亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        ceRNA對(duì)植物纖維素形成的調(diào)控研究進(jìn)展

        2019-04-29 07:12:44詹妮謝耀堅(jiān)吳志華劉果尚秀華
        桉樹(shù)科技 2019年1期
        關(guān)鍵詞:細(xì)胞壁擬南芥纖維素

        詹妮,謝耀堅(jiān),吳志華,劉果,尚秀華

        ?

        ceRNA對(duì)植物纖維素形成的調(diào)控研究進(jìn)展

        詹妮,謝耀堅(jiān),吳志華*,劉果,尚秀華

        (國(guó)家林業(yè)和草原局桉樹(shù)研究開(kāi)發(fā)中心,廣東 湛江 524022)

        植物纖維素的形成是由多個(gè)基因參與且呈網(wǎng)絡(luò)調(diào)控。通過(guò)對(duì)纖維素形成過(guò)程中的關(guān)鍵酶基因、轉(zhuǎn)錄因子以及ceRNA研究的闡述,深入了解纖維素生物合成調(diào)控機(jī)制。綜述植物纖維素形成過(guò)程中的纖維素合酶、蔗糖合成酶、MYB等重要基因以及l(fā)ncRNA、miRNA、circRNA類(lèi)ceRNA,闡述其復(fù)雜的分子調(diào)控網(wǎng)絡(luò),以期解析植物纖維素形成過(guò)程中的分子調(diào)控機(jī)制,深入了解植物纖維素形成過(guò)程。

        競(jìng)爭(zhēng)性內(nèi)源RNA;纖維素;轉(zhuǎn)錄因子;表達(dá)調(diào)控

        纖維素作為植物細(xì)胞壁中必不可少的結(jié)構(gòu)成分,發(fā)揮著重要的作用。植物細(xì)胞初生壁中的纖維素微纖絲在植物細(xì)胞的擴(kuò)增階段調(diào)控植物形態(tài)建成,次生壁中的纖維素使植物細(xì)胞具有特定功能,纖維素對(duì)植物生長(zhǎng)的重要作用使得對(duì)其研究具有重要意義[1]。纖維素形成是個(gè)較復(fù)雜的過(guò)程,該過(guò)程涉及一系列重要生物學(xué)過(guò)程,其中每個(gè)過(guò)程均由多基因參與且呈網(wǎng)絡(luò)調(diào)控,研究植物纖維素形成過(guò)程中的關(guān)鍵基因及其生物合成調(diào)控機(jī)制,已成為當(dāng)前研究的熱點(diǎn)[2]。

        ceRNA(Competing endogenous RNA,競(jìng)爭(zhēng)性內(nèi)源RNA)是指生物體內(nèi)復(fù)雜的轉(zhuǎn)錄調(diào)控網(wǎng)絡(luò)中的RNA,包括長(zhǎng)鏈非編碼RNA(Long noncoding RNA,lncRNA)、微小RNA(MicroRNA,miRNA)以及環(huán)狀RNA(CircleRNA,circRNA)等[3-4]。ceRNA通過(guò)miRNA應(yīng)答元件(MicroRNA response element,MRE)與靶mRNA競(jìng)爭(zhēng)性的結(jié)合同種的miRNA分子,使miRNA的表達(dá)水平及活性相對(duì)下降,從而抑制了miRNA對(duì)靶mRNA 的沉默效應(yīng),發(fā)揮調(diào)控的作用[5-7]。RNA轉(zhuǎn)錄物通過(guò)它們所共有的 MREs位點(diǎn)來(lái)彼此調(diào)節(jié),共有的MREs數(shù)量越多,它們的交流或共調(diào)節(jié)的程度也越大,因此ceRNA 能形成一種大規(guī)模轉(zhuǎn)錄調(diào)控網(wǎng)絡(luò),實(shí)現(xiàn)lncRNAs,miRNAs及circRNAs等通過(guò)MREs進(jìn)行相互作用,通過(guò)競(jìng)爭(zhēng)MREs 構(gòu)成一個(gè)完整復(fù)雜的ceRNA分子調(diào)控網(wǎng)絡(luò)[6]。

        1 植物纖維素形成過(guò)程中的關(guān)鍵基因

        纖維素合酶(Cellulose synthase, CesA)組成纖維素合酶復(fù)合體(Cellulose synthase complex, CSC),催化β-1,4糖苷鍵的形成,合成纖維素,在植物纖維素合成途徑中發(fā)揮主要調(diào)節(jié)作用[8]。在大青楊()、苧麻()、馬尾松()等木本植物都相繼克隆出CesA基因[9-11]。在擬南芥()中CesA1、CesA3、CesA6 負(fù)責(zé)初生壁的形成[12-14],CesA4、CesA7、CesA8負(fù)責(zé)次生壁的合成[15-16]。

