華 博,趙建軍,劉長(zhǎng)卿,杜岳峰,毛恩榮,宋正河
?
重型拖拉機(jī)電液提升器插裝式比例提升閥性能仿真與試驗(yàn)
華 博1,趙建軍2,劉長(zhǎng)卿1,杜岳峰1,毛恩榮1,宋正河1※
(1. 中國(guó)農(nóng)業(yè)大學(xué)現(xiàn)代農(nóng)業(yè)裝備優(yōu)化設(shè)計(jì)北京市重點(diǎn)實(shí)驗(yàn)室,北京 100083; 2. 中國(guó)石化石油工程技術(shù)研究院,北京 100101)
為更準(zhǔn)確地反映重型拖拉機(jī)電液提升器比例提升閥的本質(zhì)特性,該文剖析了比例提升閥中各液壓組件的內(nèi)部結(jié)構(gòu)和工作機(jī)理,并應(yīng)用現(xiàn)代控制理論狀態(tài)空間法建立了基于邊界條件的比例提升閥非線性數(shù)學(xué)模型,應(yīng)用MATLAB/ Simulink搭建其仿真模型,基于四階龍格庫塔算法對(duì)其動(dòng)、靜態(tài)性能進(jìn)行了仿真分析,揭示了其內(nèi)部閥芯的運(yùn)動(dòng)規(guī)律。仿真結(jié)果表明:在靜態(tài)性能方面,比例提升閥平均負(fù)載補(bǔ)償壓力約為1.5 MPa,流量基本穩(wěn)定在62 L/min附近,具有良好的負(fù)載壓力補(bǔ)償和穩(wěn)態(tài)調(diào)速特性;在動(dòng)態(tài)性能方面,比例提升閥系統(tǒng)輸出流量波動(dòng)受負(fù)載變化影響小,且具有良好的動(dòng)態(tài)調(diào)速性能?;陂]心式負(fù)載敏感液壓系統(tǒng)試驗(yàn)平臺(tái),開展了比例提升閥穩(wěn)態(tài)流量特性和動(dòng)態(tài)性能試驗(yàn),試驗(yàn)結(jié)果表明:比例提升閥靜態(tài)流量輸出平穩(wěn),回程誤差小于5%,當(dāng)負(fù)載階躍變化時(shí),比例提升閥可實(shí)時(shí)進(jìn)行壓力補(bǔ)償,補(bǔ)償壓力約為1.5 MPa,液壓沖擊小,具有良好的穩(wěn)態(tài)調(diào)速特性,滿足重型拖拉機(jī)電液提升器田間作業(yè)需求,該研究可為拖拉機(jī)液壓系統(tǒng)關(guān)鍵零部件建模仿真和試驗(yàn)分析提供參考。
拖拉機(jī);模型;比例提升閥;電液懸掛系統(tǒng);動(dòng)態(tài)特性
電液提升器作為拖拉機(jī)懸掛作業(yè)機(jī)組的關(guān)鍵液壓零部件,用于控制懸掛農(nóng)具的升降,其性能優(yōu)劣直接影響拖拉機(jī)田間作業(yè)質(zhì)量和效率[1-6]。目前,國(guó)內(nèi)拖拉機(jī)電液提升器核心控制閥性能已難以適應(yīng)復(fù)雜惡劣的田間作業(yè)環(huán)境。隨著螺紋插裝式電液比例閥發(fā)展日趨完善,其易維護(hù)、可靠性強(qiáng)和控制精度高等優(yōu)勢(shì)愈發(fā)明顯[7-11],已逐步取代傳統(tǒng)液壓閥成為拖拉機(jī)電液提升器核心控制閥設(shè)計(jì)的首選。
國(guó)內(nèi)外部分研究學(xué)者和研究機(jī)構(gòu)在比例閥結(jié)構(gòu)性能優(yōu)化、控制策略研究、建模分析和試驗(yàn)驗(yàn)證等方面進(jìn)行了大量研究。李明生等針對(duì)不同節(jié)流口的流量特性,建立了比例控制閥數(shù)學(xué)模型和仿真模型,得到了閥結(jié)構(gòu)和性能參數(shù)對(duì)開閉過程流量動(dòng)態(tài)特性的影響[12-15]。文獻(xiàn)[16]利用解析法經(jīng)拉普拉斯變換建立了優(yōu)先閥簡(jiǎn)化數(shù)學(xué)模型,基于Simulink仿真分析了設(shè)計(jì)變量;文獻(xiàn)[17]對(duì)建立的閥芯力平衡方程、流量方程在工作點(diǎn)附近進(jìn)行小增量線性化處理,利用拉氏變換建立數(shù)學(xué)模型,基于AMESim對(duì)影響閥動(dòng)靜態(tài)特性較大的3個(gè)參數(shù)進(jìn)行了仿真分析;文獻(xiàn)[18]對(duì)平衡閥數(shù)學(xué)方程進(jìn)行Laplace變換,得到平衡閥的動(dòng)態(tài)響應(yīng)特性方程,基于AMESim中的HCD建立動(dòng)態(tài)仿真模型,研究了平衡閥不同結(jié)構(gòu)參數(shù)對(duì)動(dòng)態(tài)性能的影響;文獻(xiàn)[19]采用傳遞函數(shù)法建立了高速開關(guān)閥的數(shù)學(xué)模型,并仿真計(jì)算了控制腔壓力響應(yīng)曲線;文獻(xiàn)[20-27]采用傳遞函數(shù)法構(gòu)建了閥控缸位置系統(tǒng)模型,液壓元件存在非線性、難以建立精確數(shù)學(xué)模型問題,利用AMESim和MATLAB/Simulink的各自優(yōu)勢(shì)建立了聯(lián)合仿真模型,進(jìn)行了仿真分析;文獻(xiàn)[28]在對(duì)液壓方程進(jìn)行線性化和拉氏變換后建立了比例流量閥簡(jiǎn)化數(shù)學(xué)模型,針對(duì)采用傳遞函數(shù)法分析存在困難的問題,利用SimulationX軟件建立了仿真模型,對(duì)閥性能特性進(jìn)行了分析。文獻(xiàn)[29]研究了提升閥系統(tǒng)的動(dòng)態(tài)建模技術(shù),基于傳遞函數(shù)法構(gòu)建了系統(tǒng)的非線性和線性模型,仿真分析了先導(dǎo)級(jí)入口面積對(duì)閥性能的影響。上述研究均只針對(duì)某種單一閥體進(jìn)行建模,而且在比例閥的建模過程中沒有充分考慮非線性因素和邊界條件的影響,在經(jīng)過線性化近似處理后,難以反映其本質(zhì)特性,降低了數(shù)學(xué)模型的準(zhǔn)確性。
為此,本文在前期研究結(jié)果和對(duì)提升閥工作原理充分理解的基礎(chǔ)上[30-31],選擇部分狀態(tài)變量,運(yùn)用狀態(tài)空間法建立基于邊界條件的比例提升閥非線性數(shù)學(xué)模型,模型充分考慮了所有非線性特征,符合液壓元件實(shí)際工作特點(diǎn);應(yīng)用MATLAB/Simulink搭建仿真模型,通過選擇合理的仿真參數(shù),基于四階龍格-庫塔算法對(duì)其動(dòng)、靜態(tài)性能進(jìn)行仿真分析;基于負(fù)載敏感液壓系統(tǒng)室內(nèi)試驗(yàn)平臺(tái),對(duì)電液提升器插裝式比例提升閥進(jìn)行了試驗(yàn)研究,通過與仿真結(jié)果進(jìn)行對(duì)比,驗(yàn)證了比例提升閥數(shù)學(xué)模型的正確性。
重型拖拉機(jī)電液提升器比例提升閥、下降閥液壓系統(tǒng)原理如圖1所示,比例下降閥即兩位兩通比例換向閥工作過程可以看作是提升過程的反向操作,本文主要針對(duì)比例提升閥作進(jìn)一步研究。比例提升閥由兩位三通比例換向閥、定差減壓閥以及阻尼孔組成,用于控制液壓缸提升懸掛農(nóng)具, 其額定壓力為20 MPa,額定流量為60 L/min。兩位三通比例換向閥和定差減壓閥選用螺紋 插裝閥,具有零泄漏、結(jié)構(gòu)緊湊、易維護(hù)和可靠性高等 優(yōu)點(diǎn)。
1. 單向閥 2. 球形梭閥 3,4. 固定節(jié)流閥 5. 定差減壓閥 6. 兩位三通比例換向閥 7. 直動(dòng)式溢流閥 8. 兩位兩通比例換向閥 9. 液壓缸
