g, which underpins their use as adsorbents for cations, such as ammonium ions and some heavy metals and other extraneous ions and molecules. The flue gas generated from the burning of the, cotton stalk, and reed straw in the carbonization process was treated by a multiple-step process to reduce particulate matter concentrations. PM 2.5 in the treated flue gas was reduced to 56, 66 and 68g/m3for, cotton stalk, and reed straw, respectively, and the corresponding PM 10 was reduced to 100, 114 and 128g/m3, which meet the national emission standard. The biochar preparation technology provided herein is simple to operate, low in cost, and highly efficient.Based on labor, fuel, and water inputs, the productivity was 1 t/d per person, and the cost was 162.5 yuan/t by farmers. This technology for producing low-cost biochar would make its agricultural and environmental applications feasible.
biomass; wastes; biochar;water-fire coordinated control; aerobic carbonization
2018-12-27
2019-05-28
國家重點研發(fā)計劃項目(2016YFD0200303);山東省重點研發(fā)計劃項目(2016CYJS05A01-1);國家自然科學(xué)基金會青年基金(41501522)及東莞市引進創(chuàng)新科研團隊項目(2014607101003)資助
校 亮,博士生,主要從事土壤改良與修復(fù)材料研究。Email:lxiao@yic.ac.cn
袁國棟,博士,特聘教授。長期從事黏土礦物、有機質(zhì)及污染物研究。Email:yuanguodong@zqu.edu.cn
10.11975/j.issn.1002-6819.2019.11.028
S2
A
1002-6819(2019)-11-0239-06
校 亮,袁國棟,畢冬雪,韋 婧,沈冠華. 農(nóng)林廢棄物田間曝氧水-火聯(lián)動制炭設(shè)備及技術(shù)研究[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(11):239-244. doi:10.11975/j.issn.1002-6819.2019.11.028 http://www.tcsae.org
Xiao Liang, Yuan Guodong, Bi Dongxue, Wei Jing, Shen Guanhua. Equipment and technology of field preparation of biochars from agricultural and forest residues under aerobic conditions with water-fire coupled method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(11): 239-244. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.11.028 http://www.tcsae.org