譚鶴群,聶 杰,萬 鵬,付 豪,李鑫安
?
病死豬輔熱快速好氧發(fā)酵工藝參數(shù)優(yōu)化與裝備研制
譚鶴群,聶 杰,萬 鵬,付 豪,李鑫安
(1. 華中農(nóng)業(yè)大學工學院,武漢 430070;2. 農(nóng)業(yè)農(nóng)村部長江中下游農(nóng)業(yè)裝備重點實驗室,武漢 430070)
將病死豬、輔料拌合后加入發(fā)酵菌種,在50~70 ℃條件下進行輔熱快速好氧發(fā)酵處理,可在短時間內(nèi)將病死豬轉(zhuǎn)化為干顆粒物料。為了優(yōu)化發(fā)酵工藝參數(shù),提高發(fā)酵處理質(zhì)量,該文采用輔熱快速好氧發(fā)酵試驗裝置,以豬死胎為原料、麩皮為輔料,選取通風量和溫度為試驗因素,以產(chǎn)物的總游離氨基酸(free amino acid,F(xiàn)AA)質(zhì)量分數(shù)、含水率、粒度分布和pH值作為試驗指標,開展了病死豬輔熱快速好氧發(fā)酵處理試驗。發(fā)酵溫度選取50、60和70 ℃ 3個水平,通風量選取8、9和10 L/(L·min) 3個水平。結(jié)果表明,發(fā)酵溫度60 ℃、通風量10 L/(L·min)時處理效果最佳。在此基礎上,設計并試制了一臺處理能力為150 kg/批的病死豬輔熱快速好氧發(fā)酵處理設備,并進行了初步試驗。設定通風量為10 L/(L·min),發(fā)酵溫度為60 ℃,發(fā)酵3 d后物料中的FAA質(zhì)量分數(shù)為20.74 g/kg,含水率為14%左右,pH值為5.4,88.89%能通過4.75 mm編織篩,未檢出大腸桿菌,平均每處理1 kg病死豬的能耗為2.37 kW?h。試驗結(jié)果表明,試制的裝備能在3 d內(nèi)將冰凍狀態(tài)的病死豬無害化處理轉(zhuǎn)變?yōu)楦深w粒物料,處理產(chǎn)物能滿足后續(xù)有機肥生產(chǎn)的要求。
發(fā)酵;裝備;通風;病死豬;輔熱快速好氧發(fā)酵;游離氨基酸;無害化處理
生豬養(yǎng)殖過程中因死胎、疾病、自然災害等原因,會產(chǎn)生大量病死豬,據(jù)統(tǒng)計,2017年中國生豬出欄6.89億頭,在養(yǎng)殖過程中,生豬死亡率為5%~10%[1]。這些病死豬如不進行及時處理或處理不當,會對人和動物造成危害,對環(huán)境造成污染,對資源造成浪費。近年來,國內(nèi)媒體報道過多起由于病死豬處理不當而引起的食品安全和嚴重環(huán)境污染事件[2-4]。目前,生產(chǎn)實際中的病死豬處理方式主要有填埋、焚燒、化制、堆肥等4種方法。填埋法可能會產(chǎn)生大量惡臭氣體并導致土壤和地下水受到病原體和尸體分解產(chǎn)物的污染,給人類食品和動物飼料帶來衛(wèi)生風險[5-6];焚燒法所需的焚燒爐由于造價和能耗較高,往往需要將死亡動物進行集中處理,在運輸?shù)倪^程中可能造成動物疾病的傳播和擴散[7],不完全燃燒所釋放的二惡英和呋喃是致癌物,會對人類的生殖、發(fā)育和免疫系統(tǒng)產(chǎn)生負面影響[8]?;品ê投逊史ǖ奶幚碇芷谕L達數(shù)月,而且處理過程中會產(chǎn)生大量惡臭氣體[9-12],難以滿足豬場大量病死豬及時、無害化處理的要求。
輔熱快速好氧發(fā)酵是將畜禽死體和適當?shù)妮o料、菌種置于設有轉(zhuǎn)子的容器中進行好氧生物降解。處理過程中,往容器內(nèi)通入熱空氣,一方面提供好氧發(fā)酵所需的氧氣,另一方面提供維持發(fā)酵溫度所需的熱量。容器內(nèi)的轉(zhuǎn)子則不斷對混合物料進行攪拌,一方面使菌種和病死豬原料、輔料接觸更為充分,提高發(fā)酵速度,另一方面通過轉(zhuǎn)子上的刀片切碎病死豬原料,使混合物料在生物降解、水分降低的同時,逐漸變成顆粒狀產(chǎn)品。畜禽死體經(jīng)高溫發(fā)酵處理后體內(nèi)病原體會被消滅[13-14],部分蛋白質(zhì)會被降解成氨基酸。處理后的產(chǎn)品如果作為植物肥料,其中的氨基酸可以直接被植物吸收[15-18],提高作物產(chǎn)量[19-21],還可以改善土壤環(huán)境,提高土壤中酶的活性[20-22]。因此,可考慮將病死豬輔熱快速好氧發(fā)酵產(chǎn)物制成氨基酸肥料。