1. One-way valve 2. Spherical shuttle valve 3,4. Fixed throttle 5. Fixed differential pressure relief valve 6. 2 position-3 way proportional directional valve 7. Direct relief valve 8. 2 position-2 way proportional directional valve 9. Hydraulic cylinder
注:A為集成閥塊;P為供油壓力口;T為回油口;LSIN為負(fù)載壓力反饋輸入口;LSOUT為負(fù)載壓力反饋輸出口。
Note: A is integrated valve block, P is pressure inlet of oil, T is oil return port, LSINis feedback inlet of load pressure, LSOUTis feedback outlet of load pressure
圖1 電液提升器比例提升閥、下降閥液壓系統(tǒng)原理圖
Fig.1 Schematic diagram of hydraulic system for proportional raising valve and descending valve of electro-hydraulic hitch
當(dāng)兩位三通比例換向閥不通電時(shí),由其內(nèi)部的單向閥將提升液壓缸鎖止,安全溢流閥與兩位三通比例換向閥并聯(lián),從而限制液壓缸的最高工作壓力。在比例提升閥液壓系統(tǒng)回路中,由于采用定差減壓閥對(duì)兩位三通比例換向閥進(jìn)口壓力進(jìn)行了串聯(lián)壓力補(bǔ)償,所以液壓缸提升速度不受負(fù)載變化的影響,而只與換向閥閥口開度有關(guān),具有良好的速度剛性,宜用在重型拖拉機(jī)懸掛作業(yè)機(jī)組犁耕作業(yè)等負(fù)載波動(dòng)大、速度要求平穩(wěn)的大功率場(chǎng)合。
比例提升閥包括兩位三通比例換向閥、定差減壓閥及單向閥3部分,其中兩位三通換向閥是由1個(gè)兩位兩通換向閥與2個(gè)單向閥組成的復(fù)合閥,其內(nèi)部油路如圖2所示,針對(duì)兩位三通閥的建模過程已有相關(guān)研究[7-10],不再贅述。
圖2 兩位三通比例換向閥內(nèi)部油路圖
參照兩位三通閥的建模方法,基于壓力-流量方程、孔道流量連續(xù)性方程及閥芯力平衡方程,考慮閥芯運(yùn)動(dòng)過程中泄漏和液體壓縮量補(bǔ)償情況,分別建立定差減壓閥和單向閥的數(shù)學(xué)模型,并結(jié)合兩位三通閥,建構(gòu)比例提升閥的完整模型。電液提升比例換向閥的狀態(tài)方程如式(1)~式(5)所示。
邊界條件:
如果RCV<0,則RCV=0;如果RCV>RCVm則RCV=RCVm;
如果RCV=0,且RCV<0,則RCV=0;
如果RCV=RCVm,且RCV>0,則RCV=0;
如果RMV<0,則RMV=0;如果RMV>MVm,則RMV=MVm;
如果RPV
如果RMV=0,且RMV<0或RMV=MVm且RMV>0則RMV=0;
如果RPV=RMV,且RPV 如果RPV=PVm,且RPV>0則RPV=0; 如果RPV<0,則RPV=0;如果RPV>PVm,則PRV=PRVm; 如果RPV=0,且RPV<0,則RPV=0; 如果RPV=PRVm,且PRV>0則PRV=0; 其中 式(1)~式(5)中,e為油液的體積彈性模量,取e=900×106Pa;LS為兩位兩通換向閥與出油單向閥間油腔(包括壓力傳感油道)的油液容積,1.41′10–5m3;RCV為出油單向閥(錐閥式)閥座孔直徑,0.014 5 m;RCV為出油單向閥閥芯位移量,m;S2為通過兩位兩通換向閥出油口的油液流量,m3/s;RCV為出油單向閥的閥芯半錐角,0.785 4 rad;L為比例提升控制閥主閥進(jìn)口壓力(即提升液壓缸的工作壓力),Pa;dO1為兩位三通換向閥與定差減壓閥間阻尼孔的流量系數(shù),dO1≈0.82;O1為兩位三通換向閥與定差減壓閥間阻尼孔直徑,0.000 8 m;S2為兩位兩通換向閥的出口油液壓力,Pa;PRV1為定差減壓閥低壓控制油腔油液壓力,Pa;PV0為比例提升控制閥先導(dǎo)閥前腔在先導(dǎo)閥關(guān)閉時(shí)的油液容積,3.13′10–6m3;PV為比例提升控制閥先導(dǎo)閥閥座直徑,5.5′10–4m;RPV為兩位三通換向閥先導(dǎo)閥閥芯提升量(等于閥芯位移量),m;MV1為比例提升控制閥主閥閥芯導(dǎo)向部分直徑,0.019 m;dPV為比例提升控制閥先導(dǎo)閥節(jié)流口流量系數(shù),對(duì)于無倒角的圓錐閥口,dPV≈0.76;PV為比例提升控制閥先導(dǎo)閥閥芯半錐角,0.5404 rad;RPV為兩位三通換向閥先導(dǎo)閥前腔油液壓力,Pa;PRV為定差減壓閥閥芯直徑,0.017 5 m;PRV為定差減壓閥閥芯位移量(出油節(jié)流口關(guān)閉方向?yàn)檎较颍琺;PRV1為定差減壓閥低壓控制油腔油液壓力,Pa;dO0為定差減壓閥低壓控制油腔旁通阻尼孔的流量系數(shù),dO0≈0.82;O0為定差減壓閥低壓控制油腔旁通阻尼孔直徑,0.000 2 m;為油液密度,=900 kg/m3;S1為定差減壓閥出油口至兩位三通換向閥進(jìn)油口之間油腔的初始油液容積,m3。MV1為比例提升控制閥主閥閥芯導(dǎo)向部分直徑,0.019 m;MV為比例提升控制閥主閥閥孔直徑,0.015 m;RMV為兩位三通比例換向閥主閥閥芯位移量,m;dPRV為定差減壓閥出油節(jié)流口流量系數(shù),dPRV=0.65;PRV為定差減壓閥圓孔式節(jié)流孔數(shù)目,6;為定差減壓閥節(jié)流圓孔直徑,0.006 2 m;PRV為定差減壓閥節(jié)流口初始開口量,0.005 m;dMV,主閥節(jié)流口流量系數(shù),dMV=0.65;MV為比例提升控制閥主閥小矩形開口時(shí)的閥口面積梯度,0.010 9 m;MV0為比例提升控制閥主閥開口重疊量(即不靈敏區(qū)),m;MV1為比例提升控制閥主閥小矩形開口時(shí)的最大開口量,m;MV1為比例提升控制閥主閥閥芯導(dǎo)向部分直徑,m;PV為比例提升控制閥先導(dǎo)閥閥芯及其連接件的總質(zhì)量,0.031 kg;RPVD為兩位三通比例換向閥電磁鐵對(duì)先導(dǎo)閥閥芯的電磁力,N;MPV0為比例提升控制閥先導(dǎo)閥閥芯相對(duì)主閥閥芯運(yùn)動(dòng)的粘性阻尼系數(shù),N·s/m;PV2為比例提升控制閥先導(dǎo)閥閥芯的導(dǎo)向長(zhǎng)度,0.006 4 m;PV為比例提升控制閥電磁鐵鐵芯運(yùn)動(dòng)的粘性阻尼系數(shù),N·s/m;PV為比例提升控制閥先導(dǎo)閥彈簧剛度,8 742 N/m;PV0為比例提升控制閥先導(dǎo)閥彈簧預(yù)壓縮量,0.000 4 m;vPV為比例提升控制閥先導(dǎo)閥節(jié)流口的流速系數(shù),vPV≈0.980。fRMV,RMVs,fRCV,s2,fPRV如式(6)~(10)所示。 