王新坤,薛子龍,肖思強(qiáng),樊二東,徐勝榮,王 軒,張晨曦
?
支毛管安裝射流三通的滴灌系統(tǒng)水力性能研究
王新坤,薛子龍,肖思強(qiáng),樊二東,徐勝榮,王 軒,張晨曦
(江蘇大學(xué)國家水泵及系統(tǒng)工程技術(shù)研究中心,鎮(zhèn)江 212013)
為分析脈沖水流對滴灌系統(tǒng)水力性能的影響規(guī)律,該文基于射流附壁和切換原理設(shè)計(jì)了一種支管射流三通,并與毛管射流三通開展組合試驗(yàn)。在毛管鋪設(shè)長度為60 m,4種支管三通進(jìn)口水頭(9.5、12、14、15.5 m)條件下,研究支毛管安裝射流三通或普通三通時(shí)灌水小區(qū)的灌水均勻度、脈沖頻率與水頭損失變化規(guī)律,并建立描述支管射流三通出口流量和壓力的擬合關(guān)系式。結(jié)果表明,當(dāng)支毛管三通均采用射流三通時(shí),支毛管中均為間歇性脈沖水流,脈沖頻率隨支管進(jìn)口水頭增加而遞增;毛管滴頭流量在1.2~2.2 L/h之間,沿程水頭損失在0.9~1.6 m之間;灌水均勻性系數(shù)在95.88%~98.56%之間,流量偏差率在8.35%~15.14%之間,灌水均勻度最高。根據(jù)研究結(jié)果,確定了灌水小區(qū)中支毛管三通的最優(yōu)組合方式,可為射流技術(shù)在脈沖滴灌系統(tǒng)的研究、開發(fā)與應(yīng)用提供理論依據(jù)。
壓力;流量;射流三通;水力性能;支毛管;均勻度;脈沖頻率;水頭損失
滴灌是一項(xiàng)較為成熟的灌水技術(shù)[1-3],利用安裝在毛管上的滴頭、孔口、滴灌帶上的滴頭等不同形式的灌水器,灌溉水沿著灌水器均勻、緩慢的滴入作物根區(qū)[4],具有節(jié)水、節(jié)肥、節(jié)約勞動(dòng)力的優(yōu)點(diǎn)[5]。由于滴灌工作水頭(10 m以下)較低,水流在滴灌帶及灌水器流道內(nèi)的流速較緩,雜質(zhì)容易沉淀在滴灌帶內(nèi),水中較小顆粒也易堵塞灌水器流道,影響灌水器的灌水均勻性[6-7]。為提高低壓滴灌抗堵性能和灌水均勻性,徐堯權(quán)等[8-10]提出了脈沖滴灌技術(shù)。脈沖滴灌技術(shù)工作原理是在毛管中提供間歇性供水,產(chǎn)生的水流具有周期性且脈沖動(dòng)能大的特點(diǎn),水流能對滴灌帶和灌水器流道起到?jīng)_刷作用,具有抗堵塞能力強(qiáng),灌水均勻度高的特點(diǎn)[11-13]。楊玉超等[14]對比了35~80 kPa工作壓力下,射流脈沖三通與普通三通的水流振幅、脈沖頻率、灌水均勻性與流量偏差率。肖思強(qiáng)等[15]對不同滴灌帶長度和進(jìn)口水頭下射流三通與普通三通的灌水均勻系數(shù)和流量偏差率進(jìn)行了研究。目前對滴灌灌水器堵塞類型、形成機(jī)理及防治措施方面的研究較多[16-18],毛管水力設(shè)計(jì)方法的研究較為成熟[19-22],但未有支管與毛管的射流三通組合試驗(yàn)研究。
因此本文基于射流附壁和切換原理設(shè)計(jì)了一種支管射流三通,與毛管射流三通組合,構(gòu)建4種灌水小區(qū),分析支毛管安裝射流三通對脈沖水流灌水器水力性能的影響,旨在為射流技術(shù)在脈沖滴灌系統(tǒng)的研究、開發(fā)與應(yīng)用提供理論依據(jù)。
試驗(yàn)裝置包括支管射流三通、毛管射流三通、普通三通、單相自吸泵、高速攝影相機(jī)、管路、渦流流量計(jì)、量筒、壓力表與閥門等。支管射流三通由進(jìn)水段、射流元件、出口段組成,其中射流元件是射流三通的核心部件[23]。射流元件包括收縮段、導(dǎo)流段、噴嘴、射流空間、左右側(cè)壁、輸出口、分流劈和左右輸出道[22],如圖1。射流三通利用射流附壁[24]及負(fù)載反饋切換技術(shù)[25-26]形成脈沖水流,從而實(shí)現(xiàn)水流在左右輸出道之間的往復(fù)運(yùn)動(dòng)。工程應(yīng)用時(shí),射流三通的進(jìn)水口與灌溉管路上游端相連,出水口與灌溉管路下游端相連。當(dāng)灌溉管道中的壓力水流通過進(jìn)水段進(jìn)入射流元件時(shí),假設(shè)水流先附壁于左側(cè)壁,由于射流存在卷吸作用[27-28],在左側(cè)壁面產(chǎn)生低壓渦流區(qū)。低壓通過控制道傳遞到右側(cè)壁,從而導(dǎo)致左右側(cè)壁之間形成壓力差,對射流產(chǎn)生向右的推力。當(dāng)壓力差達(dá)到一定程度時(shí),射流發(fā)生偏轉(zhuǎn),附壁于右側(cè)壁,并沿右側(cè)壁下方的右輸出道流出。同理,當(dāng)水流附壁于右側(cè)壁時(shí),由于卷吸作用產(chǎn)生的壓力差,射流向左偏轉(zhuǎn)附壁于左側(cè)壁。如此循環(huán)往復(fù),分別在射流三通的左右輸出道形成一定頻率與振幅的脈沖水流,水流流出輸出道進(jìn)入滴灌帶后,滴灌帶內(nèi)亦形成相同頻率的脈沖水流。
