亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        基于MT-BCS的可分離DOA估計算法

        2019-04-04 03:17:40萬連城黑蕾王迎斌
        現(xiàn)代電子技術(shù) 2019年6期
        關(guān)鍵詞:壓縮感知貝葉斯分辨率

        萬連城 黑蕾 王迎斌

        關(guān)鍵詞: 二維DOA估計; 壓縮感知; 貝葉斯; 多任務(wù)貝葉斯壓縮感知; 分辨率; 算法復(fù)雜度

        中圖分類號: TN951?34 ? ? ? ? ? ? ? ? ? ? ? ? 文獻標(biāo)識碼: A ? ? ? ? ? ? ? ? ? ? ? 文章編號: 1004?373X(2019)06?0010?04

        Abstract: The constant development of the compressed sensing theory provides a new idea for the problem of 2?D direction of arrival (DOA) estimation. The traditional 2?D DOA estimation method is only the extension of the 1?D DOA estimation, and the modeling method of the 2?D DOA estimation is the same as that of the 1?D DOA estimation, which leads to problems of high computation complexity and low resolution in solving. The multitask Bayesian compressive sensing (MT?BCS) theory is applied to the 2?D DOA estimation problem by remodeling of the 2?D DOA model, so as to propose a separable 2?D DOA estimation algorithm based on MT?BCS. A comparative experiment was carried out. The results demonstrate that the proposed algorithm has the advantages of high resolution and low complexity.

        Keywords: 2?D DOA estimation; compressed sensing; Bayesian; MT?BCS; resolution; algorithm complexity

        基于稀疏表示[1?3]的二維DOA(Direction of Arrival)估計算法大多是基于一維DOA估計的擴展,算法建模時也是將二維矩陣展開為向量,仿照一維DOA估計的建模方法進行建模。這類算法主要有:基于[lp]范數(shù)的POCUSS算法[2?4],經(jīng)典的高分辨[lp?SVD]算法[5],MP[6],OMP[7?8]等貪婪算法和基于貝葉斯壓縮感知的DOA估計算法[9]。

        然而,這類仿照一維DOA的二維DOA建模方法導(dǎo)致稀疏基矩陣的維度過大,求解時算法的時間復(fù)雜度過高,難以滿足實時性的要求。為了降低算法的時間復(fù)雜度,本文提出了可分離的二維DOA建模新方法,并使用MT?BCS(Multitask Bayesian Compressive Sensing)算法[10]進行求解,成功解決了二維DOA估計算法時間復(fù)雜度高、分辨率低的缺點。

        由表1可知,由于本文所提出的方法將矩陣[A∈CML×PQ] 分離為俯仰維導(dǎo)向矢量基矩陣[Ψ∈CM×L]和方位維[Ψ]導(dǎo)向矢量基矩陣[Θ∈CP×Q],從而有效地減少了算法的時間復(fù)雜度,使算法更適合工業(yè)應(yīng)用。

        4 ?結(jié) ?語

        對于傳統(tǒng)二維DOA估計分辨率低、精度低、算法復(fù)雜度高等問題,本文提出基于MT?BCS算法的可分離二維DOA估計算法。該算法巧妙地將陣列流形矩陣A分解為俯仰維和方位維兩個獨立的低維導(dǎo)向矢量基矩陣,從而大大降低了算法的時間復(fù)雜度。而且算法對俯仰維、方位維進行獨立估計大大提高了二維DOA估計的分辨率。由于不涉及對噪聲方差的估計,算法的魯棒性也很高。在后續(xù)工作中將進一步提高算法的分辨率,并降低其時間復(fù)雜度。

        參考文獻

        [1] GORODNITSKY I F, GEORGE J S, RAO B D. Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm [J]. Electroencephalography and clinical neurophysiology, 2015, 95(4): 231?251.

        [2] GORODNITSKY I F, RAO B D. Sparse signal reconstruction from limited data using FOCUSS: a re?weighted minimum norm algorithm [J]. IEEE transactions on signal processing, 1997, 45(3): 600?616.

        [3] GORODNITSKY I F, RAO B D, GEORGE J. Source localization in magnetoencephalography using an iterative weighted minimum norm algorithm [C]// Proceedings of the 26th Asilomar Conference on Signals, Systems & Computers. Pacific grove: IEEE, 1992: 167?171.