        蔗糖合成酶(Sucrose synthase, SuSy)影響植物細(xì)胞分化以及細(xì)胞壁的形成,能夠提供細(xì)胞壁合成的底物,SuSy的活性與纖維素合成有關(guān)[17-23]。SuSy基因廣泛存在于植物中,CARDINI等[24]首次從小麥()中克隆了SuSy基因,此后在擬南芥、棉花(.)、馬鈴薯()、胡蘿卜()、玉米()、柑橘()、水稻()、棗()、甘蔗()等植物中獲得SuSy基因[25-31]。SuSy基因?qū)γ藁?、煙?)以及楊樹(shù)的纖維素含量、纖維長(zhǎng)度以及纖維強(qiáng)度等至關(guān)重要[32-34]。

        擴(kuò)展蛋白(Expansin,EXP)是植物細(xì)胞壁重要的組成部分,調(diào)節(jié)細(xì)胞伸展性,通過(guò)打斷細(xì)胞壁纖維素和半纖維素之間的非共價(jià)鍵,從而改變細(xì)胞壁承重網(wǎng)絡(luò),使其產(chǎn)生位移,導(dǎo)致細(xì)胞壁伸展,加速細(xì)胞生長(zhǎng),調(diào)節(jié)組織生長(zhǎng)[35-36]。1989年COSGROVE[37]首次從黃瓜()根尖細(xì)胞壁中提取分離出EXP。EXP能夠塑造初生細(xì)胞壁中纖維素-半纖維素網(wǎng)絡(luò),EXP的活動(dòng)能夠影響細(xì)胞壁的結(jié)構(gòu)和組分,進(jìn)而影響纖維和導(dǎo)管的形態(tài)[38]。GRAY等[39]在楊樹(shù)中克隆了α-EXP基因和β-EXP基因,發(fā)現(xiàn)PttEXP1基因在成熟莖段的次生生長(zhǎng)較為活躍。XU等[40]發(fā)現(xiàn)在棉花纖維細(xì)胞的伸長(zhǎng)過(guò)程中,α-EXP蛋白發(fā)揮了重要的調(diào)控作用。SARA等[41]從牽牛花()中獲得了一條PhEXP1基因,反義轉(zhuǎn)化后,發(fā)現(xiàn)牽?;ū砥ぜ?xì)胞面積也相應(yīng)的減少,細(xì)胞壁發(fā)生了改變,導(dǎo)致細(xì)胞壁機(jī)械強(qiáng)度下降。

        AGO蛋白(Argonaute protein)主要包含PAZ和PIWI結(jié)構(gòu)域,是小RNA介導(dǎo)的RNA沉默通路中RNA誘導(dǎo)的沉默復(fù)合物(RNA-induced silencing complex,RISC)的核心成分。AGO蛋白通過(guò)與miRNAs(microRNAs)、siRNAs(small interfering RNAs)、piRNAs(Piwi-interacting RNAs)等不同類(lèi)型的小非編碼RNA(small non-coding RNA)結(jié)合,AGO蛋白能夠特異地停留在與小RNA互補(bǔ)的靶基因mRNA上,其自身的內(nèi)切酶可以對(duì)目標(biāo)靶基因進(jìn)行切割,從而引起靶基因沉默,在調(diào)控植物生長(zhǎng)發(fā)育中起到重要的作用[42-43]。

        第3類(lèi)亮氨酸拉鏈蛋白(ClassⅢ homeodomain leucine zipper, HD-ZipⅢ)轉(zhuǎn)錄因子、MYB(V-myb avian myeloblastosis viral oncogene homo)轉(zhuǎn)錄因子以及NAC(No apical meristem/Arabidopsis thaliana transcription activator factor/CUP- -shaped cotyledon)轉(zhuǎn)錄因子等在植物細(xì)胞生長(zhǎng)發(fā)育過(guò)程中具重要調(diào)控作用,參與植物的生長(zhǎng)代謝調(diào)控[44]。