注:D為進(jìn)口內(nèi)直徑,mm;W為噴嘴寬度,mm;k為進(jìn)口深度,mm;S為位差,mm;cw為控制道內(nèi)直徑,mm;H為劈距,mm;β為側(cè)壁傾角,(°);r為劈尖半徑,mm;or為外流道半徑,mm;iow為出口內(nèi)直徑,mm。
本試驗(yàn)中普通支管三通采用內(nèi)徑32 mm的T型三通,普通毛管三通采用內(nèi)徑16 mm的T型三通,支管射流三通結(jié)構(gòu)與毛管射流三通基本尺寸如表1所示。
表1 支管與毛管射流三通尺寸
根據(jù)支毛管三通采用射流三通或普通三通的不同安裝方式,構(gòu)建了4種灌水小區(qū),每個(gè)小區(qū)試驗(yàn)重復(fù)3次取平均值(I,支毛管均為射流三通;II,支管為射流三通、毛管為普通三通;III,支管為普通三通、毛管為射流三通;IV,支毛管均為普通三通)。小區(qū)毛管鋪設(shè)長度為60 m,支管進(jìn)口水頭設(shè)定為9.5、12、14、15.5 m(對應(yīng)毛管進(jìn)口水頭為6、8、10、12 m)。試驗(yàn)所用毛管為華維節(jié)水有限公司生產(chǎn)的內(nèi)鑲式滴灌帶,滴頭間距為30 cm,滴灌帶內(nèi)徑16 mm,10 m額定水頭下滴頭流量為2.7 L/h,灌水器流量-壓力關(guān)系式為=0.215P0.549(為滴頭流量,L/h;P為滴頭出水壓力,kPa),試驗(yàn)裝置如圖2所示。
圖2 灌水小區(qū)滴灌試驗(yàn)系統(tǒng)示意圖
在不同支管進(jìn)口水頭進(jìn)行試驗(yàn),確定支管三通的進(jìn)口水頭和觀察脈沖特性;選用OLYMPUS 生產(chǎn)的i-SPEED 3型攝像機(jī)(幀率10 000 f/s,焦距為50 mm)拍攝壓力表指針擺動(dòng)情況,記錄脈沖頻率與壓力最值。試驗(yàn)時(shí)間為10 min,所有毛管每15個(gè)滴頭設(shè)置1個(gè)流量監(jiān)測點(diǎn),監(jiān)測點(diǎn)流量為左1和左2(或右1和右2)毛管相同位置滴頭流量的平均值。在支管三通出口處安裝流量計(jì),支管三通出口流量由試驗(yàn)前后流量計(jì)數(shù)值的差值得出,灌水小區(qū)總流量為支管三通兩側(cè)出口流量之和。
灌水均勻系數(shù)與流量偏差率是衡量滴灌系統(tǒng)灌水質(zhì)量的一個(gè)重要參數(shù),使用克里斯琴森[29]公式表示如下:
流量偏差率[30-31]計(jì)算公式為
式中q為滴頭流量偏差率,%;max為灌水小區(qū)內(nèi)滴頭最大流量,L/h;min為灌水小區(qū)內(nèi)滴頭最小流量,L/h;q為滴頭平均流量,L/h。
灌水小區(qū)沿程水頭損失計(jì)算公式為
式中h為沿程水頭損失,m;0為支管三通進(jìn)口水頭,m;max為毛管三通出口的最大水頭,m。
在滴灌帶鋪設(shè)長度為60 m、支管進(jìn)口水頭分別為9.5、12、14、15.5 m(對應(yīng)毛管進(jìn)口水頭為6、8、10、12 m)時(shí),4個(gè)灌水小區(qū)沿程各監(jiān)測點(diǎn)流量分布如圖3所示。當(dāng)支毛管三通均采用射流三通時(shí),毛管滴頭流量在1.2~2.2 L/h之間。灌水小區(qū)滴頭流量呈中間高兩端低不完全對稱趨勢,這是因?yàn)楣嗨^(qū)從滴灌帶首部至滴灌帶尾部沿程存在水頭損失,Ⅰ號灌水小區(qū)滴灌帶首部與尾部流量差均最小,說明其滴灌帶沿程水頭損失最??;由于三通制造工藝上的誤差與試驗(yàn)系統(tǒng)誤差,三通兩端流量曲線不完全對稱。
注:Ⅰ,支管和毛管均為射流三通;Ⅱ,支管為射流三通及毛管為普通三通;Ⅲ,支管為普通三通及毛管為射流三通;Ⅳ,支管和毛管均為普通三通。橫坐標(biāo)數(shù)值正號表示滴頭在三通出口右側(cè),負(fù)號表示滴頭在三通出口左側(cè)。下同。
當(dāng)支管進(jìn)口水頭分別為9.5、12、14、15.5 m時(shí),4個(gè)灌水小區(qū)總流量大小關(guān)系為Ⅰ號灌水小區(qū)<Ⅱ、Ⅲ號灌水小區(qū)<Ⅳ號灌水小區(qū)(表2)。由圖3c看出,由于Ⅰ號灌水小區(qū)支管與毛管中均為間歇不持續(xù)的脈沖水流,Ⅱ、Ⅲ號灌水小區(qū)毛管中亦為間歇不持續(xù)的脈沖水流,因此當(dāng)支管進(jìn)口水頭為14 m(毛管進(jìn)口水頭為10 m)時(shí),3個(gè)灌水小區(qū)滴頭流量小于10 m水頭下的額定流量(2.7 L/h);Ⅳ號灌水小區(qū)支管與毛管中均為持續(xù)恒壓水流,因此滴頭流量與額定滴頭流量較為接近。
表2 不同灌水小區(qū)監(jiān)測點(diǎn)流量統(tǒng)計(jì)
注:同行不同小寫字母表示不同小區(qū)處理間差異顯著(<0.05)。下同。