目前,病死豬輔熱快速好氧發(fā)酵處理還處于探索階段,處理工藝對處理效果的影響未見相關(guān)報道。本文首先以豬死胎為原料,麩皮為輔料,研究發(fā)酵溫度和通風量對處理效果的影響。在此基礎上,設計并試制了一臺批次處理量為150 kg的病死豬輔熱快速好氧發(fā)酵處理設備,并對樣機開展了處理試驗。
豬死胎:來自于湖北省天門市某養(yǎng)豬場。運回實驗室后在?4 ℃條件下冷凍備用。麩皮:購自武漢市洪山區(qū)某飼料店。菌種:購自中國臺灣某公司。
試驗在如圖1所示的病死豬輔熱快速好氧發(fā)酵裝置中進行。該裝置容積為10 L,采用夾層水浴加熱,熱風機(濰坊匯眾機電設備有限公司,加熱功率3 kW,風機功率120 W,風量范圍0~300 L/min)用來調(diào)節(jié)流量以及出風的溫度,流量計(江蘇滬儀自動化儀表有限公司,測量范圍1.6~16 m3/h,精確度1.5%)用于對通入的風量進行監(jiān)測。水浴溫度、熱風機流量及熱風溫度、攪拌軸轉(zhuǎn)速等均通過控制箱設置和調(diào)節(jié)。
圖1 病死豬輔熱快速好氧發(fā)酵試驗裝置
試驗于2018年8?10月在華中農(nóng)業(yè)大學工科基地進行。以單位發(fā)酵裝置容積每分鐘通風量(簡稱通風量)、發(fā)酵過程中裝置內(nèi)維持溫度(簡稱溫度)作為試驗因素。每個因素設置選取3個水平進行試驗。
每次試驗選取一頭豬死胎(質(zhì)量1.5~2.2 kg),用電鋸將冷凍的死豬分割成約5 cm左右的塊狀,然后放入絞肉機絞碎,稱量絞碎后的豬體,按豬體質(zhì)量:麩皮質(zhì)量1.5∶1(干基比,按豬含水率75%,麩皮含水率9%折算成濕基比約為5.5∶1)稱取適量麩皮,拌合后按菌種質(zhì)量:豬體質(zhì)量為1∶25(干基比,按豬含水率75%,菌種含水率10%折算成濕基比約為1∶100)加入菌種。豬體初始含水率為75%,麩皮初始含水率為9%,混合后的物料含水率為65%,pH值為6.5,游離氨基酸(free amino acid,F(xiàn)AA)質(zhì)量分數(shù)為6.0 g/kg。最后將混合后的物料投入圖1所示發(fā)酵裝置中開始輔熱快速好氧發(fā)酵處理(物料容積約占裝置容器的1/3),在處理過程中持續(xù)攪拌與通風。
溫度試驗:設定通風量為8 L/(L?min),分別進行溫度50、60和70 ℃[23-27]的處理試驗。為了使發(fā)酵過程中發(fā)酵物料水分含量保持在維持微生物活動的適宜范圍,試驗中,每發(fā)酵24 h,加水將含水率重新調(diào)至65%。
通風量試驗:以溫度試驗中的最佳溫度作為通風量試驗溫度,分別進行通風量為8、9和10 L/(L?min)的處理試驗。
1)采樣
每次試驗發(fā)酵3 d(加入菌種時開始計時),通風量試驗在發(fā)酵結(jié)束時取樣,溫度試驗每隔24 h取樣。取出的樣品一部分用于檢測含水率和pH值,一部分風干后用于游離氨基酸檢測。每次試驗完成后將全部發(fā)酵物料風干,測定其粒度分布。
2)測定方法
含水率:按GB/T 8576—2010(復合肥料中游離水含量的測定—真空烘箱法)的方法測定。
pH值:按NY525—2012(有機肥料)的方法測定。