        研究表明,在擬南芥和水稻HD-ZipⅢI家族各有5個(gè)成員[45],毛果楊()基因組中則含有8個(gè)HD-ZipⅢ基因家族成員[46]。在白云杉()和火炬松()中已分別被克隆到4和5個(gè)HD-Zip III基因[47]。MYB類(lèi)轉(zhuǎn)錄因子參與植物苯丙烷類(lèi)代謝途徑的調(diào)節(jié),調(diào)控次生細(xì)胞壁的形成[48-49]。目前,MYB轉(zhuǎn)錄因子已在擬南芥、金魚(yú)草()、大豆()、煙草、蘋(píng)果()、白樺(、毛白楊()等物種中分離并鑒定[50]。HAI 等[51]對(duì)玉米和擬南芥MYB轉(zhuǎn)錄因子分析發(fā)現(xiàn),有4個(gè)亞組的MYB轉(zhuǎn)錄因子參與調(diào)控次生壁的增厚。劉慧子等[52]研究表明,白樺MYB家族中17條MYB家族基因中的絕大部分參與調(diào)控形成層的發(fā)育。葉勝龍[53]研究發(fā)現(xiàn),毛白楊MYB055轉(zhuǎn)錄因子參與調(diào)控次生壁合成,影響苯丙氨酸代謝途徑,從而調(diào)控纖維素合成等相關(guān)基因的表達(dá)。

        2 植物纖維素形成過(guò)程中的ceRNA

        測(cè)序技術(shù)日益發(fā)展使基因數(shù)據(jù)庫(kù)與轉(zhuǎn)錄組數(shù)據(jù)庫(kù)日益充實(shí),為ceRNA的挖掘和功能研究提供了有利的數(shù)據(jù)支持。ceRNA在生物發(fā)育和基因表達(dá)中發(fā)揮著復(fù)雜的精確調(diào)控功能,對(duì)其深入研究有助于揭示基因表達(dá)調(diào)控網(wǎng)絡(luò)對(duì)于生命體的復(fù)雜性[54]。

        lncRNA指長(zhǎng)度大于200個(gè)核苷酸,但含有1個(gè)少于100個(gè)氨基酸開(kāi)放閱讀框(Open reading frame,ORF)的RNA,可分為長(zhǎng)鏈非編碼自然反義轉(zhuǎn)錄本(Long noncoding natural antisense transcripts,lincNATs)、內(nèi)含子 lncRNAs(Intronic lncRNAs)、啟動(dòng)子 lncRNAs(Promoter lncRNAs)和長(zhǎng)鏈基因間 ncRNAs(Long intergenic ncRNAs,lincRNAs)。lncRNAs 可作為與其互作分子的招募者、系結(jié)者、引導(dǎo)者、誘捕者和信號(hào)分子,從而發(fā)揮調(diào)控作用[55-57]。lncRNAs通過(guò)與miRNA結(jié)合,從而隔離miRNA,調(diào)控miRNA的表達(dá)水平,降低miRNA對(duì)mRNA的調(diào)控,最終促進(jìn)了mRNA的表達(dá)。在植物中鑒定出大量lncRNAs,如擬南芥[58]、小麥[59]、玉米[60]、谷子()[61]、棉花[62]、江南卷柏()[63]、沙棘()[64]、芒草()[65]以及毛果楊、毛白楊[66-67]。

        miRNA是一類(lèi)內(nèi)生的且長(zhǎng)度約為20 ~ 24個(gè)核苷酸的小RNA,在轉(zhuǎn)錄以及轉(zhuǎn)錄后的過(guò)程中調(diào)控基因表達(dá)[68]。miRNA在細(xì)胞內(nèi)具有多種重要的調(diào)節(jié)作用,參與了植物器官發(fā)育、代謝調(diào)節(jié),與細(xì)胞的增殖、分化、凋亡等一系列生理過(guò)程密切相關(guān)[69]。miRNA是通過(guò)切割目標(biāo)靶基因mRNA或抑制其翻譯來(lái)實(shí)現(xiàn)對(duì)目標(biāo)靶基因的調(diào)控,這種調(diào)控既能夠通過(guò)一個(gè)miRNA調(diào)控多個(gè)基因的表達(dá),亦可通過(guò)幾個(gè)miRNA共同調(diào)控某個(gè)基因的表達(dá),從而形成復(fù)雜的調(diào)控網(wǎng)絡(luò)[70]。MCNAIR[71]研究發(fā)現(xiàn)12個(gè)miRNA在正常生長(zhǎng)和快速生長(zhǎng)桉樹(shù)()中的表達(dá)模式,miRNA在正常桉樹(shù)和應(yīng)拉木的發(fā)育過(guò)程中起重要作用。利用高通量測(cè)序技術(shù)挖掘了包括2個(gè)藍(lán)桉()基因型的木質(zhì)部,獲得了大量的miRNA信息[72]。李崇奇等[73]研究表明,有41個(gè)miRNA與巨桉()木質(zhì)形成相關(guān),主要調(diào)控ARF、HD-ZIPIII、KAN、MYB 和NAC轉(zhuǎn)錄因子。circRNA是一類(lèi)線性閉合環(huán)狀內(nèi)源性的非編碼RNA分子,circRNA通過(guò)吸附miRNA并參與其表達(dá)調(diào)控過(guò)程,circRNA 能夠特異性結(jié)合miRNA,使其失去調(diào)控mRNA 的功能,調(diào)控基因表達(dá)等生物過(guò)程[74-77]。circRNA分為外顯子circRNA、基因間circRNA和內(nèi)含子circRNA[78-79]。circRNA廣泛表達(dá)于不同的植物中,表達(dá)具有時(shí)空組織特異性,circRNA作為內(nèi)源性非編碼RNA在真核生物的生長(zhǎng)發(fā)育過(guò)程中發(fā)揮著重要作用,引起人們廣泛的關(guān)注[80]。2014年在擬南芥根部發(fā)現(xiàn)circRNA后[81],2015年ANDREEVA和COOPER研究報(bào)道了circRNA廣泛存在于動(dòng)植物細(xì)胞組織中,且具有很多特殊的生物學(xué)特性之后,引起國(guó)內(nèi)外科學(xué)家的高度重視[82]。在水稻[83-84]、大麥()[85]、番茄()[86]以及小麥[87]中發(fā)現(xiàn)存在大量的circRNAs。YE等[84]在水稻的根和擬南芥的葉中分別鑒定了12 037和6 012個(gè)circRNAs。