式(6)~(10)中,MV為比例提升控制閥主閥閥芯運(yùn)動(dòng)粘性阻尼系數(shù),N·s/m;:vMV為比例提升控制閥主閥節(jié)流口的流速系數(shù),vMV≈0.980;dRCV為兩位三通比例換向閥出油單向閥節(jié)流口流量系數(shù),dPV0=0.76;RCV為兩位三通比例換向閥出油單向閥閥芯和彈簧等效質(zhì)量,0.022 5 kg;RCV為兩位三通比例換向閥中出油單向閥閥芯運(yùn)動(dòng)的粘性阻尼系數(shù),N·s/m;RCV為兩位三通比例換向閥中出油單向閥彈簧剛度,N/m;RCV為兩位三通比例換向閥中出油單向閥閥芯位移量(向下運(yùn)動(dòng)為正方向),m。RCV0為兩位三通比例換向閥中出油單向閥彈簧預(yù)壓縮量,m;vRCV為兩位三通比例換向閥中出油單向閥節(jié)流口的流速系數(shù),vRCV≈0.98。RCV為兩位三通比例換向閥出油單向閥(錐閥式)閥座孔直徑,0.014 5 m;RPV0為兩位三通比例換向閥先導(dǎo)閥進(jìn)油道阻尼孔流量,m3/s;LMV為比例提升控制閥主閥閥芯位移量,m;RMV為兩位三通比例換向閥主閥節(jié)流口流量,m3/s。PV0為比例提升控制閥先導(dǎo)閥進(jìn)油道阻尼孔直徑,3.5′10–4m;PRV為定差減壓閥閥芯及其組件的等效質(zhì)量,0.181 kg;PRV2為定差減壓閥高壓控制油腔油液壓力,Pa;PRV1為定差減壓閥低壓控制油腔油液壓力,Pa。PRV為定差減壓閥彈簧剛度,13 591 N/m;PRV為定差減壓閥閥芯及其組件的等效質(zhì)量,kg;PRV0為定差減壓閥彈簧預(yù)壓縮量,0.017 7 m;PRV為定差減壓閥閥芯運(yùn)動(dòng)的粘性阻尼系數(shù),N·s/m;PRV為定差減壓閥閥芯及其組件的等效質(zhì)量,0.181 kg;PRV為定差減壓閥閥芯的密封長(zhǎng)度,0.016 5 m;PRV為定差減壓閥閥芯及其組件的等效質(zhì)量,0.181 kg。 為了分析比例提升閥的穩(wěn)態(tài)工作特性以及隨閥芯位移和負(fù)載壓力階躍變化時(shí)的動(dòng)態(tài)響應(yīng)特性,應(yīng)用MATLAB的Function自定義函數(shù)模塊針對(duì)每一個(gè)狀態(tài)量的微分方程進(jìn)行模塊化處理,并根據(jù)各個(gè)狀態(tài)量之間的相互作用關(guān)系建立比例提升閥仿真模型,如圖3所示,模型參數(shù)取值與試驗(yàn)系統(tǒng)一致,模型求解采用四階龍格-庫塔算法。 圖3 比例提升閥仿真模型 比例提升控制閥的穩(wěn)態(tài)流量特性曲線如圖4所示,其死區(qū)電壓約為0.9 V,分析其原因:死區(qū)電壓與比例提升閥中先導(dǎo)閥彈簧預(yù)緊力、電磁線圈產(chǎn)生的反電動(dòng)勢(shì)及主閥芯節(jié)流口不靈敏區(qū)等因素有關(guān)。在驅(qū)動(dòng)電壓3.9 V附近,受定差減壓閥壓力調(diào)節(jié)的影響,比例提升閥輸出流量出現(xiàn)微小波動(dòng)。當(dāng)驅(qū)動(dòng)電壓達(dá)到5.5 V時(shí),最大流量約為62 L/min,與兩位三通比例換向閥產(chǎn)品性能接近。 圖4 比例提升閥穩(wěn)態(tài)流量特性曲線 1)比例提升閥驅(qū)動(dòng)電壓不變,負(fù)載壓力階躍變化時(shí)的流量響應(yīng)特性 給定比例提升閥驅(qū)動(dòng)電壓4.7 V,供油壓力20 MPa,仿真時(shí)間6 s,得到比例提升閥在負(fù)載壓力由5~10 MPa階躍變化時(shí)的流量響應(yīng)特性曲線如圖5a所示。由圖5a可知,比例提升閥系統(tǒng)流量在定差減壓閥沒有及時(shí)調(diào)壓前迅速增加,經(jīng)過定差減壓閥壓力補(bǔ)償后,系統(tǒng)流量穩(wěn)定在30 L/min左右,調(diào)整時(shí)間約為0.3 s,當(dāng)負(fù)載壓力在2 s處階躍變化時(shí),系統(tǒng)流量經(jīng)迅速波動(dòng)后穩(wěn)定在30 L/min左右,調(diào)整時(shí)間小于0.1 s。由此可得,所設(shè)計(jì)的比例提升閥具有壓力補(bǔ)償功能,系統(tǒng)穩(wěn)態(tài)流量不受負(fù)載波動(dòng)的影響,僅與驅(qū)動(dòng)電壓有關(guān)。 2)比例提升閥負(fù)載壓力不變,驅(qū)動(dòng)電壓階躍變化時(shí)的流量響應(yīng)特性 給定比例提升閥負(fù)載壓力5 MPa,供油壓力10 MPa,仿真時(shí)間6 s,得到比例提升閥在驅(qū)動(dòng)電壓由4.3~4.7 V階躍變化時(shí)的流量響應(yīng)特性曲線如圖5b所示。由圖5b可知,比例提升閥系統(tǒng)流量在定差減壓閥沒有及時(shí)調(diào)壓前迅速增加,經(jīng)過定差減壓閥壓力補(bǔ)償后,系統(tǒng)流量穩(wěn)定在15 L/min左右,調(diào)整時(shí)間約為0.25 s,當(dāng)驅(qū)動(dòng)電壓在2 s處階躍變化時(shí),系統(tǒng)流量按線性規(guī)律平穩(wěn)增加到 28 L/min左右,調(diào)整時(shí)間約為0.2 s。由此可知,比例提升閥在負(fù)載壓力不變的情況下,可通過改變驅(qū)動(dòng)電壓實(shí)現(xiàn)良好的動(dòng)態(tài)調(diào)速功能。 圖5 比例提升閥流量響應(yīng)特性仿真結(jié)果 為了驗(yàn)證比例提升閥數(shù)學(xué)模型和仿真分析的正確性,搭建了閉心式負(fù)載敏感液壓系統(tǒng)室內(nèi)試驗(yàn)平臺(tái)。平臺(tái)負(fù)載提升液壓回路主要由負(fù)載敏感變量泵、節(jié)流閥、定差減壓閥、兩位三通比例換向閥和比例溢流閥串聯(lián)組成,比例提升閥試驗(yàn)方案原理及試驗(yàn)現(xiàn)場(chǎng)如圖6所示。比例溢流閥用于模擬負(fù)載壓力;安全溢流閥用于液壓系統(tǒng)過載保護(hù),設(shè)定開啟壓力為20 MPa。其中,比例溢流閥開啟壓力和比例提升閥閥芯開度可分別通過電液比例控制器和比例閥控制放大器進(jìn)行實(shí)時(shí)控制。 壓力傳感器采用德國(guó)米科MIK-P300型壓力傳感器,測(cè)壓范圍為0~30 MPa,24 V電源供電,輸出信號(hào)為4~20 mA電流信號(hào),整體響應(yīng)時(shí)間為20 ms。智能變送儀用于接收壓力傳感器輸出的4~20 mA電流信號(hào),實(shí)時(shí)顯示油壓數(shù)值,并可變送輸出1~5 V電壓信號(hào)。流量傳感器采用TLW- 15G型渦輪流量傳感器,壓力范圍0~25 MPa,量程為0~100 L/min,24 V電源供電,輸出信號(hào)為4~20 mA電流信號(hào),可外接250W電阻轉(zhuǎn)換為1~5 V電壓輸出。壓力和流量傳感器信號(hào)可通過NI采集卡實(shí)時(shí)傳輸?shù)絇C機(jī)中,并通過LabVIEW程序界面實(shí)時(shí)顯示傳感器輸出信號(hào)變化曲線。比例閥控制放大器用于控制海德福斯插裝式比例閥,采用9~32 V電源供電,輸入電壓范圍為2.5~5 V,輸出比例線圈驅(qū)動(dòng)電流范圍為0~1.2 A,最大輸出電流為2 A。 比例溢流閥選用華德液壓生產(chǎn)的DBEM2-30B/ 315YM型錐閥式先導(dǎo)比例溢流閥,通徑為25 mm,允許通過的最大流量為600 L/min,可提供的最大開啟壓力為31.5 MPa??筛鶕?jù)VT-2000BS40G型電液比例控制器輸出的電流信號(hào)無級(jí)調(diào)節(jié)比例溢流閥的開啟壓力,采用24 V電源供電,其控制電壓為0~9 V,輸出先導(dǎo)電流為100 mA,最大電流為800 mA。 