謝 偉,李 旭,方志超,全 偉,羅海峰,吳明亮
?
水稻秸稈收集與連續(xù)打捆復(fù)式作業(yè)機設(shè)計
謝 偉1,2,3,李 旭1,2,方志超1,全 偉1,2,羅海峰1,2,3,吳明亮1,2,3※
(1. 湖南農(nóng)業(yè)大學(xué)工學(xué)院,長沙 410128;2. 湖南省現(xiàn)代農(nóng)業(yè)裝備工程技術(shù)研究中心,長沙 410128;3. 南方糧油作物協(xié)同創(chuàng)新中心,長沙 410128)
針對單體打捆機撿拾聯(lián)合收獲后田間滯留的水稻“站稈”及“殘茬”收凈率較低,以及圓捆打捆機繞線卸捆時需停機導(dǎo)致作業(yè)效率低等問題,該文將現(xiàn)有水稻聯(lián)合收獲機的脫粒清選和糧箱等裝置與圓捆打捆裝置置換,在輸送槽出口與打捆裝置集料口處設(shè)置集料裝置作為緩存區(qū),采用自動控制技術(shù)控制各功能部件連續(xù)作業(yè),最終研發(fā)出集切割、撿拾、收集、打捆、集捆等功能于一體的田間水稻秸稈收集與連續(xù)打捆復(fù)式作業(yè)機。田間性能試驗表明:在作業(yè)檔的工況條件下,作業(yè)速度越快,成捆效率越高,但圓柱規(guī)范度程度越差;經(jīng)測定,整機以中速檔(1.1 m/s)連續(xù)作業(yè)3.4 h后,其成捆率為98%,生產(chǎn)率為0.4 hm2/h,秸稈收凈率為95%。該研究為機械化收獲后有效提高秸稈利用率以及實現(xiàn)農(nóng)業(yè)生產(chǎn)中農(nóng)機具的一機多用提供了參考。
機械化;設(shè)計;農(nóng)作物;水稻秸稈;打捆;連續(xù)性;集料裝置;控制系統(tǒng)
據(jù)檢測,聯(lián)合收獲機作業(yè)功率中40%以上屬于脫粒清選功耗,為減小其功耗,往往高留茬收割[1],導(dǎo)致田間存留大量的“站稈”及“殘茬”[2],其中“站稈”質(zhì)量占70%左右。據(jù)農(nóng)業(yè)部統(tǒng)計,中國每年的水稻秸稈達到2億多噸,它是最具潛力的生物質(zhì)原料之一,并作為一種可再生資源得到了廣泛和深入地利用[3-8]。由于田間水稻秸稈存在密度比較松散、受作物收獲時間、貯存運輸困難等問題的限制,以致出現(xiàn)大量水稻秸稈被隨意拋棄或就地焚燒等不當(dāng)處理,不僅造成了資源浪費,而且對環(huán)境污染嚴(yán)重[9-13]。燕曉輝等[14]研究發(fā)現(xiàn)秸稈經(jīng)過打捆裝置壓縮成型后平均密度增加4倍左右,存儲空間和運輸成本降低75%左右。因此,有效地將田間“站稈”及“殘茬”原料進行收集處理是提高水稻秸稈綜合利用的關(guān)鍵環(huán)節(jié)。
目前,國內(nèi)外現(xiàn)有的水稻秸稈機械化收集處理方式主要有方捆和圓捆2種打捆收集方式,一般由拖拉機牽引,且僅對散落于田間的“殘茬”[2]實施間斷性的收集打捆作業(yè)[15-17]。為提高工作效率,部分研究人員[1,18]將現(xiàn)有的打捆裝置成品直接掛接或安裝在聯(lián)合收獲機后方進行作業(yè),存在轉(zhuǎn)彎半徑大、機具作業(yè)不靈活等諸多問題。李耀明等[19-22]所研制的自走輪式聯(lián)合收獲打捆一體機突破了聯(lián)合收獲機與打捆裝置的對接安裝,實現(xiàn)了稻麥聯(lián)合收獲與秸稈打捆多項功能一次完成,相比牽引式撿拾打捆機具有更小的作業(yè)半徑,節(jié)省二次下地作業(yè)時間,由于考慮到收獲時脫粒清選效率及整機功耗的影響,大都采用撩穗收割,因此,收獲后的田間“站稈”留茬會較高。
