姜 宇,王 壯
(南京郵電大學,江蘇 南京 210000)
載波頻率偏差估計與補償是數字通信接收機中的基本問題。由于發(fā)送端和接收端振蕩器頻率不一致產生載波頻率偏移(Carrier Frequency Offset,CFO)。CFO是基于數據源與角度隨時間成比例的向量相乘得到的,所以CFO對符號解調的影響是累積的,且隨數據長度的增加影響更大。CFO除了影響數據的解調,它還影響數據同步,因為前導符號的相關性質在CFO存在時不再成立。估計CFO的典型過程是使用導頻來識別接收數據的時段?,F有的文獻中已經解決了CFO估計與補償問題,尤其是對于正交頻分復用(Orthogonal Frequency Division Multiplexing,OFDM)和單載波頻分多址(Single-carrier Frequency-Division Multiple Access,CSFDMA)的多載波通信系統(tǒng)。例如,文獻[1]提出了一種基于OFDM系統(tǒng)的CFO估計與校正方法。更多關于CFO估計方法可以參考文獻[2-6]及其中的參考文獻。但是,這些方法的一個主要限制是CFO估計范圍受前導周期限制。前導周期越長,CFO估計最大值就越小。在文獻[7]中,提出了一種用于Hiperlan/2WLAN的CFO估計與補償的新算法,其中CFO估計范圍擴展到傳統(tǒng)解決方案的四倍。但是,它沒能解決頻偏更大時的CFO估計問題。
本文提出了一種基于定時同步的數字通信接收機中的CFO估計算法。該算法利用任何接收機在采樣頻率固定時均可獲得定時信息的性質,與已存在的算法相比有三個主要優(yōu)點。首先,該算法不是基于前導符號固定的,因此可以不局限于前導符號的性質進行使用。其次,算法消除了受前導周期影響的CFO估計最大值的限制,這樣得出的CFO估計范圍遠高于固定前導周期的CFO估計范圍。最后,該算法展示了有CFO估計過程的定時同步。
本文的其余部分安排如下。第二部分介紹了載波頻率偏移的帶來的問題。第三部分介紹了定時同步的載波頻偏估計算法。仿真結果在第四部分,最后是結論。本文還包含一份附錄,詳細說明了該文件中提出的一些想法。
本節(jié)介紹了載波頻偏估計的問題描述。假設模擬信號方便用于數學描述,使用離散時間來呈現最終算法。讓頻率為fc的載波信號通過信道傳輸基帶信號x(t),傳輸信號可以表示為:
假設不存在實際的信道影響和噪聲,則可以通過振蕩頻率f′c對接收信號進行下變頻:
其中,HT{x′(t)}表示信號 x′(t)的希爾伯特變換。f′c 是本地振蕩頻率,可以表示為 f′c=fc+δf,δf是載波頻偏。假設基帶信號是窄帶信號,則(2)也可寫成:
在一個典型的數字通信接收機中,載波頻率偏移δf是利用接收信號固定時的前導周期得到的。如果前導周期記為T,我們可以得出:
由于前導符號是周期T固定的,我們可以表示x(t)=x(t-T)。因此,可以有:
∠{y(t)y*(t-T)}的范圍是 -π 到 +π,因此載波頻偏可以由前導周期估計為[-1/2T,1/2T],該范圍的大小可能不足以滿足標準/應用的要求??紤]到IEEE802.15.4q技術標準[8]的場景,讓前導周期為T=32 μs,對應的CFO估計范圍為±15.625 kHz,而標準規(guī)定的范圍為±200 kHz,顯然此前導周期達不到這個范圍。在接收信號的周期小于標準指定的基本前導周期時,我們有了一個重復搜索的動力。
本文提出的算法基于以下事實:利用采樣率可以得到時間周期。例如,對于符合IEEE802.15.4q標準的接收機情況下,我們可以針對以下內容進行討論。假設碼片周期1 Mc/s,樣本周期Ts=1/8 μs,則過采樣率為8。如此,我們可以得到總周期等于nTs,n是一個整數。這將擴大CFO估計的范圍,使符合IEEE802.15.4q標準的接收機達到4 MHz(對應于時間周期Ts)。但是,選擇更小的時間周期會導致樣本間相關性更高,因為他們在時間上靠的很近。這會導致得出的相關角度及CFO估計可靠性降低。利用完整的前導符號或者前導周期的疊加可以解決這個問題。該算法通過以下三個階段進行。
(1)獲得粗分數角Sφ;
(2)基于更可靠的完整前導符號角度Tφ改進粗分數角;
(3)基于可靠的分數角度'Sφ得出CFO估計和同步。