4.2.1 穩(wěn)態(tài)流量特性 由于比例提升閥液壓系統(tǒng)回路流量只與兩位三通比例換向閥主閥芯開度有關(guān),調(diào)節(jié)比例溢流閥開啟壓力,將負(fù)載壓力維持在8~10 MPa之間,改變比例閥控制放大器輸入電壓,得到比例提升閥在閥芯開度由大變小再由小變大過程中的系統(tǒng)穩(wěn)態(tài)流量特性曲線,如圖7所示。 1. 負(fù)載敏感變量泵 2,5,7. 油壓傳感器 3. 節(jié)流閥 4. 定差減壓閥 6. 兩位三通比例換向閥8. 安全溢流閥 9. 比例溢流閥10. 流量傳感器 11. 負(fù)載反饋單向閥 1. Load sensitive variable pump 2, 5, 7. Oil pressure sensor 3. Throttle valve 4. Differential pressure reduction valve 6. 2 position-3 way proportional directional valve 8. Safety relief valve 9. Proportional relief valve 10. Flow sensor 11. Load feedback one-way valve 圖6 比例提升閥流量響應(yīng)特性試驗(yàn)平臺(tái) 圖7 比例提升閥負(fù)載壓力8~10 MPa時(shí)的穩(wěn)態(tài)流量曲線 由圖7可知,比例提升閥隨輸入電壓變化的穩(wěn)態(tài)流量受主閥芯節(jié)流口幾何結(jié)構(gòu)的影響,先后經(jīng)歷了死區(qū)、流量緩慢增加和流量快速增加3個(gè)階段。當(dāng)輸入電壓達(dá)到5 V時(shí),比例提升閥最大流量達(dá)到60 L/min左右,穩(wěn)態(tài)流量回程誤差不到5%。同時(shí),該閥試驗(yàn)數(shù)據(jù)與穩(wěn)態(tài)流量仿真數(shù)據(jù)吻合度較好,最大流量誤差約為3.33%,滿足電液提升器在提升懸掛農(nóng)具過程中對(duì)比例提升閥輸出流量的要求。 4.2.2 動(dòng)態(tài)特性 比例提升閥輸入電壓為4.7 V,由電液比例控制器控制比例溢流閥開啟壓力產(chǎn)生從5 到10 MPa的階躍變化,得到比例提升閥負(fù)載壓力、定差減壓閥出口壓力及系統(tǒng)流量的動(dòng)態(tài)響應(yīng)特性曲線如圖8所示。 圖8 比例提升閥流量響應(yīng)特性試驗(yàn)結(jié)果 由圖8a可知,負(fù)載壓力發(fā)生5~10 MPa的階躍變化時(shí),定差減壓閥出口壓力由6.5 MPa階躍變化到11.5 MPa,建壓時(shí)間約為0.5 s,平均補(bǔ)償壓力約為1.5 MPa,系統(tǒng)流量在負(fù)載壓力階躍變化時(shí)維持在30 L/min左右,與仿真數(shù)據(jù)基本一致。由此可知,比例提升閥具有良好的負(fù)載壓力補(bǔ)償及穩(wěn)態(tài)調(diào)速特性,滿足電液提升器在提升農(nóng)具過程中實(shí)際工況要求。 當(dāng)電液比例控制器控制比例溢流閥開啟壓力為 5 MPa,比例提升控制閥輸入電壓在4.3~4.7 V之間以30 s為周期進(jìn)行階躍變化時(shí),得到比例提升閥負(fù)載壓力、定差減壓閥出口壓力以及系統(tǒng)流量的動(dòng)態(tài)響應(yīng)特性曲線如圖8b所示。由圖8b可知,在比例提升閥輸入電壓階躍變化時(shí),系統(tǒng)流量由15 L/min階躍變化到27 L/min,與仿真數(shù)據(jù)基本吻合,系統(tǒng)流量誤差為3.57%;受比例提升閥液壓系統(tǒng)回油背壓的影響,負(fù)載壓力和定差減壓閥出口壓力幾乎同步階躍變化,階躍變化量約為0.5 MPa,平均壓力值分別為5.25和6.75 MPa。 1)針對(duì)重型拖拉機(jī)電液提升器田間作業(yè)環(huán)境和作業(yè)要求,設(shè)計(jì)了比例提升閥負(fù)載敏感液壓系統(tǒng)回路,并基于板式閥設(shè)計(jì)理念,研制一套電液提升器插裝式比例提升閥。 2)建立了基于邊界條件的比例提升閥非線性數(shù)學(xué)模型,搭建MATLAB/Simulink模型,并對(duì)比例提升閥的動(dòng)、靜態(tài)性能進(jìn)行仿真分析,仿真結(jié)果表明:在靜態(tài)性能方面,兩位三通換向閥進(jìn)油壓力穩(wěn)定后始終高出負(fù)載壓力一定值,約為1.5 MPa,系統(tǒng)穩(wěn)態(tài)流量?jī)H與驅(qū)動(dòng)電壓有關(guān),最大流量約為62 L/min,比例提升閥具有良好的負(fù)載壓力補(bǔ)償和穩(wěn)態(tài)調(diào)速特性;在動(dòng)態(tài)性能方面,當(dāng)負(fù)載壓力階躍變化時(shí),比例提升閥系統(tǒng)輸出流量波動(dòng)小,調(diào)整時(shí)間短,受負(fù)載變化影響小,當(dāng)驅(qū)動(dòng)電壓階躍變化時(shí),比例提升閥動(dòng)態(tài)調(diào)速性能良好。 3)搭建閉心式負(fù)載敏感液壓系統(tǒng)試驗(yàn)平臺(tái),試驗(yàn)結(jié)果表明:比例提升閥穩(wěn)態(tài)流量輸出先后經(jīng)歷死區(qū)、流量緩慢增加和流量快速增加3個(gè)階段,最大流量達(dá)到60 L/min左右,回程誤差不到5%。當(dāng)負(fù)載壓力階躍變化時(shí),比例提升閥補(bǔ)償壓力約為1.5 MPa,液壓沖擊小,系統(tǒng)流量輸出平穩(wěn);當(dāng)驅(qū)動(dòng)電壓階躍變化時(shí),比例提升閥動(dòng)態(tài)調(diào)速特性良好,滿足重型拖拉機(jī)電液提升器田間作業(yè)需求。 [1] 謝斌,武仲斌,毛恩榮. 農(nóng)業(yè)拖拉機(jī)關(guān)鍵技術(shù)發(fā)展現(xiàn)狀與展望[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(8):1-17. Xie Bin, Wu Zhongbin, Mao Enrong. Development and prospect of key technologies on agricultural tractor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(8): 1-17. (in Chinese with English abstract) [2] 譚彧,謝斌,鄂卓茂. 拖拉機(jī)作業(yè)機(jī)組電液懸掛控制系統(tǒng)的研制[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),2002,7(6):64-67. Tan Yu, Xie Bin, E Zhuomao. Study of hydraulic hitch system control ling technology for tractor working units[J]. Journal of Chinese Agricultural University, 2002, 7(6): 64-67. (in Chinese with English abstract) [3] 王川,孫坦. 