為保障田間秸稈收凈率,本文吸收現(xiàn)有水稻聯(lián)合收割機切割收集田間“站稈”和牽引式撿拾打捆機撿拾田間“殘茬”的優(yōu)勢,實現(xiàn)一次收獲田間水稻秸稈留存于田間的“站稈”及“殘茬”的目標(biāo),以拆卸脫粒清選及糧箱等裝置的聯(lián)合收獲機作為履帶自走式收集平臺,選用YHL850型圓捆打捆裝置作為打捆部件,并針對圓捆打捆裝置在卸捆時不能集料而導(dǎo)致工作不連續(xù)的問題,創(chuàng)造性地設(shè)計了集料裝置置于聯(lián)合收獲機輸送槽出口與打捆裝置集料口間,采用機電一體化技術(shù),設(shè)計一套裝卸捆自動控制系統(tǒng),優(yōu)化配置各功能部件的結(jié)構(gòu)和運動參數(shù),有效的提高了關(guān)鍵部件的工作效率。最終研發(fā)出集切割、撿拾、收集、打捆、集捆等功能于一體的田間水稻秸稈收集與連續(xù)打捆復(fù)式作業(yè)機。
水稻秸稈收集與連續(xù)打捆復(fù)式作業(yè)機結(jié)構(gòu)如圖1所示,主要由履帶自走式收集平臺、YHL850型圓捆打捆裝置、集料裝置、集捆平臺和控制系統(tǒng)等組成。其中履帶自走式收集平臺是由4LZ-3.0t型水稻聯(lián)合收獲機卸除其脫粒清選及糧箱等裝置后的剩余部件,主要由輸送槽、切割器、撥禾輪、割臺攪龍、駕駛室、行走底盤等組成;集料裝置設(shè)置于輸送槽正后方、原脫粒裝置所處位置,作為由輸送槽拋送過來的秸稈的緩存區(qū)和喂送至打捆裝置的中轉(zhuǎn)區(qū);置于駕駛室正后方的YHL850型圓捆打捆裝置集料口彈齒式撿拾器旋轉(zhuǎn)軸與集料裝置輸送攪龍軸平行安裝,即保證了集料箱出口與打捆裝置集料口對接,又實現(xiàn)了整機重心的合理配置,提高了整機的通過性;同時集捆平臺采用環(huán)置框架廂式結(jié)構(gòu),并向整機行進方向左側(cè)傾斜20°掛接于整機正后方,以利于后期有效的集捆運輸。
圖1 水稻秸稈收集與連續(xù)打捆復(fù)式作業(yè)機結(jié)構(gòu)示意圖
設(shè)計收割后的“站稈”留茬為5 cm,水稻經(jīng)機械化收獲后的田間“站稈”高度比所收割的水稻矮10~15 cm左右。為保證收割的“站稈”倒向割臺時順利被割臺攪龍輸送至輸送槽,將切割器與割臺攪龍間距離縮短10 cm,調(diào)整撥禾輪撥齒最低點距割刀垂直距離為5 cm。整機主要技術(shù)參數(shù)如表1所示。
表1 主要技術(shù)參數(shù)
整機工作路線如圖2所示,作業(yè)時,機具前端切割器將田間“站稈”割倒,并在撥禾輪的作用下將割倒的“站稈”及田間的“殘茬”在割臺配合下聚攏撥向割臺攪龍,通過割臺攪龍集中后撥向輸送槽,經(jīng)輸送槽運送至集料箱中,集料箱底部的輸送攪龍將秸稈沿集料箱出口輸送至打捆裝置彈齒式撿拾器入口,秸稈由彈齒式撿拾器扒送至打捆裝置成捆室內(nèi)實現(xiàn)打捆作業(yè)。當(dāng)成捆室在完成一個秸稈捆的集料打捆進入繞線卸捆作業(yè)時,鉸接于集料箱底部側(cè)板上的梳刷壓桿翻轉(zhuǎn)提升,阻擋集料箱中的秸稈落入其下方的輸送攪龍?zhí)帲钩衫κ彝V辜?,而由輸送槽連續(xù)不斷輸送過來的秸稈則集中緩存于集料箱中,在成捆室完成繞線卸捆作業(yè)后,梳刷壓桿回轉(zhuǎn)至初始位置,集料箱中秸稈靠自身重力流入輸送攪龍并被撥向彈齒式撿拾器入口,成捆室重新開始集料、打捆、繞線作業(yè)。同時已完成的秸稈捆卸捆至集捆平臺處被收集暫存,完成一個秸稈捆的收集、打捆和集捆作業(yè),整個工作程序依次循環(huán)連續(xù)作業(yè)。
圖2 整機工作路線
據(jù)水稻秸稈收集與連續(xù)打捆的作業(yè)功能,結(jié)合聯(lián)合收獲機現(xiàn)有動力傳動形式[23-24],在保證其履帶收集平臺及YHL850型圓捆打捆裝置正常工作效率的同時,確定其傳動系統(tǒng)的總體方案如圖3所示。
圖3 整機動力傳動路線
發(fā)動機輸出動力通過帶傳動將動力分配至行走底盤和過渡主軸,過渡主軸將動力分別傳遞給集料裝置動力軸、打捆裝置動力軸和輸送槽驅(qū)動軸。輸送槽驅(qū)動軸經(jīng)輸送槽中介軸將動力傳遞給割臺攪龍軸、撥禾輪軸和往復(fù)式切割器,設(shè)計得集料裝置輸送攪龍軸轉(zhuǎn)速為100 r/min,打捆裝置彈齒式撿拾器轉(zhuǎn)軸轉(zhuǎn)速為120 r/min,打捆裝置工作輥轉(zhuǎn)速為200 r/min。