Note: Different letters in same line indicate significant difference among different districts (<0.05). Same as below.
調(diào)節(jié)支管三通進(jìn)口閥門,監(jiān)測不同進(jìn)口水頭下對應(yīng)的支管三通出口流量,并擬合4個(gè)灌水小區(qū)的支管三通出口流量和壓力關(guān)系式,如圖4所示,4個(gè)灌水小區(qū)支管三通出口流量與壓力均呈非線性冪函數(shù)關(guān)系(2>0.96),RMSE<28 L/h,遠(yuǎn)小于流量均值801.72 L/h,說明流量與壓力之間的關(guān)系采用冪函數(shù)擬合的精度較高。
圖4 各灌水小區(qū)支管三通出口流量-壓力關(guān)系式
監(jiān)測點(diǎn)流量最大值與最小值的差值(即極差)能夠反映灌水小區(qū)灌溉均勻性,4個(gè)灌水小區(qū)各流量監(jiān)測點(diǎn)數(shù)據(jù)如表2所示。按式(1)和式(2)計(jì)算在滴灌帶鋪設(shè)長度為60 m,毛管三通進(jìn)口水頭分別為6、8、10、12 m時(shí)4個(gè)灌水小區(qū)的灌水均勻度,結(jié)果如圖5所示。通過對比可以看出,在上述4種毛管三通進(jìn)口水頭下,Ⅰ號灌水小區(qū)灌水均勻系數(shù)95.88%~98.56%之間,在比其他3個(gè)灌水小區(qū)提高了1.02%~4.43%;流量偏差率流量偏差率在8.35%~15.14%之間,比其他3處理降低0.46%~5.72%;在同一灌水小區(qū)中,隨著毛管進(jìn)口水頭變大,灌水均勻系數(shù)總體呈上升趨勢,流量偏差率總體呈下降趨勢。
圖5 安裝射流三通后各灌水小區(qū)灌水均系數(shù)和流量偏差率
因?yàn)棰裉柟嗨^(qū)支毛管三通均為射流三通,支毛管內(nèi)能夠誘發(fā)形成間歇性水流,可同時(shí)對支管、毛管以及灌水器流道起到?jīng)_刷作用,因此灌水均勻性最好。Ⅳ號灌水小區(qū)支管與毛管均為普通三通,支管與毛管內(nèi)均是持續(xù)恒壓水流,無脈沖效果,所以灌水均勻性最差。Ⅱ號灌水小區(qū)支管是射流三通,支管內(nèi)與毛管進(jìn)口處是脈沖間歇水流,因?yàn)槠涿苁瞧胀ㄈǎ瑢λ鳠o脈沖效果,因此毛管內(nèi)是與支管相同頻率的脈沖間歇水流;Ⅲ號灌水小區(qū)支管是普通三通,支管內(nèi)與毛管進(jìn)口處是持續(xù)恒壓水流,因?yàn)槠涿苁巧淞魅?,其毛管?nèi)是脈沖間歇水流,故Ⅱ號灌水小區(qū)灌水均勻性總體上優(yōu)于Ⅲ號灌水小區(qū),且介于Ⅰ、Ⅳ號灌水小區(qū)之間。這驗(yàn)證了在支管與毛管組合試驗(yàn)中,支毛管均安裝射流三通時(shí)能提高灌水小區(qū)的灌水均勻系數(shù)和降低流量偏差率。
將支管三通進(jìn)口水頭分別設(shè)定為9.5、12、14、15.5 m,灌水小區(qū)的脈沖頻率與水頭損失如表3所示。在支管射流三通進(jìn)口水頭分別為9.5、12、14、15.5 m時(shí),Ⅰ、Ⅱ、Ⅲ號灌水小區(qū)中支毛管射流三通脈沖頻率隨支管進(jìn)口水頭增加而遞增,這是由于支管進(jìn)口水頭越大,流速與水流動(dòng)能越大,射流到達(dá)射流三通劈尖的時(shí)間越短且水流在射流三通左右流道切換越快。在上述4種支管進(jìn)口水頭下,Ⅰ號灌水小區(qū)的水頭損失在0.9~1.6 m之間,與其他3個(gè)灌水小區(qū)無顯著差異(>0.05);其脈沖頻率比Ⅱ號灌水小區(qū)小0.32~0.45 Hz;比Ⅲ號灌水小區(qū)小0.14~0.30 Hz(<0.05)。
表3 安裝射流三通后各灌水小區(qū)滴灌系統(tǒng)水力特性
本文設(shè)計(jì)了一種支管射流三通,并與毛管射流三通、普通三通開展了組合試驗(yàn)研究,得出以下結(jié)論。
1)在毛管射流三通進(jìn)口水頭為10 m時(shí),按照射流三通的Ⅰ、Ⅱ、Ⅲ號灌水小區(qū)均存在脈沖水流,因此滴頭流量均小于額定滴頭流量(2.7 L/h),其中支毛管均安裝射流三通的Ⅰ號灌水小區(qū)滴頭流量最??;而按裝普通三通的Ⅳ號灌水小區(qū)中為恒流,滴頭流量與額定滴頭流量相近。
2)支毛管均采用射流三通的Ⅰ號灌水小區(qū)灌水均勻度最高,與Ⅱ、Ⅲ、Ⅳ號灌水小區(qū)相比,其灌水均勻系數(shù)提高1.27%~4.43%,流量偏差率降低0.46%~5.72%,灌水均勻度提高較顯著。
3)灌水小區(qū)中支毛管三通的脈沖頻率隨射流三通進(jìn)口水頭增加呈遞增關(guān)系,Ⅰ號灌水小區(qū)支管三通進(jìn)口至毛管三通出口段的水頭損失與其他3個(gè)小區(qū)無顯著差異(>0.05),且其滴灌帶首部與尾部滴頭流量差最小,說明滴灌帶沿程水頭損失最小。