大數(shù)據(jù)驅(qū)動(dòng)下的農(nóng)業(yè)信息科技創(chuàng)新與服務(wù)——中國(guó)農(nóng)業(yè)科學(xué)院農(nóng)業(yè)信息研究所“十三五”發(fā)展規(guī)劃[J]. 數(shù)字圖書館論壇,2016(11):34-39. Wang Chuan, Sun Tan. The innovation and service of agricultural information technology driven by big data: development plan in 13th five-year of Agricultural Information Institute of Chinese Academy of Agricultural Sciences[J]. Digital Library Forum, 2016(11): 34-39. (in Chinese with English abstract) [4] Borodani P,Colombo D,F(xiàn)orestello M,et al. Robust control of a new electro-hydraulic pump for agricultural tractors[J]. IFAC Proceedings Volumes, 2011, 44(1): 2266-2271. [5] Zehsaz M,Sadeghi M H,Ettefagh M M,et al. Tractor cabin’s passive suspension parameters optimization via experimental and numerical methods[J]. Journal of Terramechanics, 2011, 48(6): 439-450. [6] 譚彧. 拖拉機(jī)液壓懸掛和加載系統(tǒng)性能研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2004. Tan Yu. The Study of Characteristics for Hydraulic Hitch & Loading System in Tractor[D]. Beijing: Chinese Agricultural University, 2004. (in Chinese with English abstract) [7] 明濤. 液壓集成塊現(xiàn)代設(shè)計(jì)方法研究[D]. 西安:西南交通大學(xué),2015. Ming Tao. The Research of Modern Design Methods of Hydraulic Manifold Blocks[D]. Xi'an: Southwest Jiaotong University, 2015. (in Chinese with English abstract) [8] Kumar R, Raheman H. Design and development of a variable hitching system for improving stability of tractor trailer combination[J]. Engineering in Agriculture, Environment and Food, 2015, 8(3): 187-194. [9] 郝允志,薛榮生,陳建,等. 比例電磁閥開環(huán)-閉環(huán)復(fù)合控制算法[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(2):314-319. Hao Yunzhi, Xue Rongsheng, Chen Jian, et al. Open loop-closed loop compound control algorithm of proportional solenoid valve[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(2): 314-319. (in Chinese with English abstract) [10] Du Qiaolian,Chen Xuhui. Design on control system for electro-hydraulic hitch equipment of tractor[J]. Advanced Materials Research, 2014, 945-949: 1513-1516. [11] 張弓,張樹忠,吳文海,等. 超高速電液比例閥的設(shè)計(jì)與實(shí)驗(yàn)研究[J]. 機(jī)械科學(xué)與技術(shù),2009,28(6):768-772. Zhang Gong, Zhang Shuzhong, Wu Wenhai, et al. Design and experimental investigation of an ultra-high-speed electro-hydraulic proportional valve[J]. Mechanical Science and Technology for Aerospace Engineering, 2009, 28(6): 768-772. (in Chinese with English abstract) [12] 李明生,朱忠祥,毛恩榮,等. 大功率拖拉機(jī)電液提升器比例提升閥設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(10):31-35. Li Mingsheng, Zhu Zhongxiang, Mao Enrong, et al. Design of proportional raise valve in electro-hydraulic lifting mechanism of big-power tractor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(10): 31-35. (in Chinese with English abstract) [13] 李明生,宋正河,遲瑞娟,等. 大功率拖拉機(jī)電液提升器比例下降閥仿真與優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2012,43(增刊):1-5. Li Mingsheng, Song Zhenghe, Chi Ruijuan, et al. Simulation analysis on proportional lowering valve for high-power tractor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(S): 1-5. (in Chinese with English abstract) [14] 孔祥東,宋豫,艾超,等. 比例閥異形閥口流量特性PIV可視化實(shí)驗(yàn)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(5):328-335. Kong Xiangdong, Song Yu, Ai Chao, et al. Visualization experiment of flow characteristics of special shaped valve port in proportional valve using PIV technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(5): 328-335. (in Chinese with English abstract) [15] Enrico C, Wilber A B, Marco A, Marco B. Digital current regulator for proportional electro-hydraulic valves with unknown disturbance rejection[J]. ISA Transactions, 2014, 53(4) : 909-919. [16] 侯友山,石博強(qiáng),谷捷. 