亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        延遲Gompertz模型的數(shù)值分支和混合控制

        2019-06-11 08:27:47宋繼志王媛媛

        宋繼志 王媛媛

        摘要:為了研究物種的穩(wěn)定性問題,要求縮小或者擴(kuò)大生物系統(tǒng)的穩(wěn)定區(qū)域,通過混合控制歐拉法研究了一個(gè)時(shí)滯Gompertz模型,運(yùn)用狀態(tài)反饋和參數(shù)擾動(dòng)控制得到了Neimark-Sacker分支的理想結(jié)果。根據(jù)Hopf分支理論得到了連續(xù)系統(tǒng)平衡點(diǎn)的穩(wěn)定性,通過混合控制歐拉算法得到了離散系統(tǒng)在要求的分支點(diǎn)所產(chǎn)生的Neimark-Sacker分支,利用中心流形定理和正規(guī)形方法,給出了確定分支周期解的分支方向與穩(wěn)定性的計(jì)算公式。采用數(shù)值模擬驗(yàn)證了所得結(jié)果的正確性。研究結(jié)果表明,對(duì)于延遲Gompertz模型系統(tǒng),如果選擇合適的控制參數(shù),就能夠使分支點(diǎn)提前或者延遲。研究方法在理論和數(shù)值模擬方面都得到了良好的預(yù)期結(jié)果,為解決相關(guān)的控制問題提供了新的方法,對(duì)其他領(lǐng)域的控制問題研究具有一定的借鑒意義。

        關(guān)鍵詞:常微分方程數(shù)值解; Gompertz模型; 混合控制; 歐拉法; 延遲; Neimark-Sacker分支

        中圖分類號(hào):O1891文獻(xiàn)標(biāo)志碼:A

        Abstract: In order to study the stability of species, the biological systems are required to reduce or expand the stable region. For a Gompertz model with time delay, a hybrid control Euler method is proposed in which state feedback and parameter perturbation are used to control the Neimark-Sacker bifurcation. The local stability of the equilibria is discussed according to Hopf bifurcation theory. For controlling Neimark-Sacker bifurcation, the hybrid control numerical algorithm is introduced to generate the Neimark-Sacker bifurcation at a desired bifurcation point. The explicit algorithms for determining the direction of the bifurcation and the stability of the bifurcating periodic solutions are derived by using the normal form method and center manifold theorem. Numerical examples are provided to illustrate the theoretical results. The research results show that the branch point can be in advance or delay for the delay Gompertz model system through choosing appropriate control parameters. The algorithm has obtained good results both in theory and numerical performance, which provides a new method and has certain theoretical significance for its application in many control problems.

        Keywords:numerical solution of ordinary differential equation; Gompertz model; hybrid control; Euler method; delay; Neimark-Sacker bifurcation

        5結(jié)論

        為了擴(kuò)大或者縮小控制區(qū)域,給出了應(yīng)用狀態(tài)反饋和參數(shù)擾動(dòng)的混合控制數(shù)值歐拉法得到了Neimark-Sacker分支。對(duì)Gompertz連續(xù)系統(tǒng)實(shí)施混合控制得到了Hopf分支;通過選擇合適的控制參數(shù),實(shí)施混合控制數(shù)值算法延遲了原來分支點(diǎn)的出現(xiàn),應(yīng)用混合控制歐拉法,對(duì)充分小的步長給出了保持分支的結(jié)果。通過理論和數(shù)值模擬驗(yàn)證了所得結(jié)果,得到了延遲Gompertz模型系統(tǒng)通過選擇合適的控制參數(shù),分支點(diǎn)可能提前或者延遲。在將來的研究計(jì)劃中,筆者將設(shè)計(jì)更好的數(shù)值控制方法,達(dá)到更好的控制效果。

        參考文獻(xiàn)/References:

        [1]LOPEZ-GOMEZ J, ORTEGA R, TINEO A. The periodic predator-prey Lotka-Volterra model[J]. Advances in Differential Equations, 1996,1(3): 403-423.

        [2]PIOTROWSKA M J, FORYS U. Analysis of the Hopf bifurcation for the family of angiogenesis models[J].Journal of Mathematical Analysis Applications,2011,382(1):180-203.

        [3]JIA Jianwen, LI Chunhua. A Predator-Prey Gompertz model with time delay and impulsive perturbations on the prey[J]. Discrete Dynamics in Nature Society, 2009(1026):332-337.

        [4]DONG Lingzhen, CHEN Lansun, SUN Lihua. Optimal harvesting policies for periodic Gompertz systems[J]. Nonlinear Analysis Real World Applications,2007,8(2):572-578.

        [5]沈啟宏,魏俊杰. 具時(shí)滯的人類呼吸系統(tǒng)模型的穩(wěn)定性與分支[J].應(yīng)用數(shù)學(xué)和力學(xué), 2004,25(11):1169-1181.

        SHENG Qihong, WEI Junjie. Stability and bifurcation of a human respiratory system model with time delay[J]. Applied Mathematics and Mechanics, 2004,25(11):1169-1181.

        [6]魏俊杰,張春蕊,李秀玲.具時(shí)滯的二維神經(jīng)網(wǎng)絡(luò)模型的分支[J].應(yīng)用數(shù)學(xué)和力學(xué),2005,26(2):193-200.

        WEI Junjie, ZHENG Chunrui, LI Xiuling. Bifurcation in a two-dimensional neural network model with delay[J]. Applied Mathematics and Mechanics, 2005,26(2):193-200.