因此,在滴灌帶長度為60 m、支管進(jìn)口水頭9.5、12、14、15.5 m條件下的組合試驗(yàn)中,灌水小區(qū)支毛管最優(yōu)組合為支毛管均采用射流三通,在不損失水頭的情況下,能夠提高灌水小區(qū)的灌水均勻度。本文研究了滴灌帶長度60 m、滴灌時(shí)間10 min情況下灌水小區(qū)水力性能,當(dāng)灌溉時(shí)間延長時(shí),由于水中含有一定雜質(zhì),灌水均勻度會(huì)有一定程度的降低。后期會(huì)開展延長灌溉時(shí)間和滴灌帶長度對灌水均勻度影響的研究。
[1] 袁壽其,李紅,王新坤. 中國節(jié)水灌溉裝備發(fā)展現(xiàn)狀、問題、趨勢與建議[J]. 排灌機(jī)械工程學(xué)報(bào),2015,33(1):78-92. Yuan Shouqi, Li Hong, Wang Xinkun. Status, problems, trends and suggesstions for water-saving irrigation equipment in China[J]. Journal of Drainage and Irrigation Engineering, 2015, 33(1): 78-92. (in Chinese with English abstract)
[2] 徐林,李楊瑞,黃海榮. 地下滴灌技術(shù)的研究進(jìn)展[J]. 廣西農(nóng)業(yè)科學(xué),2008,39(6):800-803. Xu Lin, Li Yangrui, Huang Hairong. Advance in subsurface drip irrigation[J]. Guangxi Agricultural Sciences, 2008, 39(6): 800-803. (in Chinese with English abstract)
[3] 范文波,吳普特,馬楓梅. 膜下滴灌技術(shù)生態(tài)-經(jīng)濟(jì)與可持續(xù)性分析:以新疆瑪納斯河流域棉花為例[J]. 生態(tài)學(xué)報(bào),2012,32(23):7559-7567. Fan Wenbo, Wu Pute, Ma Fengmei. Socio-economic impacts of under-film drip irrigation technology and sustainable assessment: A case in the Manas River Basin, Xinjiang, China[J]. Acta ecologica sinica, 2012, 32(23): 7559-7567. (in Chinese with English abstract)
[4] 韓啟彪,馮紹元,曹林來,等. 滴灌技術(shù)與裝備進(jìn)一步發(fā)展的思考[J]. 排灌機(jī)械工程學(xué)報(bào),2015,33(11):1000-1005. Han Qibiao, Feng Shaoyuan, Cao Linlai, et al. Thinking about further development of drip irrigation technology and equipment[J]. Journal of Drainage and Irrigation Engineering, 2015, 33(11): 1000-1005. (in Chinese with English abstract)
[5] 徐文靜,王翔翔,施六林,等. 中國節(jié)水灌溉技術(shù)現(xiàn)狀與發(fā)展趨勢研究[J]. 中國農(nóng)學(xué)通報(bào),2016,32(11):184-187. Xu Wenjing, Wang Xiangxiang, Shi Liulin, et al. Current condition and developing tendency of water-saving irrigation technology in China[J]. Chinese Agronomy Science Bulletin, 2016, 32(11): 184-187. (in Chinese with English abstract)
[6] 何振嘉,傅渝亮,王博,等. 涌泉根灌不同濃度肥液入滲特性及土壤濕潤體模型研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(24):90-99. He Zhenjia, Fu Yuliang, Wang Bo, et al. Infiltration characteristics and wetting body model of bubbled-root irrigation under different fertilizer concentration[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(24): 90-99. (in Chinese with English abstract)