接受樣本矢量γsamp表示ADC 樣本,每個樣本記作γsamp(n)。從接受樣本矢量中估計CFO隨后進行補償,分數角φS對應于兩個相鄰樣本之間的角度:
其中,k≥1是整數,與持續(xù)時間nTs有關。為了更好的估計,φS的平均值是由一些重復的基本前導符號計算得出。注意,基本前導符號不可謂零直流信號,即在一個完整周期內求和時,前導符號應具有非零平均值。盡管取平均值,分數角的可靠性還是很低,因此我們將該角度稱為粗分數角。在下一小節(jié),我們提出了粗分數角的可靠性的改進。
對應于完整前導持續(xù)時間T的角度也是最大可靠性角度,因為樣本最大可能的分開,所以樣本之間相關性最小。完整的前導符號角度可由接收信號可得:
此處,P是前導符號長度,角度φT和φS有以下關系:
可靠性改進想法如下。理想情況下,(10)式在n為整數時等號成立,但是,由于噪聲以及信道不理想等條件影響下導致角度可靠性的降低,尤其是φS,這將導致n偏離整數值,式(11)中必須使用可靠性更高的的角度φT以及四舍五入n成為整數來恢復這種可靠性。
從之前獲得的角度φ'S,我們可以得到一個基本的CFO估計值:
從這個基本的CFO估計值δf′s我們可以計算出一系列暫定的CFO:
其中,m是一個整數,決定了估計的準確性。m越大,準確性越高,但是代價是計算復雜度的提高。頻率fd是一個差異頻率,可以定義為:
式(13)~(15)邏輯如下:CFO估計與集合{-m,-m+1,…,m}中2m+1個整數有關,其中一個估計值是正確的CFO,對應的角度將滿足(10)等式。假設m=2,則總共可以得到2m+1=5個估計值:
總共得到5個角度,CFO估計值可以計算如下:
式(13)~(15)中的操作相當于進一步提高粗分數角的可靠性,獲得了2m+1個可能的CFO估計值h∈[-m,m],用這些可能的CFO估計值來補償接收樣本,這將獲得2m+1個補償向量:
因為其中一個CFO估計是正確的,所以對應的補償向量將與前導符號產生高相關性。一旦識別出最高相關值的補償向量,我們就可以獲得相應的CFO估計作為最終的CFO估計值。該邏輯用于后續(xù)操作。對于每個補償向量運行滑動窗口算法,其中補償向量中長度為N的窗口與過采樣前導符號結果相關。
這里 Φδfh(k)代表了暫定 CFO 估計的補償向量相關系數。K是樣本數,與前導碼周期T有關。序列是通過重復每個前導符號來獲得時間上的OSR值?;瑒哟翱诘某掷m(xù)時間取決于預期信號的持續(xù)時間。這通常通過傳統(tǒng)的分組/能量檢測過程來建立。最終的CFO估計通過從2m+1個暫定CFO估計中識別出與補償向量相關性最高的過采樣前導符號結果中得出。此過程可以描述如下:
同步點可以由接收樣本的范圍索引得到,由此可得到最大相關值。同步索引τ可以由下式得到:
本算法無需任何專門過程即可建立同步。這保證了聯合CFO估計和同步。算法的性能還取決于前導符號的相關屬性。在沒有良好的前導符號時,即使使用較大的m值性能改進的范圍也會較少。算法實現的流程圖如圖1所示。
圖1 算法流程
CFO估計算法已經在MATLAB 2013b中進行了仿真。出于解演示的目的,實現了符合IEEE802.15.4q 標準的相干接收機。假設符號速率為1 Ms/s,采樣周期Ts=1/8 μs,CFO為+200 kHz??紤]兩種不同的數據傳輸模式,即根據標準的2/4-TASK和3/8-TASK,生成圖2中的包錯誤率(Packet Error Rate,PER)與信噪比(SIGNAL-NOISE RATIO,SNR)曲線。
圖2 算法仿真
從圖2中可以看出,載波頻率偏差補償算法幾乎完全補償了+200 kHz的偏差,從而滿足了IEEE802.15.4q標準的要求。在假設中,m的值設置為2。經觀察,可以通過增加m的值來實現實際條件的近乎完美的補償。通過假設條件的研究可以發(fā)現增加m的大小可以將估計的性能提高到僅受前導符號相關性限制的程度。
本文提出了基于同步的數字通信接收機的載波頻率偏移估計算法。該算法利用分數時間段來獲得CFO估計。通過對完整前導符號周期的角度的進行可靠性改進,解決了因更短的時間段而導致的可靠性的降低問題。仿真結果表明,與傳統(tǒng)估計方法相比,本算法得到的可估計CFO的范圍顯著改善,對在前導周期內未能獲得符合標準的CFO范圍的相位信息場景尤其有用。仿真結果證明了該算法的性能。