負(fù)荷傳感轉(zhuǎn)向液壓系統(tǒng)優(yōu)先閥的穩(wěn)健設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(10):129-133. Hou Youshan, Shi Boqiang, Gu Jie. Robust design of priority valve in load sensing hydraulic steering system[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2010, 26(10): 129-133 (in Chinese with English abstract) [17] 杜恒,魏建華,馮瑞琳. 壓力跟蹤閥建模、仿真與試驗(yàn)研究[J]. 浙江大學(xué)學(xué)報(bào):工學(xué)版,2012,46(6):1034-1040. Du Heng, Wei Jianhua, Feng Ruilin. Modeling, simulation and experimental research on pressure tracking valve[J]. Journal of Zhejiang University: Engineering Science, 2012, 46(6): 1034-1040, 1047(in Chinese with English abstract) [18] 袁士豪,殷晨波,劉世豪. 基于AMESim的平衡閥動(dòng)態(tài)性能分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(8):273-280. Yuan Shihao, Yin Chenbo, Liu Shihao. Working propertiesof counterbalance valve based on AMESim code[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(8): 273-280. (in Chinese with English abstract) [19] 荊寶德,殷涌光,范志紅, 等. 裝載機(jī)中數(shù)字電液比例控制系統(tǒng)的仿真[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2005,36(2):47-50. Jing Baode, Yin Yongguang, Fan Zhihong, et al. Simulation of digital electro-hydraulic proportional control system of workingdevice for loader[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(2): 47-50 (in Chinese with English abstract) [20] 孫衍石,靳寶全,熊曉燕. 電液伺服比閥控缸位置控制系統(tǒng)仿真研究[J]. 流體傳動(dòng)與控制,2009,4:32-35. Sun Yanshi, Jin Baoquan, Xiong Xiaoyan. Simulation of cylinder servo position system controlled by proportional[J]. Fluid Power Transmission and Control, 2009, 4: 32-35. (in Chinese with English abstract) [21] 夏勝枝,周明,李希浩,等. 高速強(qiáng)力電磁閥的動(dòng)態(tài)響應(yīng)特性[J]. 清華大學(xué)學(xué)報(bào):自然科學(xué)版,2002,42(2): 258-261,277. Xia Shengzhi, Zhou Ming, Li Xihao, et al. Dynamic response characteristics of high-speed, powerful solenoid valve[J]. Journal of Tsinghua University: Science And Technology, 2002, 42(2): 258-261, 277. (in Chinese with English abstract) [22] 張廷羽,張國(guó)賢. 高速開關(guān)電磁閥的性能分析及優(yōu)化研究[J]. 機(jī)床與液壓,2006(9):139-142. Zhang Tingyu, Zhang Guoxian. Performance analysis and investigation to high speed digital valve[J]. Machine Tool & Hydraulics, 2006(9): 139-142. (in Chinese with English abstract) [23] 林義忠,曾德樂,馮喆. 基于 PWM 控制的高速開關(guān)電磁球閥動(dòng)態(tài)特性仿真分析[J]. 機(jī)床與液壓,2014,42(3): 152-154. Lin Yizhong, Zeng Dele, Feng Zhe. Simulation analysis of dynamic characteristics for high-speed switch electromagnetic ball valve based on PWM[J]. Machine Tool & Hydraulics, 2014, 42(3): 152-154. (in Chinese with English abstract) [24] 劉鵬,范立云,白云,等. 高速電磁閥電磁力近似模型的構(gòu)建與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(16):96-101. Liu Peng, Fan Liyun, Bai Yun, et al. Modeling and analysis of electromagnetic force approximate model of high-speed solenoid valve[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(16): 96-101. (in Chinese with English abstract) [25] 王秋霞,樊丁,彭凱. AMSim仿真技術(shù)在高速電磁閥中的應(yīng)用[J]. 航空動(dòng)力學(xué)報(bào),2014,3:702-707. Wang Qiuxia, Fan Ding, Peng Kai. High speed solenoid valve with the application of AMESim[J]. Journal of Aerospace Power, 2014, 3:702-707. (in Chinese with English abstract) [26] 蔣煥煜,張利君,周鳴川,等. 