集料裝置是將輸送槽與打捆裝置工作銜接起來,是實現(xiàn)整機連續(xù)性作業(yè)的關(guān)鍵部件,其結(jié)構(gòu)如圖4所示,主要由集料箱、置于集料箱底部出口的輸送攪龍、布置于輸送攪龍正上方的梳刷壓桿及控制梳刷壓桿起閉的控制拉桿等組成。其中輸送攪龍由輸送攪龍軸、攪龍滾筒以及螺旋設(shè)置于攪龍滾筒上的伸縮扒齒等組成;梳刷壓桿主要由轉(zhuǎn)動桿和梳刷齒等組成,轉(zhuǎn)動桿鉸接于集料箱箱體內(nèi)壁上,并繞轉(zhuǎn)動桿軸線轉(zhuǎn)動,梳刷齒尾部與攪龍滾筒最小間距設(shè)計為20 mm,且相對伸縮扒齒錯開安裝在轉(zhuǎn)動桿上,避免產(chǎn)生干涉。集料箱出口與入口正相切,安裝時集料箱入口與輸送槽相連,源源不斷的接收其水稻秸稈,集料箱出口與置于駕駛室正后方的打捆裝置集料口對接且輸送攪龍軸軸線與其彈齒式撿拾器旋轉(zhuǎn)軸軸線平行,保證水稻秸稈的順利輸送。
圖4 集料裝置結(jié)構(gòu)圖
集料裝置作為由輸送槽拋送過來的秸稈的緩存區(qū)和將秸稈喂送至打捆裝置的中轉(zhuǎn)區(qū),在打捆裝置開始進入繞線打結(jié)及卸捆作業(yè)時,在控制系統(tǒng)的控制下將控制拉桿拉動梳刷壓桿繞其轉(zhuǎn)動桿轉(zhuǎn)動,使其翻轉(zhuǎn)提升,梳刷齒處于水平狀態(tài),阻擋秸稈繼續(xù)被輸送攪龍扒送,集料箱開始緩存由輸送槽拋送過來的秸稈,如圖5a所示,梳刷壓桿處于關(guān)閉狀態(tài)。
當(dāng)打捆裝置繞線卸捆后,集料離合器自動斷開,此時梳刷壓桿會轉(zhuǎn)至初始位置,使其處于張開狀態(tài),如圖5b所示。此時,由輸送槽經(jīng)集料箱入口拋送至集料箱底部的秸稈靠自重流入輸送攪龍?zhí)?,同時輸送攪龍在逆時針旋轉(zhuǎn)作用下沿集料箱側(cè)壁輸送至集料箱出口,并被扒送至彈齒式撿拾器入口處,為避免秸稈輸送不均造成堵塞,彈齒式撿拾器經(jīng)順時針轉(zhuǎn)動并在其擋桿架的配合下將秸稈平穩(wěn)向后扒送至成捆室內(nèi)進行作業(yè)。
圖5 梳刷壓桿運動狀態(tài)示意圖
田間測試得YHL850型圓捆打捆裝置對每捆秸稈平均集料打捆時間1為21s,繞線卸捆平均時間2為10 s。打捆裝置每次繞線、卸捆前,輸送攪龍不斷向撿拾器處扒送秸稈,成捆室收集的秸稈量與集料箱收集秸稈量相等,且集料箱只有在成捆室繞線卸捆的時段內(nèi)暫存秸稈。查閱相關(guān)文獻[25-26],取水稻干物質(zhì)秸稈質(zhì)量與水稻籽粒的質(zhì)量之比約為0.9,水稻單產(chǎn)約為8 000 kg/hm2,取水稻收獲時秸稈含水率為50%,則田間每平方米的水稻秸稈質(zhì)量為1.44 kg/m2。
為使整機作業(yè)時秸稈收集、打捆過程連續(xù)進行,單位時間內(nèi)各關(guān)鍵位置秸稈流動質(zhì)量應(yīng)該滿足以下關(guān)系式[29]
(1)
式中0為單位時間割臺收集秸稈質(zhì)量最大理論值,kg/s;1為輸送槽單位時間輸送秸稈質(zhì)量理論值,kg/s;2為集料箱內(nèi)輸送攪龍單位時間扒送出秸稈質(zhì)量理論值,kg/s;3為彈齒式撿拾器單位時間喂入成捆室內(nèi)的秸稈質(zhì)量理論值,kg/s。
式中0為割臺作業(yè)幅寬,取2.1 m;為每平方米的水稻秸稈質(zhì)量,取1.44 kg/m2;0為機器作業(yè)時最大前進行駛速度,取1.7 m/s??傻脝挝粫r間割臺所收集秸稈質(zhì)量最大理論值0為5.14 kg/s。
(3)
式中1為秸稈在輸送槽輸送過程中被壓縮的平均密度,取75 kg/m3;1為刮板頂端與輸送槽殼體圍成的截面面積,m2;1為輸送刮板的線速度,m/s;1為輸送槽寬度,取0.54 m;1為輸送刮板與輸送槽殼體之間的間隙,取0.045 m;1為輸送槽主鏈輪直徑,取0.145 m;1為輸送槽主動輪轉(zhuǎn)速,取7.5 r/s??傻幂斔筒蹎挝粫r間輸送秸稈質(zhì)量理論值1為6.22 kg/s。
(4)