[7] 劉燕芳,李丹,吳普特,等. 不同類型灌水器在硬水滴灌條件下的堵塞特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(3):96-102. Liu Yanfang, Li Dan, Wu Pute, et al. Clogging characteristics of different emitters in drip irrigation with hard water[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34 (3): 96-102. (in Chinese with English abstract)
[8] 徐堯權(quán). 動(dòng)態(tài)水壓滴灌條件下土壤水分運(yùn)移特性研究[D]. 楊凌:西北農(nóng)林科技大學(xué),2017:5. Xu Yaoquan. Study on Soil Moisture Transport Characteristics under Dynamic Water Pressure Drip Irrigation[J]. Yangling: Northwest Agricultural and Forestry University , 2017:5. (in Chinese with English abstract)
[9] 姚立紅,吳江,張謙脈,等. 脈沖供水虹吸式滴灌控制裝置[J]. 北京林業(yè)大學(xué)學(xué)報(bào),1998,20(5):70-74. Yao Lihong, Wu Jiang, Zhang Qianmai, et al. A siphon controlling device for impulse water supplying dripping system[J]. Journal of Beijing Forestry University, 1998, 20(5): 70-74. (in Chinese with English abstract)
[10] 王新坤,肖思強(qiáng),樊二東,等. 滴灌毛管首部射流脈沖三通水力特性試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(12):116-121. Wang Xinkun, Xiao Siqiang, Fan Erdong, et al. Hydraulic performance experiment of lateral pipe jet-pulse tee[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33 (12): 116-121. (in Chinese with English abstract)
[11] 王聰,蘆剛,劉潔,等. 波動(dòng)水壓滴灌系統(tǒng)設(shè)計(jì)與實(shí)驗(yàn)分析[J]. 中國農(nóng)村水利水電,2012(6):69-72. Wang Cong, Lu Gang, Liu Jie, et al. Design of dynamic pressure drip irrigation system and experimental analysis[J]. Chinese Rural Water and Hydropower, 2012(6): 69-72. (in Chinese with English abstract)
[12] Hu Juan, Wu Jinggui, Qu Xiaojing. Decomposition characteristics of organic materials and their effects on labile and recalcitrant organic carbon fractions in a semi-arid soil under plastic mulch and drip irrigation[J]. Journal of Arid Land, 2018, 10(1): 115-128.
[13] 冀榮華,王婷婷,祁力鈞,等. 基于HYDRUS-2D的負(fù)壓灌溉土壤水分入滲數(shù)值模擬[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(4):113-119. Ji Ronghua, Wang Tingting, Qi Lijun, et al. Numerical simulation of soil moisture infiltration under negative pressure irrigation based on HYDRUS-2D[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(4): 113-119. (in Chinese with English abstract)