粒度分布:采用從上到下孔徑依次為4.75、3.35、2.36、1.70、1.18 mm盲篩的編織篩組。每次稱取風干后的樣品100 g,放入最上層篩,用振動篩分器(8411型電動振動篩,功率120 W)篩分15 min。篩分完畢,分別稱量各層篩上物并將結(jié)果繪制成粒度特征曲線。
FAA質(zhì)量分數(shù):按NY/T 1975-2010 (水溶肥料—游離氨基酸質(zhì)量分數(shù)的測定)的方法測定。
如表1所示,3種溫度條件下,發(fā)酵物料中的FAA質(zhì)量分數(shù)都呈現(xiàn)出先升高后降低的趨勢,均在第2天達到最大值。溫度為60和70 ℃時,第3天的FAA質(zhì)量分數(shù)相比第2天變化很小。而溫度為50 ℃時,第3天的FAA質(zhì)量分數(shù)比第2天大幅度下降。從含水率變化情況看,以初始含水率65%計算,每發(fā)酵1 d,50 ℃時下降8個百分點~11個百分點,60 ℃時下降24個百分點~27個百分點,而70 ℃時下降40個百分點~50個百分點。經(jīng)1 d發(fā)酵,70 ℃條件下發(fā)酵物料含水率僅有16%~18%,從其FAA質(zhì)量分數(shù)僅比發(fā)酵前提高3%左右來看,可以認為,發(fā)酵溫度為70 ℃易造成發(fā)酵物料水分流失過快,不利于微生物對病死豬的降解。
表1 不同溫度與發(fā)酵時間的發(fā)酵物料中的游離氨基酸(FAA)質(zhì)量分數(shù)、含水率和pH值
注:通風量為8 L? L–1?min–1。每發(fā)酵24 h,加水將含水率重新調(diào)至65%。
Note: The ventilation rate is 8 L? L–1?min–1. Water content maintained at 65% by adding water every 24 h.
溫度為50和60 ℃,處理3 d后發(fā)酵物料中的FAA質(zhì)量分數(shù)分別為18.51、16.62 g/kg,比發(fā)酵前分別提高了12.51和10.62 g/kg 。但從粒度分布來看(見圖2),50 ℃時4.75 mm編織篩的物料通過率僅有57.40%,而60、70 ℃時可分別達到83.95%和83.44%,這一方面是因為高溫促進了病死豬特別是皮和骨頭的降解,另一方面是因為水分越低,在攪拌作用下物料越松散。
注:通風量為8 L?L–1?min–1。
本試驗中,發(fā)酵3 d后物料pH值均低于發(fā)酵前的pH值,與徐滔明和趙旭等的研究結(jié)果一致[28-30]。
綜合分析,50 ℃時,雖FAA質(zhì)量分數(shù)最高,但每1 d含水率僅下降8個百分點~11個百分點,且發(fā)酵物料中存在大塊未降解的豬肉塊和皮毛,導致其4.75 mm編織篩通過率低;70 ℃時,發(fā)酵物料粒度分布與60 ℃情形相似,但由于含水率下降過快,發(fā)酵3 d后FAA質(zhì)量分數(shù)僅比發(fā)酵前提高3.42 g/kg,死豬降解程度低。因此,發(fā)酵溫度以60 ℃左右為宜。
如表2所示,3種通風量水平下,發(fā)酵產(chǎn)物的含水率均在12%以下,pH值均在5.5以上,滿足農(nóng)業(yè)行業(yè)標準《有機肥料》(NY525-2012)的要求。通風量為8、9和10 L/(L?min)時,產(chǎn)物中FAA質(zhì)量分數(shù)分別為13.18、16.62和21.41 g/kg,比發(fā)酵前分別提高121.1%、178.9%和259.4%;含水率依次為11.0%、8.5%和5.0%,pH值依次為5.9、5.6和5.5,表現(xiàn)為通風量越大,發(fā)酵物料含水率越低,F(xiàn)AA質(zhì)量分數(shù)越高,pH值越低。
表2 通風量對FAA質(zhì)量分數(shù)、含水率和pH值的影響
注:溫度為60 ℃。
Note: The temperature is 60 ℃.