式中2為秸稈在伸縮扒齒壓縮下的平均密度,取150 kg/m3;2為輸送攪龍扒齒最低端與集料箱箱體截面面積,m2;2為伸縮扒齒扒送線速度,m/s;2為伸縮扒齒與集料箱箱底之間的間隙高度,取0.05 m;2為伸縮扒齒有效扒送寬度,取0.7 m;2為攪龍滾筒直徑,取0.3 m;2為輸送攪龍軸轉(zhuǎn)速,設(shè)計值為1.67 r/s。得集料箱內(nèi)輸送攪龍單位時間扒送出秸稈質(zhì)量理論值2為8.26 kg/s。
(5)
式中3為撿拾器扒送口截面面積,m2;3為水稻秸稈在彈齒式撿拾器撿拾齒壓縮下的平均密度,取120 kg/m3;3為彈齒式撿拾器與其擋桿架之間的間隙高度,取0.04 m;3為彈齒式撿拾器撿拾有效扒送寬度,取0.7 m;3為撿拾器撿拾體直徑,取0.4 m;3為撿拾轉(zhuǎn)軸轉(zhuǎn)速,設(shè)計值為2 r/s。可得彈齒式撿拾器單位時間喂入成捆室內(nèi)的秸稈質(zhì)量理論值3為8.44 kg/s。
為保障集料箱內(nèi)秸稈能及時輸送至成捆室,在一個秸稈集料、打捆、繞線、卸捆周期內(nèi),使集料箱內(nèi)存儲的秸稈質(zhì)量2能夠及時全部喂入成捆室內(nèi),即
(6)
式中0為割臺在一個秸稈捆周期內(nèi)能收集的秸稈最大總質(zhì)量,kg;3為成捆室集料打捆時間內(nèi)能收集的秸稈最大總質(zhì)量,kg。
(7)
(8)
式中1為完成一個水稻秸稈捆平均集料打捆時間,s;2為一個水稻秸稈平均捆繞線卸捆時間,s。可得0= 159.34 kg、3=177.24 kg,即3≥0,可滿足式(6)。綜上計算結(jié)果表明,集料箱內(nèi)不會積存水稻秸稈,且能實現(xiàn)不停機連續(xù)作業(yè)。
為提高機具作業(yè)效率,簡化機手操作流程,監(jiān)控并保障整個裝卸捆過程自動運行,設(shè)計了一套裝卸捆自動控制系統(tǒng)。該系統(tǒng)結(jié)構(gòu)框圖如圖6所示,主要由控制器、控制信息輸入單元和執(zhí)行機構(gòu)驅(qū)動單元組成。其中控制器為信捷PLC,其型號為XC1-24R-C;控制信息輸入單元用于控制系統(tǒng)啟停和接受各行程開關(guān)信號,同時通過控制器結(jié)合控制信息啟動執(zhí)行機構(gòu)相對應(yīng)的電磁閥工作。
圖6 控制系統(tǒng)結(jié)構(gòu)框圖
控制系統(tǒng)程序流程圖如圖7所示,系統(tǒng)啟動后,控制系統(tǒng)驅(qū)動集料油缸電磁閥處于斷開狀態(tài)且梳刷壓桿張開,水稻秸稈被源源不斷的集料、打捆,當(dāng)成捆室內(nèi)的秸稈集滿后,控制系統(tǒng)驅(qū)動集料油缸電磁閥閉合,觸發(fā)控制拉桿將梳刷壓桿翻轉(zhuǎn)提升且處于關(guān)閉狀態(tài),成捆室停止集料,待繞線作業(yè)完成后發(fā)出報警信息,控制系統(tǒng)驅(qū)動成捆室油缸電磁閥閉合且成捆室倉門被打開,已打捆好的秸稈捆靠自重卸至集捆平臺,此時成捆室油缸電磁閥斷開且成捆室倉門被關(guān)閉后,梳刷壓桿在集料油缸電磁閥的控制下處于張開狀態(tài),打捆裝置開始進入下一輪的集料、打捆、繞線、卸捆作業(yè)。同時控制系統(tǒng)驅(qū)動集捆油缸電磁閥觸發(fā)集捆推桿將秸稈捆推至集捆平臺底部完成集捆,之后集捆推桿在集捆電磁閥驅(qū)動下自動收回,整個工作程序依次循環(huán)完成。
圖7 控制系統(tǒng)程序流程
為檢測水稻秸稈收集與連續(xù)打捆復(fù)式作業(yè)機的工作性能,對整機進行田間試驗。依據(jù)《圓草捆打捆機試驗方法GB/T 14290-2008》、《NY/T 498-2002水稻聯(lián)合收割機作業(yè)質(zhì)量》相關(guān)標(biāo)準(zhǔn)[27-28],樣機于2017年10月29日在湖南省汨羅新市鎮(zhèn)紅花村進行試驗,試驗田面積3.33 hm2,地表平整,試驗材料選用晚稻收獲后的田間水稻秸稈,“站稈”比較齊整、均勻、連續(xù),“殘茬”無腐爛現(xiàn)象,試驗田情況如圖8a所示。試驗前,在所測試驗田隨機取5個行程,每個行程隨機取5個區(qū)域,每個區(qū)域面積為2.1 m×0.5 m,測量“站稈”平均高度為35.86 cm,“站稈”與“殘茬”比重為7:3,“站稈”含水率為31.7%,“殘茬”含水率為58.4%,每平方米秸稈為2.03 kg/m2。