[14] 楊玉超,王新坤,朱燕翔,等. 基于射流脈沖三通的滴灌帶實(shí)驗(yàn)研究[J]. 中國農(nóng)村水利水電,2015(9):111-118. Yang Yuchao, Wang Xinkun, Zhu Yanxiang, et al. An experimental study of the jet pulse tee based on drip irrigation pipes[J]. Chinese Rural Water and Hydropower, 2015(9): 111-118. (in Chinese with English abstract)
[15] 肖思強(qiáng),王新坤,徐勝榮,等. 射流脈沖三通毛管灌水均勻性試驗(yàn)研究[J]. 排灌機(jī)械學(xué)報(bào),2018,36(7):1-7.Xiao Siqiang, Wang Xinkun, Xu Shengrong, et al. An experimental study on irrigation uniformity of lateral pipe with jet-pulse tees[J]. Journal of Drainage and Irrigation Engineering, 2018, 36(7): 1-7. (in Chinese with English abstract)
[16] 李治勤,陳剛,楊曉池. 渾水引起迷宮灌水器物理堵塞因素實(shí)驗(yàn)研究[J]. 西安理工大學(xué)學(xué)報(bào),2006,22(4):395-398. Li Zhiqin, Chen Gang, Yang Xiaochi. Experimental study of physical clogging factor of labyrinth emitter caused by muddy water[J]. Journal of Xi'an University of Technology, 2006, 22(4): 395-398. (in Chinese with English abstract)
[17] 牛文全,劉璐. 渾水特性與水溫對滴頭抗堵塞性能的影 響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(3):39-45.Niu Wenquan, Liu Lu. Influence of sediment concentration and water temperature of muddy water on emitter clogging[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(3): 39-45. (in Chinese with English abstract)
[18] 李久生,陳磊,栗巖峰. 地下滴灌灌水器堵塞特性田間評估[J]. 水利學(xué)報(bào),2008,39(10):1272-1278. Li Jiusheng, Chen Lei, Li Yanfeng. Field evaluation of emitter clogging in subsurface drip irrigation system[J]. Journal of Hydraulic Engineering, 2008, 39(10): 1272-1278. (in Chinese with English abstract)
[19] 王新坤,蔡煥杰. 微灌毛管水力解析及優(yōu)化設(shè)計(jì)的遺傳算法研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2005,36(8):55-58. Wang Xinkun, Cai Huanjie. Study on genetic algorithm of hydraulic analysis and optimum design for micro-irrigation laterals[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(8): 55-58. (in Chinese with English abstract)
[20] 高世凱. 射流振蕩三通與滴灌毛管脈沖特性研究[D]. 鎮(zhèn)江:江蘇大學(xué),2013.Gao Shikai. Study on Pulse Characteristics of Fluidic Oscillating Three Way and Drip Irrigation Capillary [D]. Zhenjiang: Jiangsu University, 2013. (in Chinese with English abstract)
[21] 康躍虎. 微灌系統(tǒng)水力學(xué)解析和設(shè)計(jì)[M]. 西安:陜西科學(xué)技術(shù)出版社,1999.