基于響應(yīng)面法的電磁閥響應(yīng)時(shí)間優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(9):67-73. Jiang Huanyu, Zhang Lijun, Zhou Mingchuan, et al. Optimization for response time of solenoid valve through response surface methodology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 67-73. (in Chinese with English abstract) [27] 范立云,許德,費(fèi)紅姿,等. 高速電磁閥電磁力全工況關(guān)鍵參數(shù)相關(guān)性分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(6):89-96. Fan Liyun, Xu De, Fei Hongzi, et al. Key parameters’ correlation analysis on high-speed solenoid valve electromagnetic force under overall operating conditions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(6): 89-96. (in Chinese with English abstract) [28] 黃家海,郭曉霞,李陶陶,等. 插裝式電液比例流量放大閥特性分析[J]. 重慶大學(xué)學(xué)報(bào),2016,39(4):8-15.Huang Jiahai, Guo Xiaoxia, Li Taotao, et al. Characteristics of electro-hydraulic proportional cartridge inserted valve based on flow amplifier[J]. Journal of Chongqing University, 2016, 39(4): 8-15. (in Chinese with English abstract) [29] Muller M T, Fales R C. Design and analysis of a two-stage poppet valve for flow control[J]. International Journal of Fluid Power, 2014, 9(1): 17-26. [30] 陳隨英,趙建軍,杜岳峰,等. 負(fù)載敏感變量泵結(jié)構(gòu)建模與性能分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(3):40-49. Chen Suiying, Zhao Jianjun, Du Yuefeng, et al. Structural modeling and performance analysis of load-sensing variable pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3):40-49. (in Chinese with English abstract) [31] 趙建軍. 重型拖拉機(jī)電液提升器比例控制閥設(shè)計(jì)與特性研究[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2015. Zhao Jianjun. The Design and Characteristics Research of Proportional Control Valve for the Electro-hydraulic Hitch of Heavy Tractor[D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract) Performance simulation and test of plug-in proportional raising valve of electro-hydraulic hitch for heavy tractor Hua Bo1, Zhao Jianjun2, Liu Changqing1, Du Yuefeng1, Mao Enrong1, Song Zhenghe1※ (1.,100083,;2.100101,) In order to reflect the essential characteristics of heavy tractor electro-hydraulic hitch proportional raising valves more accurately, the internal structure and working mechanism of each hydraulic component in the proportional raising valves are analyzed based on the field operation environment and operation requirements of heavy tractor electro-hydraulic hitches in this paper, a proportional raising valve load-sensitive hydraulic system circuit is designed, and an electro-hydraulic hitch cartridge proportional raising valve based on the plate valve design concept is developed. Besides, a nonlinear mathematical simulation model of proportional raising valves based on boundary conditions is established based on the state space method of modern control theory. The simulation model is built with MATLAB/Simulink. The dynamic and static performances are simulated and analyzed using the fourth-order Runge-Kutta algorithm, and the movement patterns of its internal spool is revealed. The simulation results showed that for static performance, the output flow of the proportional raising valve fluctuates briefly near the driving voltage of 3.9 V due to the influence of uniform-pressure-drop valve pressure regulation. As the pressure difference between