        表1 與木質(zhì)相關(guān)的miRNA[73]

        通過(guò)對(duì)參與植物纖維素形成過(guò)程中的關(guān)鍵基因、ceRNA的進(jìn)一步研究,能夠更好的解析植物纖維素形成過(guò)程中的分子調(diào)控機(jī)制,以期獲得對(duì)植物纖維素形成過(guò)程的深入了解,從而為育種工作服務(wù)?,F(xiàn)今在植物中已經(jīng)鑒定出許多ceRNA,但只有少數(shù)做了功能驗(yàn)證,今后植物ceRNA的研究方向可能會(huì)趨向于搜索基因的功能,剖析功能冗余以及其應(yīng)用等方面。

        [1] SETHAPPHONG L, DAVIS J K, SLABAUGH E, et al. Prediction of the structures of the plant specific regions of vascular plant cellulose synthases and correlated functional analysis[J]. Cellulose, 2016, 23 (1): 145-161.

        [2] PLOMION C, LEPROVOST G, STOKES A. Wood formation in trees[J]. Plant Physiology, 2001, 127 (4): 1513-1523.

        [3] STECK E. Regulation of H19 and its encoded microRNA-675 in osteoarthritis and under anabolic and catabolic in vitro conditions[J]. Journal of Molecular Medicine, 2012, 90(10):1185-1195.

        [4] CHANG H Y. Long noncoding RNAs: cellular address codes in development and disease[J]. Cell, 2013, 152(6):1298-1307.

        [5] RINN J L, CHANG H Y. Genome regulation by long noncoding RNAs[J]. Annual Review of Biochemistry, 2012, 81(1): 145-166.

        [6] SALMENA L, POLISENO L, TAY Y, et al. A ceRNA hypothesis: the Rosetta stone of a hidden RNA language?[J]. Cell, 2011, 146(3):353-358.

        [7] BARTEL D P. MicroRNAs:Target recognition and regulatory functions[J]. Cell, 2009, 136(2): 215-233.

        [8] GU Y, KAPLINSKY N, BRINGMANN M, et al. Identification of a cellulose synthase-associated protein required for cellulose biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(29): 12866-12871.

        [9] 許雷,劉一星,方連玉.大青楊纖維素合成酶 PuCesA6 基因cDNA 的克隆及序列分析[J].西南林業(yè)大學(xué)學(xué)報(bào),2012,32(5):26-32.

        [10] 劉昱翔,陳建榮,彭彥,等.苧麻纖維素合成酶基因BnCesA4 cDNA 序列的克隆與表達(dá)分析[J].作物研究, 2014,28(5):472-478.

        [11] 阮維程,潘婷,季孔庶.馬尾松纖維素合成酶基因PmCesA1的克隆及其分析[J].分子植物育種,2015,13(4):861-870.

        [12] ARIOLI T, PENG L C, BETZNER A S, et al. Molecular analysis of cellulose biosynthesis in Arabidopsis[J]. Science, 1998, 279 (5351): 717-720.

        [13] FAGARD M, DESNOS T, DESPREZ T, et al. PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis[J]. Plant Cell, 2000, 12(12): 2409-2424.

        [14] SCHEIBLE W R, ESHED R, RICHMOND T, et al. Modifications of cellulose synthase confer resistance to isoxaben and thiazolidinone herbicides in Arabidopsis Ixr1 mutants[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(18): 10079-10084.

        [15] TAYLOR N G, LAURIE S, TURNER S R. Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis[J]. Plant Cell, 2000, 12(12): 2529-2539.