試驗時,選取慢速檔0.8 m/s、中速檔1.1 m/s和高速檔1.7 m/s 3種檔位不同作業(yè)速度下分別在面積為0.07 hm2的水稻秸稈田進行連續(xù)打捆作業(yè)測試,試驗過程中整機運轉(zhuǎn)平穩(wěn),工作可靠,田間留茬高度整齊。結(jié)果表明,采用3種檔位作業(yè)速度均能實現(xiàn)收集、連續(xù)打捆作業(yè)功能,且作業(yè)速度越快,成捆效率越高,無散捆出現(xiàn),其中慢速檔成捆18捆耗時17 min、中速檔成捆19捆耗時14 min、高速檔連續(xù)性成捆21捆耗時12 min,草捆如圖8b所示。在3種檔位作業(yè)速度下所成捆的草捆中隨機分別取5個草捆樣本,測量不同檔位水稻秸稈捆的最大直徑max和最小直徑min,計算其差值,試驗結(jié)果如表2所示。
圖8 試驗田間情況及水稻秸稈捆
表2 試驗結(jié)果
由表2可知,該機作業(yè)速度越快,圓柱規(guī)范度程度越差。隨后機具以中速檔1.1 m/s連續(xù)作業(yè)3.4 h作業(yè)面積為1.36 hm2,累計成捆347個,其中散捆6個,即[27,29]
式中為成捆率,%;為工作時間內(nèi)累計打捆數(shù),捆;為工作時間內(nèi)累計散捆數(shù),捆;可得成捆率為98%。
式中為機具作業(yè)生產(chǎn)率,%;為機具田間作業(yè)面積,hm2;機具工作時間,;可得出生產(chǎn)率為0.4 hm2/h。
同時,按試驗前測量田間“站稈”平均高度的測量方法,測量機具作業(yè)后選取5個行程各區(qū)域面積留茬“站稈”高度和質(zhì)量,計算得出作業(yè)后田間留茬“站稈”平均高度為49.3 mm,收凈率為95%且高于國家標(biāo)準(zhǔn)[27-28]。目前市面上所出現(xiàn)的自走式稻麥聯(lián)合收獲打捆復(fù)式作業(yè)機與該文設(shè)計的水稻秸稈收集與連續(xù)打捆復(fù)式作業(yè)機相比,雖然避免了機具二次進田作業(yè),提高了作業(yè)效率,但機具作業(yè)后出現(xiàn)高留茬“站稈”,以及秸稈收凈率和籽粒損失率居高不下[1]。李湘萍[1]研制的4LSK-50型麥秸聯(lián)合收捆機作業(yè)后的田間留茬高度最高達70 mm,生產(chǎn)率為0.45 hm2/h;李耀明等[19]研制的4L-4.0型稻麥聯(lián)合打捆復(fù)式機作業(yè)后的田間留茬平均高度為144 mm,生產(chǎn)率為0.52~1.0 hm2/h;與之相比本文設(shè)計的水稻秸稈收集與連續(xù)打捆復(fù)式作業(yè)機的留茬高度優(yōu)勢明顯,盡管該機單項打捆作業(yè)效率略低于上述兩款機具,但其綜合效率得到提高。同時該機一機多用降低了成本,并通過履帶式行走方式增強了機具田間作業(yè)的靈活性,拓寬了機具的適應(yīng)性。
1)采用機電一體化技術(shù),設(shè)計了集“站稈”切割、“殘茬”撿拾、秸稈收集、打捆、集捆等功能于一體的田間水稻秸稈收集與打捆復(fù)式作業(yè)機,實現(xiàn)了水稻收獲后存留于田間的稻秸稈連續(xù)性收集打捆作業(yè)要求。
2)對水稻秸稈收集與連續(xù)打捆復(fù)式作業(yè)機進行田間試驗,試驗表明該機工作性能與機具作業(yè)速度有關(guān),其作業(yè)速度越快,成捆效率越高,但草捆圓柱規(guī)范度程度越差。采用中速檔作業(yè)時,其生產(chǎn)率為0.4 hm2/h、成捆率可達98%、收凈率95%,各項技術(shù)指標(biāo)均達到相關(guān)作業(yè)質(zhì)量標(biāo)準(zhǔn)和農(nóng)藝作業(yè)要求。
[1] 李湘萍. 4LSK-50 型麥秸聯(lián)合收捆機的研究[J]. 農(nóng)業(yè)工程學(xué)報,2003,19(1):107-109.