[22] 許鵬,王新坤,高世凱,等. 射流振蕩三通與滴灌毛管脈沖初步試驗(yàn)研究[J]. 節(jié)水灌溉,2014(3):1-4. Xu Peng, Wang Xinkun, Gao Shikai, et al. Preliminary test of jet oscillation tee and pulse flow in drip irrigation lateral pipe[J]. Water Saving Irrigation, 2014(3): 1-4. (in Chinese with English abstract)
[23] 王新坤. 一種射流三通:CN103203293A[P]. 2013-07-17.
[24] 王金枝,肖明,吳曉武. 射流卷吸作用影響射流偏轉(zhuǎn)的理論分析[J]. 山東電力技術(shù),2000(3):4-6. Wang Jinzhi, Xiao Ming, Wu Xiaowu. Theoretical analysis of the jet deflection influenced by entrainment[J]. Shandong Electric Power Technology, 2000(3): 4-6. (in Chinese with English abstract)
[25] 鄒久朋,劉學(xué)武,程蛟,等. 射流附壁振蕩器能效分析與提升[J]. 大連理工大學(xué)學(xué)報(bào),2017,57(3):233-240. Zou Jiupeng, Liu Xuewu, Cheng Jiao, et al. Analysis and improvement of energy efficiency of jet wall-attached oscillator[J]. Journal of Dalian University of Technology, 2017, 57(3): 233-240. (in Chinese with English abstract)
[26] 汪志明,薛亮. 射流元件附壁與切換流動(dòng)規(guī)律研究[J]. 水動(dòng)力學(xué)研究與進(jìn)展A輯,2017,22(3):352-357. Wang Zhiming, Xue Liang. Study on the attached flow and alteration flow character in fluidic element of down hole pressure intensifier[J]. Journal of Hydrodynamic A, 2017, 22(3): 352-357. (in Chinese with English abstract)
[27] 劉潔,王聰,魏青松,等. 波動(dòng)水壓參數(shù)對灌水器水力性能影響實(shí)驗(yàn)[J]. 河海大學(xué)學(xué)報(bào),2014,42(4):361-366. Liu Jie, Wang Cong, Wei Qingsong, et al. Experimental study of effect of fluctuating water pressure factors on hydraulic properties of drip emitters[J]. Journal of Hohai University, 2014, 42(4): 361-366. (in Chinese with English abstract)
[28] 于洪仕,張濤. 漩渦的卷吸作用對多孔孔板流量計(jì)精度的影響[J]. 天津大學(xué)學(xué)報(bào),2016,49 (5):465-471. Yu Hongshi, Zhang Tao. Influence of the entrainment of vortex on the accuracy of multi-hole orifice flow meter[J]. Journal of Tianjin University, 2016, 49(5): 465-471. (in Chinese with English abstract)
[29] 中華人民共和國國家標(biāo)準(zhǔn).微灌工程技術(shù)規(guī)范:GB/T 50485-2009[S]. 北京:中國計(jì)劃出版社,2009.