        [16] TURNER S R, SOMERVILLE C R. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall[J].Plant Cell, 1997, 9(5): 689-701.

        [17] BARRERO S C, HERNANDO A S, GONZALEZ M P, et al. Structure, expression profile and subcellular localisation of four different sucrose synthase genes from barley[J]. Planta, 2011, 234(2): 391-403.

        [18] POOVAIAH C R, MAZAREI M, DECKER S R, et al. Transgenic switchgrass(L.) biomass is increased by over-expression of switchgrass sucrose synthase (PvSUS1)[J]. Biotechnology Journal, 2015, 10(4): 552-563.

        [19] 房經(jīng)貴,朱旭東,賈海鋒,等.植物蔗糖合酶生理功能研究進(jìn)展[J].南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,40(5):759-768.

        [20] COLEMAN H D, YAN J, MANSFIELD S D, et al. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(31):13118-13123.

        [21] FUJII S, HAYASHI T, MIZUNO K. Sucrose synthase is an integral component of the cellulose synthesis machinery[J]. Plant and Cell Physiology, 2010, 51(2): 294–301.

        [22] BAI W Q, XIAO Y H, ZHAO J, et al. Gibberellin overproduction promotes sucrose synthase expression and secondary cell wall deposition in cotton fibers[J]. Plos One, 2014, 9(5): e96537.

        [23] 詹妮,謝耀堅(jiān),陳鴻鵬,等.巨桉 SuSy 基因家族的生物信息學(xué)分析[J].熱帶亞熱帶植物學(xué)報(bào),2018,26(6):580-588.

        [24] CARDINI C E, LELOIR F, CHIRIBOGA J. The biosynthesis of sucrose [J]. Journal of Biological Chemistry, 1955, 214(1): 149–156.

        [25] 雷美華,葉冰瑩,王冰梅,等.甘蔗蔗糖合成酶基因的克隆[J].應(yīng)用與環(huán)境生物學(xué)報(bào),2008,14(2):177-179.

        [26] BAUD S, VAULTIER M N, ROCHAT C. Structure and expression profile of the sucrose synthase multigene family in Arabidopsis[J]. Journal of Experimental Botany, 2004, 55(396): 397-409.

        [27] CARLSON S J, CHOUREY P S, HELENTJARID T, et al. Gene expression studies on developing kernels of maize sucrose synthase (SuSy) mutants show evidence for a third SuSy gene[J]. Plant Molecular Biology, 2002, 49(1): 15–29.

        [28] HIROSE T, SCOFIELD G N, TERAO T. An expression analysis profile for the entire sucrose synthase gene family in rice[J]. Plant Science, 2008, 174(5): 534-543.

        [29] CHEN A Q, HE S, LI F F, et al. Analyses of the sucrose synthase gene family in cotton: Structure, phylogeny and expression patterns[J]. BMC Plant Biology, 2012, 12(1): 85-102.

        [30] 馮延芝,魏琦琦,何瀟等.棗蔗糖合成酶基因SS6的克隆及表達(dá)分析[J].經(jīng)濟(jì)林研究,2017(4):36-42.

        [31] 賈春平,耿洪偉,朱亞夫,等.海島棉蔗糖合成酶基因克隆及生物信息學(xué)和表達(dá)模式分析[J].分子植物育種,2016,14(2):286-301.

        [32] JIANG Y J, GUO W Z, ZHU H Y, et al. Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality[J]. Plant Biotechnology Journal, 2012, 10(3): 301-312.

        [33] WEI Z G, QU Z S, ZHANG L J, et al. Overexpression of poplar xylem sucrose synthase in tobacco leads to a thickened cell wall and increased height[J]. Plos One, 2015, 10(3): e0120669.

        [34] XU S M, BRILL E, LLEWELLYN D J., et al. Overexpression of a potato sucrose synthase gene in cotton accelerates leaf expansion, reduces seed abortion, and enhances fiber production[J]. Molecular Plant, 2012, 5(2): 430-441.

        [35] 趙美榮.植物擴(kuò)展蛋白基因及其表達(dá)調(diào)控的研究進(jìn)展[J].赤峰學(xué)院學(xué)報(bào)(自然版),2014(14):1-5.

        [36] COSGROVE D J. Growth of the plant cell wall[J]. Nature Reviews Molecular Cell Biology, 2005, 6(11): 850-861.

        [37] COSGROVE D J. Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls[J]. Planta, 1989, 177(1): 121-130.

        [38] GRAY M M, BLOMQUIST K, MCQUEEN M S, et al. Ectopic expression of a wood-abundant expansin PttEXPA1 promotes cell expansion in primary and secondary tissues in aspen[J]. Plant Biotechnology Journal, 2008, 6(1): 62-72.