發(fā)酵溫度同為60 ℃時,通風量與產(chǎn)物中FAA質(zhì)量分數(shù)呈現(xiàn)正相關(guān),這是由兩方面原因造成的:1)熱風通風量增大時,發(fā)酵溫度提高速度更快,同時也能為好氧微生物活動提供更充足的氧氣,從而使微生物對病死豬的降解程度更高;2)胡天覺等的研究表明[31],低含水率會抑制噬溫好氧微生物的活動。好氧發(fā)酵后期,好氧微生物的代謝會消耗蛋白降解產(chǎn)生的FAA,因此,通風量增大,發(fā)酵物料中水分流失快,會抑制微生物對FAA的降解。
本試驗中,發(fā)酵后物料的pH值均低于發(fā)酵前混合物料的pH值,與溫度試驗結(jié)果一致。
3種通風量水平下,4.75 mm編織篩通過率均達到70%以上,其中通風量為10 L/(L?min)時最高,可達84.40%(見圖3)。圖3還顯示,通風量越大,細顆粒比例越高,這與通風量加大后,含水率降低,發(fā)酵產(chǎn)物由于攪拌而破碎有關(guān)。
綜合分析,當發(fā)酵溫度為60 ℃時,通風量10 L/(L?min)的發(fā)酵效果優(yōu)于8和9 L/(L?min)的發(fā)酵效果。
注:溫度為60 ℃。
按發(fā)酵溫度60 ℃時和通風量10 L/(L?min)的要求,選擇空氣加熱組件和風機型號,在此基礎上設計了如圖4所示的病死豬輔熱快速好氧發(fā)酵處理裝備。
該裝備主要由進氣組件、攪拌組件、加熱組件、機架組件和艙蓋組件組成。進氣組件包括加熱風機、送氣管、空氣分流罐、進氣管,攪拌組件包括減速電機、攪拌軸、處理槽、動刀、定刀,加熱組件包括工業(yè)電熱毯、保溫層,機架組件包括機架、腳支撐、蓋板,艙蓋組件主要包括艙蓋和出氣口。加熱組件中的工業(yè)電熱毯粘連在處理槽外壁上,保溫層附在工業(yè)電熱毯上。該裝置每批次能處理150 kg病死豬,批次處理時間縮短至2~3 d;處理產(chǎn)物呈干顆粒狀,便于后續(xù)有機肥生產(chǎn)。圖5是樣機的實物圖片,其主要技術(shù)參數(shù)如表3。
圖4 病死豬輔熱快速好氧發(fā)酵處理裝置結(jié)構(gòu)簡圖
圖5 病死豬輔熱快速好氧發(fā)酵處理裝置實物圖
表3 病死豬輔熱快速好氧發(fā)酵處理裝置主要技術(shù)參數(shù)
3.2.1 試驗方法
2018年12月,在華中農(nóng)業(yè)大學“生豬健康養(yǎng)殖與協(xié)同創(chuàng)新中心”進行病死豬輔熱快速好氧發(fā)酵裝置的處理試驗。試驗以華中農(nóng)業(yè)大學進行生物試驗后產(chǎn)生的病死豬為原料,并采用1.1節(jié)所述麩皮和菌種。
試驗時,先打開熱風機和主電機,設定溫度為60 ℃,通風量為10 L/(L?min),將冷凍后待處理的死豬約150 kg投入處理槽內(nèi),并開始計時。約60 min后,按死豬質(zhì)量:麩皮質(zhì)量為1.5∶1(干基比)加入麩皮,按菌種質(zhì)量:豬體質(zhì)量為1∶25(干基比)加入菌種。在設備運轉(zhuǎn)期間,攪拌軸按正轉(zhuǎn)15 min—停轉(zhuǎn)2 min—反轉(zhuǎn)3 min—停轉(zhuǎn)40 min的順序,以1 h為周期循環(huán)運行。試驗進行3 d,試驗結(jié)束后取樣,用于檢測產(chǎn)物FAA質(zhì)量分數(shù)、含水率、pH值、粒度分布和大腸桿菌,大腸桿菌檢測參照GB 4789.3-2016(食品安全國家標準,食品微生物學檢驗-大腸菌群計數(shù)),其他檢測方法同1.4節(jié)。
3.3.2 試驗結(jié)果
如圖6所示,經(jīng)過3 d發(fā)酵后,死豬基本被降解,降解后的產(chǎn)物呈黃褐色細顆粒狀,無明顯骨頭和毛皮。
a.發(fā)酵前a. Before fermentationb.發(fā)酵后b. After fermentation
處理3 d后,物料含水率為14%左右, pH值為5.4;FAA質(zhì)量分數(shù)為20.74 g/kg。土壤中游離氨基酸質(zhì)量分數(shù)一般僅為1~2 mg/kg[32],因此,病死豬經(jīng)處理后若作為有機肥使用,能提高土壤游離氨基酸質(zhì)量分數(shù)。如表4所示,發(fā)酵后物料中游離氨基酸主要為丙氨酸、谷氨酸、亮氨酸、脯氨酸、纈氨酸、組氨酸、甘氨酸、賴氨酸和絲氨酸,其中包含了一些土壤中較為缺乏的游離氨基酸,如脯氨酸、纈氨酸和組氨酸[33]。丙氨酸、谷氨酸和亮氨酸是產(chǎn)物中質(zhì)量分數(shù)最高的3種游離氨基酸,共占產(chǎn)物FAA質(zhì)量分數(shù)的43.3%。
如圖7所示,發(fā)酵產(chǎn)物4.75 mm編織篩通過率為88.89%,1.7 mm編織篩通過率為66.96%,1.18 mm編織篩通過率為39.00%。
表4 發(fā)酵后物料中17種游離氨基酸質(zhì)量分數(shù)
圖7 發(fā)酵后物料粒度分布
如圖8所示,發(fā)酵物料中未檢出大腸桿菌。從啟動設備總電源開始計算耗電量,至3 d發(fā)酵完成時,處理1 kg死豬的全程平均能耗為2.37 kW?h。