Li Xiangping. 4LSK-50 wheat straws combine baler[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(1): 107-109. (in Chinese with English Abstract)
[2] 邱進,吳明亮,官春云,等. 動定刀同軸水稻秸稈切碎還田裝置結(jié)構(gòu)設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(10):11-18.
Qiu Jin, Wu Mingliang, Guan Chunyun, et al. Design and experiment of chopping device with dynamic fixed knife coaxial for rice straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 11-18. (in Chinese with English abstract)
[3] 韓永俊,陳海濤,劉麗雪. 水稻秸稈纖維地膜制造工藝參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2011,27(3):242-247.
Han Yongjun, Chen Haitao, Liu Lixue, et al. Optimization of technical parameters for making mulch from rice straw fiber[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(3): 242-247. (in Chinese with English abstract)
[4] 劉軍軍,何春霞. 水稻秸稈和淀粉基全降解裝飾板的制備[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(6):283-288.
Liu Junjun, He Chunxia. Preparation of rice straw and starch-based biodegradable decorative materials[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(6): 283-288. (in Chinese with English abstract)
[5] 高利偉,馬林,張衛(wèi)峰,等. 中國作物秸稈養(yǎng)分資源數(shù)量估算及其利用狀況[J]. 農(nóng)業(yè)工程學(xué)報,2009,25(7):173-179.
Gao Liwei, Ma Lin, Zhang Weifeng, et al. Estimation of nutrient resource quantity of crop straw and its utilization situation in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(7): 173-179. (in Chinese with English abstract)
[6] 雷軍樂,王德福,張全超,等. 完整稻稈卷壓過程應(yīng)力松弛試驗[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(8):76-83.
Lei Junle, Wang Defu, Zhang Quanchao, et al. Experiment on stress relaxation characteristics of intact rice straw during rotary compression[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(8): 76-83. (in Chinese with English abstract)
[7] 崔思遠,朱新開,張莀茜,等. 水稻秸稈還田年限對稻麥輪作田土壤碳氮固存的影響[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(7):115-121.
Cui Siyuan, Zhu Xinkai, Zhang Chenxi, et al. Effects of years of rice straw retention on soil carbon and nitrogen sequestration in rice-wheat system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(7): 115-121. (in Chinese with English abstract)
[8] 朱琳,曾椿淋,高鳳,等. 水稻秸稈堆肥發(fā)酵粗制肥料中微生物多樣性研究[J]. 農(nóng)業(yè)機械學(xué)報,2018,49(7):228-234.
Zhu Lin, Zeng Chunlin, Gao Feng, et al. Characteristic analysis of microbial diversity in crud fertilizer from compost of rice straw[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7): 228-234. (in Chinese with English abstract)
[9] 雷軍樂,王德福,李東紅,等. 鋼輥式圓捆機旋轉(zhuǎn)草芯形成影響因素分析與優(yōu)化[J]. 農(nóng)業(yè)機械學(xué)報,2015,46(12):18-25.
Lei Junle, Wang Defu, Li Donghong, et al. Influence factors analysis and optimization of forming rotary straw core by steel-roll round baler[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(12): 18-25. (in Chinese with English abstract)
[10] Menardo S, Cacciatorea V, Balsari P. Batch and continuous biogas production arising from feed varying in rice straw volumes following pre-treatment with extrusion[J]. Bioresource Technology, 2015, 180: 154-161.
[11] Wendy Mussoline, Giovanni Esposito, Piet Lens, et al. Enhanced methane production from rice straw co-digested with anaerobic sludge from pulp and paper mill treatment process[J]. Bioresource Technology, 2013, 148: 35-143.
[12] 劉曉永,李書田. 中國秸稈養(yǎng)分資源及還田的時空分布特征[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(21):1-19.
Liu Xiaoyong, Li Shutian. Temporal and spatial distribution haracteristcs of crop straw nutrient resources and returning to farmland in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(21): 1-19. (in Chinese with English abstract)
[13] 王德福,張全超,楊星,等. 秸稈圓捆機捆繩機構(gòu)的參數(shù)優(yōu)化與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(14):55-61.
Wang Defu, Zhang Quanchao, Yang Xing, et al. Parameter optimization and experiment of rope-winding mechanism of straw round balers[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(14): 55-61. (in Chinese with English abstract)
[14] 燕曉輝,李數(shù)君,楊軍太,等. 大中型方捆撿拾打捆機整機原理研究[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(4):95-98.