        [39] GRAY M M, MELLEROWICZ E J, ABE H, et al. Expansins abundant in secondary xylem belong to subgroup A of the alpha-expansin gene family[J]. Plant Physiology, 2004, 135(3):1552-1564.

        [40] XU B, GOU J Y, LI F G, et al. A cotton BURP domain protein interacts with α-Expansin and their Co-expression promotes plant growth and fruit production[J]. Molecular Plant, 2013, 6(3): 945-958.

        [41] SARA Z, LARA R, GIOVANNI B T, et al. Down regulation of the Petunia hybrida α-Expansin Gene PhEXP1 reduces the amount of crystalline cellulose in cell walls and leads to phenotypic changes in Petal Limbs[J]. Plant Cell, 2004, 16(2): 295-308.

        [42] CENIK E S, ZAMORE P D. Argonaute proteins[J]. Current Biology, 2011,21(12):446-449.

        [43] 范春節(jié),閆慧芳,裘珍飛,等.巨桉AGO基因家族的生物信息學(xué)分析[J].熱帶亞熱帶植物學(xué)報(bào),2015,23(4): 361-369.

        [44] 程健弘,魏明科,林二培,等.杉木HD-ZipⅢ轉(zhuǎn)錄因子的克隆及表達(dá)分析[J].農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2017(11):1820-1830.

        [45] ITOH J I, HIBARA K I, SATO Y, et al. Developmental Role and Auxin Responsiveness of Class III Homeodomain Leucine Zipper Gene Family Members in Rice[J]. Plant Physiology, 2008, 147(4):1960-1975.

        [46] KO J H, PRASSINOS C, HAN K H. Developmental and seasonal expression of PtaHB1, agene encoding a class III HD-Zip protein, is closely associated with secondary growth and inversely correlated with the level of microRNA (miR166)[J]. New Phytologist, 2006, 169(3): 469-478.

        [47] CAROLINE L, COTEET B F, ROY V, et al. Gene family structure, expression and functional analysis of HD-Zip III genes in angiosperm and gymnosperm forest trees[J]. BMC Plant Biology, 2010, 10(1): 273.

        [48] GEETHALAKSHMI S, BARATHKUMAR S, PRABU G. Thetranscription factor family genes in Sugarcane () [J].Plant Molecular Biology Reporter, 2015, 33(3):512-531.

        [49] LI C, WANG X, RAN L, et al.PtoMYB92 is a transcriptional activator of the lignin biosynthetic pathway during secondary cell wall formation intomentosa[J]. Plant and Cell Physiology, 2015, 56(12): 24-36.

        [50] LI C, NG C K Y, FAN L M. MYB transcription factors, active players in abiotic stress signaling[J]. Environmental & Experimental Botany, 2015, 114:80-91.

        [51] HAI D, BO R F, SI S Y, et al. The R2R3-MYB transcription factor gene family in Maize[J]. Plos One, 2012, 7(6):e37463.

        [52] 劉慧子,孫丹,于穎,等.白樺MYB家族基因序列及表達(dá)分析[J].植物研究,2016,36(2):252-257.

        [53] 葉勝龍.毛白楊MYB055轉(zhuǎn)錄因子在次生壁合成中的調(diào)控機(jī)制研究[D].重慶:西南大學(xué),2015.

        [54] SARVER A L, SUBRAMANIAN S. Competing endogenous RNA database[J]. Bioinformation, 2012, 8(15):731-733.

        [55] ZHANG Y, TAO Y, LIAO Q. Long noncoding RNA: a crosslink in biological regulatory network[J]. Briefings in Bioinformatics, 2018,19(5):930-945..

        [56] ANITA Q G, SOFIA N, HELENA S. Non-Coding RNAs: multi-tasking molecules in the cell[J].International Journal of Molecular Sciences, 2013, 14(8):16010-16039.

        [57] WILUSZ J E. Long noncoding RNAs: re-writing dogmas of RNA processing and stability[J]. Biochimica et Biophysica Acta-biomembranes,2016,1859(1): 128-138.

        [58] WANG H, CHUNG P J, LIU J, et al. Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis[J]. Genome Research, 2014, 24(3):444-453.

        [59] CAGIRICI H B,ALPTEKIN B,BUDAK H.RNA sequencing and co-expressed long non-coding RNA in modern and wild wheats[J].Scientific Reports,2017,7(1): 10670.

        [60] LI L, EICHTEN S R, SHIMIZU R, et al. Genome-wide discovery and characterization of maize long non-coding RNAs[J]. Genome Biology, 2014, 15(2): R40.