圖8 發(fā)酵后物料大腸桿菌檢測(平板計數(shù)法,未檢出)
通過實驗室工藝參數(shù)試驗和樣機試驗,得出如下結(jié)論:
1)實驗室條件下,對經(jīng)切碎的病死豬進行輔熱快速好氧發(fā)酵,發(fā)酵溫度為60 ℃,通風量為10 L/(L?min)時,3 d內(nèi)能將病死豬處理成干顆粒狀物料,處理后物料中游離氨基酸FAA質(zhì)量分數(shù)為21.41 g/kg,含水率為5%,pH值為5.5,84.4%能通過4.75 mm編織篩。
2)本文研制的輔熱快速好氧發(fā)酵裝置能直接處理冰凍狀態(tài)的病死豬,3 d內(nèi)能將冰凍狀態(tài)的病死豬處理轉(zhuǎn)化成干顆粒狀物料,每批次處理病死豬量為150 kg。設定發(fā)酵溫度為60 ℃,通風量為10 L/(L?min)時,處理產(chǎn)物中未檢出大腸桿菌,F(xiàn)AA質(zhì)量分數(shù)為20.74 g/kg,含水率為14%左右,pH值為5.4。處理1 kg死豬的能耗為2.37 kW?h,處理后物料88.89%能通過4.75 mm編織篩,能滿足后續(xù)有機肥生產(chǎn)的要求。
[1] 習佳林,董紅敏,朱志平,等. 死畜禽堆肥化處理研究進展[J]. 中國農(nóng)業(yè)科技導報,2010,12(2):76-80. Xi Jialing, Dong Hongmin, Zhu Zhiping, et al. Research progress on composting treatment of dead livestock[J]. Journal of Agricultural Science and Technology, 2010, 12(2): 76-80. (in Chinese with English abstract)
[2] Wu L, Xu G, Wang X. Identifying critical factors influencing the disposal of dead pigs by farmers in China[J]. Environmental Science and Pollution Research, 2016, 23(1): 661-672.
[3] Wu L, Xu G, Li Q, et al. Investigation of the disposal of dead pigs by pig farmers in mainland China by simulation experiment[J]. Environmental Science and Pollution Research, 2016, 24(2): 1469-1483.
[4] Hu Y, Feng Y, Huang C, et al. Occurrence, source, and human infection potential of cryptosporidium and enterocytozoon bieneusi in drinking source water in Shanghai, China, during a pig carcass disposal incident[J]. Environmental Science & Technology, 2014, 48(24): 14219-14227.
[5] 杜耀,方圓,沈東升,等. 填埋場中硫化氫惡臭污染防治技術(shù)研究進展[J]. 農(nóng)業(yè)工程學報,2015,31(增刊1):269-275. Du Yao, Fang Yuan, Shen Dongsheng, et al. Review on pollution control technologies of hydrogen sulfide odor in landfill[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.1): 269-275. (in Chinese with English abstract)
[6] Gwyther C L, Williams A P, Golyshin P N, et al. The environmental and biosecurity characteristics of livestock carcass disposal methods: A review[J]. Waste Manag, 2011, 31(4): 767-778.
[7] Pollard S J T, Hickman G A W, Irving P, et al. Exposure assessment of carcass disposal options in the event of a notifiable exotic animal disease: Application to avian influenza virus[J]. Environmental Science & Technology, 2008, 42(9): 3145-3154.