Yan Xiaohui, Li Shujun, Yang Juntai, et al. Principle study of large and middle rectangular baler[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(4): 95-98. (in Chinese with English abstract)
[15] 王德福,張全國. 青貯稻稈圓捆打捆機的改進研究[J]. 農(nóng)業(yè)工程學(xué)報,2007,23(11):168-171.
Wang Defu, Zhang Quanguo. Improvement of round baler for rice straw ensiling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(11): 168-171. (in Chinese with English abstract)
[16] 王德福,蔣亦元,王吉權(quán). 鋼輥式圓捆打捆機結(jié)構(gòu)改進與試驗[J]. 農(nóng)業(yè)機械學(xué)報,2010,41(12):84-88.
Wang Defu, Jiang Yiyuan, Wang Jiquan. Structure- improving and experiment of steel-roll round baler[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(12): 84-88. (in Chinese with English abstract)
[17] 王春光,敖恩查,邢冀輝,等. 鋼輥外卷式圓捆打捆機設(shè)計與試驗[J]. 農(nóng)業(yè)機械學(xué)報,2010,41(增刊):103-106.
Wang Chunguang, Ao Encha, Xing Jihui, et al. Design and experimenton round balerwith revolute steel roller[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(Supp.): 103-106. (in Chinese with English abstract)
[18] 張將,刁培松,刁懷龍,等. 自走式青貯打捆纏膜一體機的設(shè)計與試驗[J]. 農(nóng)機化研究,2017,12(12):73-77.
Zhang Jiang, Diao Peisong, Diao Huailong, et al. Design and experiment on self propelled silage baling tangle film machine[J]. Gricultural Mechanization Research, 2017, 12(12): 73-77. (in Chinese with English Abstract)
[19] 李耀明,成鋮,徐立章,等. 4L-4.0型稻麥聯(lián)合收獲打捆復(fù)式作業(yè)機設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(23):29-35.
Li Yaoming, Cheng Cheng, Xu Lizhang. Design and experiment of baler for 4L-4.0 combine harvester of rice and wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(23): 29-35. (in Chinese with English abstract)
[20] 崔中凱,張華,周進,等. 4YZQK-4自走式玉米穗莖兼收秸稈打捆一體機設(shè)計[J]. 農(nóng)機化研究,2018,40(2):132-135.
Cui Zhongkai, Zhang Hua, Zhou Jin, et al. Design and research on 4YZQ-4 self-propelled corn ear harvesting and stalk bundling integrated machine[J]. Journal of Agricultural Mechanization Research,2018,40(2) :132-135. (in Chinese with English Abstract)
[21] 戰(zhàn)長江. 自走式秸稈收獲打捆機的研制[J]. 新疆農(nóng)機化,2013,9(4):9-10.
Zhan Changjiang. Development of self-propelled straw harvest strapping machine[J]. Xinjiang Agricultural Mechanization,2013,9(4):9-10. (in Chinese with English Abstract)
[22] 曲洪潮,包帥,衣淑娟,等.水稻收獲打捆一體機打捆裝置仿真分析[J]. 農(nóng)機化研究,2017,39(11):59-63.
Qu Hongchao, Bao Shuai, Yi Shujuan, et al. Simulation analysis of rice harvest tying unity machine’tying device[J]. Journal of Agricultural Mechanization Research,2017,39(11):59-63. (in Chinese with English Abstract)
[23] 西北工業(yè)大學(xué)機械原理及機械零件教研室. 機械設(shè)計[M]. 北京:高等教育出版社,2006.
[24] 中國農(nóng)業(yè)機械化科學(xué)研究院. 農(nóng)業(yè)機械設(shè)計手冊(下冊)[K]. 北京:中國農(nóng)業(yè)科學(xué)技術(shù)出版社,2007.
[25] 韋茂貴,王曉玉,謝光輝. 中國各省大田作物田間秸稈資源量及其時間分布[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報,2012,17(6):32-44.
Wei Maogui, Wang Xiaoyu, Xie Guanghui. Field residue of field crops and its temporal distribution among thirty-one provinces of China[J]. Journal of China Agricultural University, 2012, 17(6): 32-44. (in Chinese with English abstract)
[26] 畢于運,高春雨,王亞靜,等. 中國秸稈資源數(shù)量估算[J]. 農(nóng)業(yè)工程學(xué)報,2009,25(12):211-217.
Bi Yuyun, Gao Chunyu, Wang Yajing, et al. Estimation of straw resources in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(12): 211-217. (in Chinese with English abstract)
[27] 中華人民共和國國家質(zhì)量監(jiān)督檢驗檢疫總局,中國國家標(biāo)準(zhǔn)化管理委員會. 圓草捆打捆機試驗方法:GB/T14290-2008[S]. 北京:中國標(biāo)準(zhǔn)出版社,2008.