        [61] QI X, XIE S, LIU Y, et al. Genome-wide annotation of genes and noncoding RNAs of foxtail millet in response to simulated drought stress by deep sequencing[J].Plant Molecular Biology, 2013, 83(4-5): 459-473.

        [62] LU X, CHEN X, MU M, et al. Genome-wide analysis of long noncoding RNAs and their responses to drought stress in cotton(L.)[J]. Plos One, 2016, 11(6): e0156723.

        [63] ZHU Y, CHEN L, ZHANG C, et al. Global transcriptome

        analysis reveals extensive gene remodeling, alternative splicing and differential transcription profiles in non-seed vascular plant Selaginella moellendorffii[J].BMC Genomics, 2017, 18(Suppl1): 1042.

        [64] ZHANG G, DUAN A, ZHANG J, et al. Genome-wide analysis of long non-coding RNAs at the mature stage of sea buckthorn(Linn)fruit[J]. Gene, 2017, 596: 130-136.

        [65] XU Q, SONG Z, ZHU C, et al. Systematic comparison of lncRNAs with protein coding mRNAs in population expression and their response to environmental change[J]. BMC Plant Biology, 2017,17(1): 42.

        [66] LV Y, LIANG Z, MIN G, et al. Genome-wide identification and functional prediction of nitrogen-responsive intergenic and intronic long non-coding RNAs in maize(L.)[J].BMC Genomics, 2016, 17(1): 350.

        [67] TIAN J, SONG Y, DU Q, et al. Population genomic analysis of gibberellin-responsive long non-coding RNAs in[J]. Journal of Experimental Botany, 2016, 67(8):2467-2482.

        [68] AXTELL M J. Classification and comparison of small RNAs from plants[J].Annual Review Plant Biology,2013, 64:137-159.

        [69] PARK S M, PETER M E. microRNAs and death receptors[J]. Cytokine & Growth Factor Reviews, 2008, 19(3/4): 303-311.

        [70] SHUAI P, LIANG D, ZHANG Z,et al.Identification of droughtresponsive and novelmicroRNAs by highthroughput sequencing and their targets using degradome analysis[J].BMC Genomics,2013,14:233.

        [71] MCNAIR G R. Whole-tree and tension wood-associated expression profiles of micrornas intrees[D]. Pretoria: University of Pretoria,2009.

        [72] PAPPAS M, REIS A, FARINELL L, et al. Interspecific discovery and expression profiling ofmicro RNAs by deep sequencing[J]. BMC Proceedings, 2011, 5(7):1-2.

        [73] 李崇奇,沈文濤,言普,等.巨桉miRNA及其靶基因生物信息學(xué)預(yù)測(cè)[J].南方農(nóng)業(yè)學(xué)報(bào),2014,45(9):1532-1538.

        [74] NIGRO J M, CHO K R, FEARON E R., et al. Scrambled exons.[J]. Cell, 2016, 64(3):607-613.

        [75] EBERT M S, NEILSON J R, SHARP P A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells[J]. Nature Methods, 2007, 4(9): 721-726.

        [76] 岳慧芳,任永哲,王志強(qiáng),等.circRNAs在植物中的研究進(jìn)展[J].西北植物學(xué)報(bào),2018,38(2):386-392.

        [77] LIU Q, ZHANG X, HU X, et al. Circular RNA related to the chondrocyte ECM regulates MMP13 expression by functioning as a MiR-136 ‘Sponge’ in human cartilage degradation[J]. Scientific Reports, 2016, 6: 22572.

        [78] CHEN B, HUANG S. Circular RNA: An emerging non-coding RNA as a regulator and biomarker in cancer[J]. Cancer Letters, 2018, 418(18):30033-30038.

        [79] GREENE J, BAIRD A M, BRADY L, et al. Circular RNAs: biogenesis, function and role in human diseases[J]. Frontiers in Molecular Biosciences, 2017, 4:38.

        [80] LEE S M, KONG H G, RYU C M. Are Circular RNAs New Kids on the Block?[J]. Trends in Plant Science, 2017, 22(5):357-360.

        [81] WANG P L, BAO Y, YEE M C, et al. Circular RNA Is expressed across the eukaryotic tree of life[J]. Plos One, 2014, 9(6):e90859.

        [82] ANDREEVA K, COOPER N G F. Circular RNAs: new players in gene regulation[J]. Advances in Bioscience & Biotechnology, 2015, 6(6): 433-441.

        [83] CHU Y Y, LI C, CHEN L, et al. Widespread noncoding circular RNAs in plants[J]. New Phytologist, 2015, 208(1): 88-95.