[8] Rier S E. Environmental immune disruption: A comorbidity factor for reproduction?[J]. Fertility & Sterility, 2008, 89(2): e103-e108.
[9] 郭東坡,陶秀萍,尚斌,等. 死豬堆肥處理的通風率選擇探討[J]. 農(nóng)業(yè)工程學報,2013,29(5):187-193. Guo Dongpo, Tao Xiuping, Shang Bin, et al. Selection of ventilation rates on dead pig composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(5): 187-193. (in Chinese with English abstract)
[10] 吳銀寶,汪植三,廖新俤,等. 豬糞堆肥臭氣產(chǎn)生與調(diào)控的研究[J]. 農(nóng)業(yè)工程學報,2001,17(5):82-87. Wu Yinbao, Wang Zhisan, Liao Xindi, et al. Study on the odor production and control of swine manure composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2001, 17(5): 82-87. (in Chinese with English abstract)
[11] Weiping X, Tim R, Douglas I G, et al. A biosecure composting system for disposal of cattle carcasses and manure following infectious disease outbreak[J]. Journal of Environment Quality, 2009, 38(2): 437-450.
[12] Reuter T, Xu W, Alexander T W, et al. Biocontained carcass composting for control of infectious disease outbreak in livestock[J]. Journal of Visualized Experiments, 2010(39): 1-3.
[13] Williams A P, Edwards-Jones G, Jones D L. In-vessel bioreduction provides an effective storage and pre-treatment method for livestock carcasses prior to final disposal[J]. Bioresour Technol, 2009, 99(17): 4032-4040.
[14] Gwyther C L, Jones D L, Golyshin P N, et al. Bioreduction of sheep carcasses effectively contains and reduces pathogen levels under operational and simulated breakdown conditions[J]. Environmental Science & Technology, 2013, 47(10): 5267-5275.
[15] Jones D L, Healey J R, Willett V B, et al. Dissolved organic nitrogen uptake by plants: An important N uptake pathway?[J]. Soil Biology & Biochemistry, 2005, 37(3): 413-423.
[16] Treseder K K, Czimczik C I, Trumbore S E, et al. Uptake of an amino acid by ectomycorrhizal fungi in a boreal forest[J]. Soil Biology & Biochemistry, 2008, 40(7): 1964-1966.
[17] Kielland K. Amino acid absorption by arctic plants: Implications for plant nutrition and nitrogen cycling[J]. Ecology, 1994, 75(8): 2373-2383.
[18] N?Sholm T, Kielland K, Ganeteg U. Uptake of organic nitrogen by plants[J]. New Phytologist, 2009, 182(1): 31-48.
[19] 穆軍,呼世斌,王永科. 豬蹄甲制備氨基酸螯合微肥及其對小白菜生長的影響[J]. 農(nóng)業(yè)工程學報,2008,24(7):185-187. Mu Jun, Hu Shibin, Wang Yongke. Preparing fertilizers of amino acid chelate micro element from pig hoof nail and its effect on growth of pakchoi[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(7): 185-187. (in Chinese with English abstract)
[20] 呂娜娜,沈宗專,王東升,等. 施用氨基酸有機肥對黃瓜產(chǎn)量及土壤生物學性狀的影響[J]. 南京農(nóng)業(yè)大學學報,2018,41(3):456-464. Lü Nana, Shen Zongzhuan, Wang Dongsheng, et al. Effects of amino acid organic fertilizer on cucumber yield and soil biological characters[J]. Journal of Nanjing Agricultural University, 2018, 41(3): 456-464. (in Chinese with English abstract)
[21] 張樹生,楊興明,黃啟為,等. 施用氨基酸肥料對連作條件下黃瓜的生物效應及土壤生物性狀的影響[J]. 土壤學報,2007, 44(4):689-694. Zhang Shusheng, Yang Xingming, Huang Qiwei, et al. Effect of application of amino acid fertilizer on biological properties of cucumber plants and soil microorganisms under continuous mono-cropping[J]. Acta Pedologica Sinica, 2007, 44(4): 689-694. (in Chinese with English abstract)
[22] 陳杰. 魚蛋白降解氨基酸肥對土壤理化性質(zhì)、酶活性以及微生物群落的影響[D]. 上海:上海師范大學,2015. Chen Jie. The Effects of Amino Acids Hydrolyzed from Fish Wastes on Soil Physicochemical Properties, Enzyme Activities and Microbial Community[J]. Shanghai: Shanghai Normal University, 2015. (in Chinese with English abstract)
[23] McKinley V L, Vestal J R. Physical and chemical correlates of microbial activity and biomass in composting municipal sewage sludge[J]. Applied & Environmental Microbiology, 1985, 50(6): 1395-403.