[28] 中華人民共和國農(nóng)業(yè)部. 水稻聯(lián)合收割機作業(yè)質(zhì)量:NY/T498-2002[S]. 北京:中國標(biāo)準(zhǔn)出版社,2002.
[29] 陳魁. 試驗分析與設(shè)計[M]. 北京:清華大學(xué)出版社,1996.
Design of compound machine for rice straw collecting and continuous baling
Xie Wei1,2,3, Li Xu1,2, Fang Zhichao1, Quan Wei1,2, Luo Haifeng1,2,3, Wu Mingliang1,2,3※
(1.,,410128,; 2.,410128,; 3.,410128,)
A large number of rice “standing-stalk” and “stubble” will remain in the paddy field after the rice is harvested by a combined harvester. At present, the harvest rate of rice “standing-stalk” and “stubble” remained in the paddy field after joint harvest using single baling machine is low. The single baling machine is usually pulled by a tractor which causes intermittent collection and baling of stubble in paddy field. The working efficiency of traditional baling machine is low due to the halt of the baling machine when unloading the baling wire. In this paper, threshing and cleaning device and the grain tank in existing rice and wheat combine harvester were replaced with round baling device. The rice and wheat combine harvester, in which threshing and cleaning device and grain tank were disassembled, was used as the self-propelled tracked collection platform. A design idea of setting collecting device at the exit of conveying groove and the feed port of baling device as cache area and using round baling device as the main working part was put forward to solve the problem of discontinuity caused by the round baling device failing to feed during the unloading of bales. The collecting device was set at the position of the original threshing device directly behind the conveying groove, straw thrown from the conveyor groove was fed to the baling machine's transfer area after passing through the cache area, and the bottom part of the collecting box of the material collecting device was successively arranged with the brush rod and the conveying auger. The round baling device was set directly behind the cab, and the rotary shaft of the spring-tooth picking machine located in the feeding port was installed in parallel with the conveying auger shaft, which not only ensured the connection between the outlet of the collecting box and the feeding port of the round baling machine, but also realized the reasonable configuration of the center of gravity of the whole machine and improved the passing ability of the whole machine. In this way, a rice straw continuous collection and baling machine used in paddy field and with functions of harvest, pickup, collect, bale and bundle was developed, which realized the multi-use of the combined harvester and reduced the cost. The whole machine adopted mechatronics technology. An automatic control system of loading and unloading of baling was designed. The six-way commutator switch was adopted as the sensing and detection component, which simplified the operating process of the manipulator, ensured the automatic operation and monitoring of the whole loading and unloading process, and effectively improved the working efficiency of key components. The structure and motion parameters of each functional component were optimized and the whole machine was finally coordinated and working continuously and efficiently. The continuous collection and baling requirements of rice straw in paddy field including "standing-stalk" cutting, stubble picking, collecting, baling and binding can be completed at one time. The field performance test showed that the performance of the whole machine was safe and reliable. Under the working conditions on working gear, the faster the operation speed, the shorter the time of collecting a straw bale, the shorter the compression time of rice straw bale in the bundling room, the higher the efficiency of bundling, but the worse the specification degree of cylinder. After a continuous operation of 3.4 h at medium speed, the binding rate was 98%, the operating efficiency was 0.4 hm2/h, and the harvest rate of straw was 95%. All other technical indicators met the relevant standards and requirements of agricultural work were met. This study provides a reference for improving the utilization rate of straw after mechanized harvest and realizing the multi-use of one agricultural machine in agricultural production.
mechanization; design; crops; rice straw; baler; continuity; collecting device; control system
10.11975/j.issn.1002-6819.2019.11.003
S817.11+5
A
1002-6819(2019)-11-0019-07
2018-06-21
2019-05-30
國家重點研發(fā)專項(2017YFD0301500);湖南省科學(xué)技術(shù)廳重點項目(2017NK2131);湖南省科學(xué)技術(shù)廳重點項目(2016NK2120)。
謝 偉,實驗師,主要從事農(nóng)業(yè)機械設(shè)計與創(chuàng)新研究。Email:444012168@qq.com
吳明亮,教授,博士生導(dǎo)師,主要從事農(nóng)業(yè)機械創(chuàng)新設(shè)計與試驗研究。Email:mlwu@hunau.edu.cn.
中國農(nóng)業(yè)工程學(xué)會會員:吳明亮(E041200186S)
謝 偉,李 旭,方志超,全 偉,羅海峰,吳明亮. 水稻秸稈收集與連續(xù)打捆復(fù)式作業(yè)機設(shè)計[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(11):19-25. doi:10.11975/j.issn.1002-6819.2019.11.003 http://www.tcsae.org
Xie Wei, Li Xu, Fang Zhichao, Quan Wei, Luo Haifeng, Wu Mingliang. Design of compound machine for rice straw collecting and continuous baling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(11): 19-25. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.11.003 http://www.tcsae.org