        [7]YU Pei, CHEN Guanrong. Hopf bifurcation control using nonlinear feedback with polynomial functions[J]. International Journal of Bifurcation Chaos, 2004,14(5): 1683-1704.

        [8]YU Pei. Bifurcation control for a class of Lorenze-like systems[J].International Journal of Bifurcation Chaos,2011,21(9): 2647-2664.

        [9]CHEN G, MOIOLA J L, WANG H O. Bifurcation control: theories, methods, and applications[J]. International Journal of Bifurcation Chaos,2000,10(3): 511-548.

        [10]HILL D J, HISKENS I A, WANG Y. Robust, adaptive or nonlinear control for modern power systems[C]// Proceedings of the 32nd IEEE Conference on Decision and Control. San Antonio:IEEE Xplore,1993:2335-2340.

        [11]CHEN Z, YU P. Hopf bifurcation control for an internet congestion model[J]. International Journal of Bifurcation Chaos, 2005,15(8):2643-2651.

        [12]LIU Zengrong, CHUNG K W. Hybrid control of bifurcation in continuous nonlinear dynamical systems[J]. International Journal of Bifurcation Chaos, 2005,15(12): 3895-3903.

        [13]CHENG Zunshui, CAO Jinde. Hybrid control of Hopf bifurcation in complex networks with delays[J]. Neuro Computing,2014,131:164-170.

        [14]SU Huan, DING Xiaohua. Dynamics of a nonstandard finite-difference scheme for Mackey-Glass system[J]. Journal of Mathematical Analysis and Applications, 2008,344(2): 932-941.

        [15]DING Xiaohua, FAN Dejun, LIU Mingzhu. Stability and bifurcation of a numerical discretization Mackey-Glass system[J]. Chaos, Solitons, Fractals, 2007,34(2): 383-393.

        [16]張春蕊,劉明珠.雙時(shí)滯神經(jīng)網(wǎng)絡(luò)模型分支性的數(shù)值逼近[J]. 系統(tǒng)仿真學(xué)報(bào),2004,16,(4):797-799.

        ZHANG Chunrui, LIU Mingzhu. Hopf bifurcations in numerical approximation for neural network model with two delays[J]. Journal of System Simulation, 2004,16(4):797-799.

        [17]WANG Yuanyuan. Dynamics of a nonstandard finite-difference scheme for delay differential equations with unimodal feedback[J]. Communications in Nonlinear Science Numerical Simulation, 2012,17(10): 3967-3978.

        [18]SU Huan, MAO Xuerong, LI Wenxue. Hopf bifurcation control for a class of delay differential systems with discrete-time delayed feedback controller[J]. Chaos, 2016, 26(11): 113120.

        [19]WULF V, FORD N. J. Numerical Hopf bifurcation for a class of delay differential equation[J]. Journal of Computational and Applied Mathematics. 2000,115(1): 601-616.

        [20]RUAN Shigui, WEI Junjie. On the zeros of transcendental functions with applications to stability of delay differential equations with two delays[J]. Dynamics of Continuous Discrete Impulsive Systems, 2003,10(6): 863-874.

        [21]YURI A K. Elements of Applied Bifurcation Theory[M]. New York:Springer-Verlag, 1995.

        [22]KUZNETSOV Y. Elements of Applied Bifurcation Theory[M]. New York:Springer-Verlag, 1995.

        [23]HALE J. Theory of Functional Differential Equations[M]. New York:Springer-Verlag, 1977.

        [24]WULF V. Numerical Analysis of Delay Differential Equations Undergoing a Hopf Bifurcation[D].Liverpool: University of Liverpool, 1999.

        [25]WIGGINS S. Introduction to Applied Nonlinear Dynamical System and Chaos[M]. New York:Springer-Verlag, 1990.第40卷第2期河北科技大學(xué)學(xué)報(bào)Vol.40,No.2

        2019年4月Journal of Hebei University of Science and TechnologyApr. ?2019

        人妻精品在线手机观看| 好爽~又到高潮了毛片视频 | 一本无码中文字幕在线观| 日本免费一区二区在线视频播放| 夜夜爽妓女8888888视频| 亚洲av福利无码无一区二区| 又白又嫩毛又多15p| 亚洲欧洲日韩免费无码h| 久久久亚洲欧洲日产国码是AV| 男女互舔动态视频在线观看| 麻豆网神马久久人鬼片| 又粗又大又黄又爽的免费视频| 久久精品这里只有精品| 精品女同一区二区三区在线播放器| 中文字日产幕码三区做法| 少妇久久久久久人妻无码| 99亚洲男女激情在线观看| 国产污污视频| 国产美女av一区二区三区| 99久久精品一区二区国产| 日日天干夜夜狠狠爱| 久久久国产精品ⅤA麻豆| 亚洲av伊人久久综合性色| 日韩av在线手机免费观看| 成人免费无码大片a毛片| 国产精品成人av在线观看| 中文字幕乱码中文乱码毛片| 日韩在线精品视频一区| 日日碰狠狠添天天爽无码| 无遮挡中文毛片免费观看| 日韩高清av一区二区| 蜜桃av在线免费网站| 亚洲中文字幕无码中文字| 91av小视频| 亚洲大尺度动作在线观看一区| 国产精品人妻熟女男人的天堂| 婷婷伊人久久大香线蕉av| 亚洲精品suv精品一区二区| 8av国产精品爽爽ⅴa在线观看| 蜜桃视频网址在线观看| 97色偷偷色噜噜狠狠爱网站|