        [4] COTTER S F, RAO B D, ENGAN K, et al. Sparse solutions to linear inverse problems with multiple measurement vectors [J]. IEEE transactions on signal processing, 2005, 53(7): 2477?2488.

        [5] MALIOUTOV D, ?ETIN M, WILLSKY A S. A sparse signal reconstruction perspective for source localization with sensor arrays [J]. IEEE transactions on signal processing, 2005, 53(8): 3010?3022.

        [6] MALLAT S G, ZHANG Z. Matching pursuit with time?frequency dictionaries [J]. IEEE transactions on signal processing, 2013, 41(12): 3397?3415.

        [7] DAVIS G, MALLAT S G, ZHANG Z. Adaptive time?frequency decompositions [J]. Optical engineering, 1994, 33(7): 2183?2191.

        [8] PATI Y C, REZAIIFAR R, KRISHNAPRASAD P S. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition [C]// Proceedings of the 26th Asilomar Conference on Signals, Systems & Computers. Pacific grove: IEEE, 1993: 40?44.

        [9] JI S, DUNSON D, CARIN L. Multitask compressive sensing [J]. IEEE transactions on signal processing, 2009, 57(1): 92?106.

        [10] CARLIN M, ROCCA P, OLIVERI G, et al. Directions?of?arrival estimation through Bayesian compressive sensing strategies [J]. IEEE transactions on antennas & propagation, 2013, 61(7): 3828?3838.

        [11] 劉自成.基于稀疏表示的雷達目標(biāo)角度與距離估計[D].西安:西安電子科技大學(xué),2014.

        LIU Zicheng. Estimation of target′s angle and range in radar based on sparse representation [D]. Xian: Xidian University, 2014.

        [12] Candès E J. Compressive sampling [C]// Proceedings of the International Congress of Mathematics. Madrid: European Mathematical Society, 2006: 1433?1452.

        [13] 馬文潔.貝葉斯壓縮感知在DOA估計中的應(yīng)用研究[D].哈爾濱:哈爾濱工業(yè)大學(xué),2014.

        MA Wenjie. DOA estimation through Bayesian compressive sensing algorithm [D]. Harbin: Harbin Institute of Technology, 2014.

        猜你喜歡
        壓縮感知貝葉斯分辨率
        EM算法的參數(shù)分辨率
        原生VS最大那些混淆視聽的“分辨率”概念
        基于深度特征學(xué)習(xí)的圖像超分辨率重建
        貝葉斯公式及其應(yīng)用
        一種改進的基于邊緣加強超分辨率算法
        基于匹配追蹤算法的乳腺X影像的壓縮感知重構(gòu)
        淺析壓縮感知理論在圖像處理中的應(yīng)用及展望
        基于ADM的加權(quán)正則化的塊稀疏優(yōu)化算法
        基于貝葉斯估計的軌道占用識別方法
        壓縮感知在無線傳感器網(wǎng)絡(luò)中的應(yīng)用
        科技視界(2016年10期)2016-04-26 08:29:08
        野花社区视频www官网| av一区二区在线网站| 午夜人妻久久久久久久久| 高潮又爽又无遮挡又免费| 国产无码夜夜一区二区| 高潮社区51视频在线观看| 一卡二卡国产av熟女| 帅小伙自慰videogay男男| 精品无码人妻一区二区三区品| 免费观看一区二区| 亚洲一区二区av免费观看| 又黄又爽又色视频| 青青久在线视频免费观看| 亚洲人成网站久久久综合| 东京热加勒比国产精品| 国产精品久久久亚洲| 免费精品无码av片在线观看| 素人激情福利视频| 青青草成人免费在线观看视频| 久久无码专区国产精品| 国产AV无码专区久久精品网站| 日本变态网址中国字幕| 久久黄色国产精品一区视频| 一区二区三区国产| 在线观看视频亚洲| 中文字幕人妻久久一区二区三区| 久久黄色视频| 国产在线观看免费观看| 狠狠躁夜夜躁人人爽天天不卡 | 丰满少妇被猛进去高潮| 欧美日韩视频在线第一区| 一级一级毛片无码免费视频 | 日本一区二区三级免费| 亚洲va欧美va日韩va成人网| 激情内射亚洲一区二区三区爱妻| 日本女优在线观看一区二区三区| 亚洲第一网站免费视频| 欧美精品一区二区蜜臀亚洲| 亚洲av日韩片在线观看| av在线免费观看男人天堂| 亚洲精品无码久久久影院相关影片 |