[30] 張林,吳普特,朱德蘭,等. 基于制造偏差的滴灌系統(tǒng)綜合流量偏差率[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(12):135-139. Zhang Lin, Wu Pute, Zhu Delan, et al. Integrated flow deviation rate of drip irrigation system based on manufacturing deviation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44 (12): 135-139. (in Chinese with English abstract)
[31] 鞠學(xué)良,吳普特,朱德蘭,等. 基于樣本流量偏差率的微灌灌水均勻度評價(jià)方法[J]. 排灌機(jī)械工程學(xué)報(bào),2016,34(2):173-178. Ju Xueliang, Wu Pute, Zhu Delan, et al. Estimation of micro- irrigation water application uniformity based on sample emitter flow variation[J]. Journal of Drainage and Irrigation Engineering, 2016, 34(2): 173-178. (in Chinese with English abstract)
Hydraulic performance of drip irrigation system with branch and lateral pipes installed jet-pulse tee
Wang Xinkun, Xue Zilong, Xiao Siqiang, Fan Erdong, Xu Shengrong, Wang Xuan, Zhang Chenxi
(212013,)
Drip irrigation has the problems of easy blockage and low irrigation uniformity under low head (less than 10 m). Pulse drip irrigation technology can generate periodic and turbulent pulsed flow, which is beneficial to improve the anti-blockage ability and irrigation uniformity of the emitter. In order to analyze the influence of pulsed flow on the hydraulic performance of drip irrigation system, aranch jet-pulse tee was designed based on the principle of wall attachment and switching of jet, and a combined test with lateral jet-pulse tee was carried out. A total 4 irrigation districts were constructed according to different combinations, of which the branch and lateral pipe tees of No. I irrigation district were both jet-pulse tees; in No.II irrigation district, the branch pipe was jet-pulse tee and the lateral pipe was ordinary jet tee; in No. III irrigation district, the branch pipe was ordinary jet tee and the lateral pipe was jet-pulse tee; and the branch and lateral pipe tees of No. IV irrigation district were both ordinary jet tees. In irrigation district, the length of lateral pipe was 60 m, and the inlet head of branch tee was set to 9.5, 12, 14 and 15.5 m, respectively. Turbine flowmeter was installed at branch pipe tee outlet and lateral pipe tee inlet to record branch pipe tee outlet flow rate and lateral pipe tee inlet flow rate, respectively. The flow rate was the difference between the initial value and the final value in the flowmeter test. The high-speed camera captured the oscillation of pressure gauge pointer of lateral jet-pulse tee outlet to record pulse frequency and maximum pressure. Head loss was the difference between the inlet pressure of branch tee and the maximum outlet pressure of lateral pipe tee. The results showed that the total flow rate of No. I irrigation district was the smallest and the dripper flow rate was less than the rated value (2.7 L/h) because the No. I irrigation district with jet-pulse tees installed in both branch and lateral pipes had intermittent pulsed flow. The pressure and flow rate at the outlet of branch tee followed power function relationships with the fitting degree higher than 0.96 and the root mean square error smaller than 28 L/h. The irrigation uniformity coefficient of irrigation system in No. I irrigation districts ranged from 95.88% to 98.56%, which was higher than the other 3 irrigation districts by 1.02%-4.43% respectively. The flow deviation rate ranged from 8.35% to 15.14% in No. I irrigation districts, which was lower than the others by 0.46%-5.72%. It proves that the irrigation uniformity of No. I irrigation districts is the best. In No. I, II and III irrigation districts, the pulse frequency of branch and lateral pipe jets increased with the increase of the inlet head. Head loss from branch tee inlet to lateral pipe tee outlet in No. I irrigation district was 0.9-1.6 m under different branch pipe tee inlet heads, which was not significantly different from the other systems. The results of this study will contribute to the selection of the optimal combination mode of branch pipe tee and lateral pipe tee in irrigation district, and provide valuable information for the research, development and application of jet technology in pulsed drip irrigation system. In the future research, it is necessary to test the loss along the lateral pipe, observe the distribution of pressure, flow rate and pulse performance in the lateral pipe, and further evaluate the uniformity and anti-clogging ability of irrigation.
pressure; flow rate; jet-pulse tee; hydraulic performance; branch and lateral pipes; uniformity; pulse frequency; head loss
2018-09-28
2019-03-10
國家自然科學(xué)基金(51579116);江蘇省科技計(jì)劃項(xiàng)目(BE2018373)
王新坤,研究員,博士生導(dǎo)師,主要從事節(jié)水灌溉理論與新技術(shù)研究。Email:xjwxk@126.com
10.11975/j.issn.1002-6819.2019.08.016
S275.6
A
1002-6819(2019)-08-0134-06
王新坤,薛子龍,肖思強(qiáng),樊二東,徐勝榮,王 軒,張晨曦. 支毛管安裝射流三通的滴灌系統(tǒng)水力性能研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(8):134-139. doi:10.11975/j.issn.1002-6819.2019.08.016 http://www.tcsae.org
Wang Xinkun, Xue Zilong, Xiao Siqiang, Fan Erdong, Xu Shengrong, Wang Xuan, Zhang Chenxi. Hydraulic performance of drip irrigation system with branch and lateral pipes installed jet-pulse tee[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(8): 134-139. (in Chinese with English abstract) doi:10.11975/j.issn. 1002-6819.2019.08.016 http://www.tcsae.org