        [84] YE C Y, ZHANG X, CHU Q, et al. Full-length sequence assembly reveals circular RNAs with diverse non-GT/AG splicing signals in rice[J]. RNA Biology, 2016, 14(8):1-9.

        [85] DARBANI B, NOEPARVAR S, BORG S. Identification of circular RNAs from the parental genes involved in multiple aspects of cellular metabolism in barley[J]. Frontiers in Plant Science, 2016, 7:776.

        [86] ZUO J, WANG Q, ZHU B, et al. Deciphering the roles of circRNAs on chilling injury in tomato[J]. Biochemical & Biophysical Research Communications, 2016, 479(2): 132-138.

        [87] WANG Y, YANG M, WEI S, et al.Identification of circular RNAs and their targets in leaves ofL. under dehydration stress[J]. Frontiers in Plant Science, 2017, 7: 1-10.

        Research Progress in the Regulation of ceRNA on Plant Cellulose Formation

        ZHAN Ni, XIE Yaojian, WU Zhihua, LIU Guo, SHANG Xiuhua

        (,)

        The formation of plant cellulose is regulated by multiple genes and pathways. In this paper, the key enzyme genes, transcription factors and ceRNA in the process of cellulose formation are elaborated to further understand the regulation mechanism of cellulose biosynthesis. The key genes including cellulose synthase, sucrose synthase, MYB and ceRNA including lncRNA, miRNA and circRNA in the process of plant cellulose formation are reviewed. The complex molecular control network is expounded in order to analyze the molecular control mechanism of plant cellulose formation, and to understand the process of plant cellulose formation.

        ceRNA; cellulose; transcription factors; expression regulation

        Q74

        A

        國(guó)家自然科學(xué)基金面上項(xiàng)目“桉樹(shù)抗風(fēng)特性及其主要影響因子研究”(31570615);國(guó)家重點(diǎn)研發(fā)計(jì)劃課題“桉樹(shù)、云南松(思茅松)、華山松豐產(chǎn)增效技術(shù)集成與示范”(2017YFD0601202)

        詹妮(1990― ),女,博士研究生,主要從事桉樹(shù)林木遺傳育種方面的研究,E-mail: jennyzn1122@163.com

        吳志華(1974― ),男,副研究員,主要從事林木逆境生理研究,E-mail: wzhua2889@163.com

        猜你喜歡
        細(xì)胞壁擬南芥纖維素
        擬南芥:活得粗糙,才讓我有了上太空的資格
        纖維素基多孔相變復(fù)合材料研究
        纖維素氣凝膠的制備與應(yīng)用研究進(jìn)展
        尿黑酸對(duì)擬南芥酪氨酸降解缺陷突變體sscd1的影響
        紅花醇提物特異性抑制釀酒酵母細(xì)胞壁合成研究
        茄科尖孢鐮刀菌3 個(gè)專(zhuān)化型細(xì)胞壁降解酶的比較
        兩種LED光源作為擬南芥生長(zhǎng)光源的應(yīng)用探究
        擬南芥干旱敏感突變體篩選及其干旱脅迫響應(yīng)機(jī)制探究
        纖維素晶須的制備研究
        酶法破碎乳酸菌細(xì)胞壁提取菌體蛋白的研究
        精品无码一区二区三区亚洲桃色| 中文字幕免费人成在线网站| 天天躁日日躁狠狠躁欧美老妇小说 | 中文字幕一区二区人妻| 亚洲AV综合A∨一区二区| 超短裙老师在线观看一区二区| 变态另类手机版av天堂看网| 久久精品无码av| 午夜国产在线| 成人影院免费观看在线播放视频| 国产精品熟女一区二区三区| 亚洲精品无码av人在线播放| 亚洲色在线视频| 国产丝袜美腿诱惑在线观看| 亚洲高清中文字幕视频| 插b内射18免费视频| 毛片毛片免费看| 亚洲国产都市一区二区| 国产精品视频亚洲二区| 欧美日韩色另类综合| 亚洲日产无码中文字幕| 在线观看一区二区三区视频| 性无码一区二区三区在线观看| 吸咬奶头狂揉60分钟视频| 99在线国产视频| 日韩女优视频网站一区二区三区 | 亚洲精品国产亚洲av| 亚洲av日韩aⅴ无码色老头| 国产真实乱人偷精品人妻| 国产极品喷水视频| 日本激情视频一区在线观看| 久久亚洲精品国产av| 少妇高潮惨叫久久久久久电影 | 色噜噜狠狠色综合欧洲| 亚洲女同免费在线观看| 无码人妻精品一区二区蜜桃网站| 久久中文字幕乱码免费| 一区二区三区少妇熟女高潮| 久久国产精品99精品国产987| 国产激情一区二区三区成人免费| 国产成人亚洲精品91专区高清|