[24] Beffa T, Blanc M, Marilley L, et al. Taxonomic and metabolic microbial diversity during composting[M]. The Science of Composting. Netherlands: Springer, 1996.
[25] Brigante M, Zanini G, Avena M. On the dissolution kinetics of humic acid particles: Effects of pH, temperature and Ca2+concentration[J]. Colloids and Surfaces A (Physicochemical and Engineering Aspects), 2007, 294(1/2/3): 64-70.
[26] 杜少甫,韋光輝,柳東陽,等. 不同溫度對病死豬生物降解效果的影響[J]. 安徽農(nóng)業(yè)科學,2015,43(35):170-171,173. Du Shaofu, Wei Guanghui, Liu Dongyang, et al. The biodegradation effects of dead pigs at different temperatures[J]. Journal of Anhui Agricultural Sciences, 2015, 43(35): 170-171, 173. (in Chinese with English abstract)
[27] 曹云,黃紅英,吳華山,等. 畜禽糞便超高溫堆肥產(chǎn)物理化性質(zhì)及其對小白菜生長的影響[J]. 農(nóng)業(yè)工程學報,2018,34(12):251-257. Cao Yun, Huang Hongying, Wu Huashan, et al. Physico-chemical properties of hyperthermophilic composting from livestock manures and its effects of Chinese cabbage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(12): 251-257. (in Chinese with English abstract)
[28] 徐滔明,羅志威,易子霆,等. 復合微生物菌劑在豬糞有機肥堆肥中的應用[J]. 湖南農(nóng)業(yè)科學,2016(2):41-43. Xu Taoming, Luo Zhiwei, Yi Ziting, et al. Application of composite microbial agent in pig manure organic fertilizerE[J]. Hunan Agricultural Sciences, 2016(2): 41-43. (in Chinese with English abstract)
[29] 趙旭,王改蘭,陳春玉,等. 谷糠和堆肥作為微生物菌劑載體的研究[J]. 安徽農(nóng)業(yè)科學,2015,43(14):179-180,223. Zhao Xu, Wang Gailan, Chen Chunyu, et al. Study of bran and compost as a carrier for microbial Inoculants [J]. Journal of Anhui Agricultural Sciences, 2015, 43(14): 179-180, 223. (in Chinese with English abstract)
[30] 焦洪超,張洪芳,欒炳志,等. 不同通風量對豬糞好氧堆肥效果的影響[J]. 農(nóng)業(yè)工程學報,2008,24(12):173-177.Jiao Hongchao, Zhang Hongfang, Luan Bingzhi, et al. Effects of ventilation on aerobic composting of swine feces[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(12): 173-177. (in Chinese with English abstract)
[31] 胡天覺,曾光明,黃國和,等. 倉式好氧堆肥中影響有機物發(fā)酵降解的主要因素[J]. 湖南大學學報:自然科學版,2004(5):31-35. Hu Tianjue, Zeng Guangming, Huang Guohe, et al. Factors Influencing the organic solid waste biodegradation in aerobic vessel compost system[J]. Journal of Hunan University: Natural Science, 2004(5): 31-35. (in Chinese with English abstract)
[32] 宋奇超,曹鳳秋,鞏元勇,等. 高等植物氨基酸吸收與轉(zhuǎn)運及生物學功能的研究進展[J]. 植物營養(yǎng)與肥料學報,2012,18(6):1507-1517. Song Qichao, Cao Fengqiu, Gong Yuanyong, et al. Current research progresses of amino acids uptake, transport and their biological roles in higher plants[J]. Plant Nutrition and Fertilizer Science, 2012, 18(6): 1507-1517. (in Chinese with English abstract)
[33] Yu Z, Zhang Q, Kraus T E C, et al. Contribution of amino compounds to dissolved organic nitrogen in forest soils[J]. Biogeochemistry, 2002, 61(2): 173-198.