the oil inlet and outlet of the two-position three-way proportional directional valve is basically maintained at about 1.5 MPa, the maximum flow rate is about 62 L/min under the action of uniform-pressure-drop valve, which is close to the product performance of the two-position three-way proportional directional valve, and the proportional raising valve has good load pressure compensation and steady-state speed regulation characteristics. In terms of dynamic performance, when the load pressure changes step by step, the output flow fluctuation of the proportional raising valve system is small, the adjustment time is short, and the influence of the load change is small. When the driving voltage changes step by step, the proportional raising valve has good dynamic speed regulation performance. Then, based on the indoor test platform of load-sensitive hydraulic system, the plug-in proportional raising valve of electro-hydraulic hitch is tested and studied. The test results show that the steady flow output of proportional raising valve has experienced 3 successive stages: dead zone, slow increase in flow and rapid increase in flow. Over the 3 stages, the maximum flow rate can reach about 60 L/min and return stroke error is less than 5%. At the same time, the test data of the valve is in good agreement with the steady flow simulation data, and the maximum flow error is about 3.33%. When the load pressure changes step by step, the proportional raising valve compensation pressure in real time is about 1.5MPa, the hydraulic shock is small, the static flow output of the proportional raising valve is stable, and the system flow is maintained at about 30 L/min when the load pressure changes step by step, which is basically consistent with the simulation data. When the driving voltage changes step by step, the flow rate of the system changes from 15 L/min to 27 L/min, which is basically consistent with the simulation data, and the flow rate error is only 3.57%, the proportional raising valve has good dynamic speed regulation and good steady-state speed regulation, meeting the field operation requirements of heavy tractor electro-hydraulic hitch. This study provides good reference for modeling, simulation and experimental analysis of key components of tractor hydraulic system. tractors; models; proportional raising valve; electro-hydraulic hitch; dynamic property 2019-01-02 2019-03-11 國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0700101) 華 博,博士生,主要從事液壓控制和虛擬仿真研究。 Email:huabo@cau.edu.cn 宋正河,教授,博士,主要從事農(nóng)機(jī)裝備數(shù)字化設(shè)計(jì)與智能控制方面研究。Email:songzhenghe@cau.edu.cn 10.11975/j.issn.1002-6819.2019.08.013 S219.033 A 1002-6819(2019)-08-00109-09 華 博,趙建軍,劉長(zhǎng)卿,杜岳峰,毛恩榮,宋正河.重型拖拉機(jī)電液提升器插裝式比例提升閥性能仿真與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(8):109-117. doi:10.11975/j.issn.1002-6819.2019.08.013 http://www.tcsae.org Hua Bo, Zhao Jianjun, Liu Changqing, Du Yuefeng, Mao Enrong, Song Zhenghe.Performance simulation and test of plug-in proportional raising valve of electro-hydraulic hitch for heavy tractor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(8): 109-117. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.08.013 http://www.tcsae.org3 電液提升器比例提升閥性能仿真
3.1 比例提升閥穩(wěn)態(tài)特性仿真結(jié)果分析
3.2 比例提升閥動(dòng)態(tài)特性仿真結(jié)果與分析
4 電液提升器比例提升閥性能試驗(yàn)
4.1 試驗(yàn)方案
4.2 試驗(yàn)結(jié)果與分析
5 結(jié) 論