Process parameter optimization and equipment development of thermophilic aerobic fermentation of dead pigs
Tan Hequn, Nie Jie, Wan Peng, Fu Hao, Li Xinan
(1.430070,; 2.430070,)
Carcass of dead pigs can be converted into dry granular materials rapidly by aerobic fermentation at 50 to 70 ℃ after adding fermentation strains into the mixture of pig carcass and auxiliary materials such as wheat bran. In order to optimize the fermentation process parameters and improve the quality of fermentation, a laboratory rapid aerobic fermentation system together with heating device was adoptedin this study to process the stillbirth pigs. In the experiments, ventilation rate and fermentation temperature were selected as experimental factors and the mass fraction of total free amino acid (FAA), moisture content, particle size distribution and pH value of the products were selected as experimental indexes. The fermentation temperature was set at 50, 60 and 70 ℃ and the ventilation rate was set at 8, 9 and 10 L/(L?min). One pig stillbirth (1.5-2.2 kg) was selected in each experiment. The frozen pig carcass were divided into blocks of about 5 cm with a chainsaw, and then ground in a meat mincer. The carcass pieces were weighed and mixed with appropriate amount of bran to achieve a weight ratio of the bran to the carcass of 1:1.5 (dry-based ratio under bran moisture content of 9% and carcass moisture content of 75%, equivalent to a wet base ratio of about 1:5.5). After mixing, fermentation strains were added to attain strain weight: pig weight of 1:25 (dry-based ratio, or 1:100 for wet-based ratio assuming the strain moisture content of 10% and carcass moisture content 75%). The moisture content of mixed materials was about 65%, the pH value was about 6.55, and the mass fraction of FAA was 6.0 g/kg. In the controlled experiments with different fermentation temperatures, the ventilation rate was 8 L/(L·min). In order to keep the moisture content of fermentation materials within the appropriate range to maintain microbial activities during the fermentation process, the moisture content was adjusted to 65% by adding water after every 24 hours of fermentation. The results showed that the moisture content of fermented materials decreased by 8-11, 24-27 and 40-50 percentage at 50, 60 and 70 ℃, respectively. The mass fractions of FAA in fermented materials after 3 days of fermentation were 18.51, 16.62 and 9.42 g/kg, and the passing rates of 4.75 mm braided sieve were 57.40%, 83.95% and 83.44% respectively. In the control experiments with different ventilation rates, the fermentation temperatures were 60 ℃. The results showed that when the ventilation rate was 8, 9 and 10 L/(L·min), the moisture contents of the fermentation materials after fermentation for 3 days were 11%, 8.5% and 5%, the mass fraction of FAA was 13.18, 16.62, and 21.41 g/kg, respectively. The 4.75 mm woven sieve passing rate was more than 70%, which could reach 84.4% when the ventilation rate was 10 L/(L·min). Comprehensive analysis showed that the treatment effect was best when the fermentation temperature was 60 ℃ and the ventilation rate was 10 L/(L·min). Based on the above results of processing technology, a thermophilic aerobic fermentation equipment with a processing capacity of 150 kg per batch for dead pigs was designed and developed. This equipment was tested under a ventilation rate of 10 L/(L·min) and the fermentation temperature of 60 ℃. After 3 days of fermentation, the FAA mass fraction in the products was 20.74 g/kg with the moisture content of about 14% and the pH value of 5.4. Moreover, 88.89% of the products could pass the braided sieve of 4.75 mm diameter andwere not detected in the products. The energy consumption of the equipment was 2.37 kW?h per kg of dead pigs. The experimental results showed that the equipment could transform the dead pigs in the frozen state into dry particle materials in 3 days, and the treated products could meet the requirements of subsequent organic fertilizer production.
fermentation; equipment; ventilation; dead pig; thermophilic aerobic fermentation; free amino acid; harmless treatment
2019-02-26
2019-03-31
中央高校自主基本科研業(yè)務費專項資金(2662015PY151,2662017JC042)
譚鶴群,副教授,博士,主要從事農(nóng)產(chǎn)品加工機械與畜牧機械研究。Email:thq@mail.hzau.edu.cn
10.11975/j.issn.1002-6819.2019.08.031
S216
A
1002-6819(2019)-08-0262-07
譚鶴群,聶 杰,萬 鵬,付 豪,李鑫安. 病死豬輔熱快速好氧發(fā)酵工藝參數(shù)優(yōu)化與裝備研制[J]. 農(nóng)業(yè)工程學報,2019,35(8):262-268. doi:10.11975/j.issn.1002-6819.2019.08.031 http://www.tcsae.org
Tan Hequn, Nie Jie, Wan Peng, Fu Hao, Li Xinan. Process parameter optimization and equipment development of thermophilic aerobic fermentation of dead pigs[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(8): 262-268. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.08.031 http://www.tcsae.org