譚彬,陳譚星,韓亞萍,張亞如,鄭先波,程鈞,王偉,馮建燦
?
桃的克隆及其在不同狀態(tài)愈傷組織中的表達(dá)分析
譚彬1,2,陳譚星1,韓亞萍1,張亞如1,鄭先波1,2,程鈞1,2,王偉1,2,馮建燦1,2
(1河南農(nóng)業(yè)大學(xué)園藝學(xué)院,鄭州 450002;2河南省果樹(shù)瓜類(lèi)生物學(xué)重點(diǎn)實(shí)驗(yàn)室,鄭州 450002)
【目的】分離克隆桃(L.)體細(xì)胞胚胎發(fā)生相關(guān)類(lèi)受體蛋白激酶(somatic embryogenesis receptor-like kinases,SERKs)基因,檢測(cè)其在不同狀態(tài)桃愈傷組織中的表達(dá)差異,分析與胚性愈傷組織發(fā)生的關(guān)系,為揭示組織培養(yǎng)困難樹(shù)種桃胚性愈傷組織產(chǎn)生的分子機(jī)理奠定基礎(chǔ)。【方法】采用同源克隆法獲得的cDNA全長(zhǎng)序列,運(yùn)用TMPred、DNAMAN和MEGA 5.0等生物信息學(xué)軟件對(duì)序列進(jìn)行分析;以‘秋蜜紅’花藥為外植體,接種至添加2.0 mg·L-16-BA和1.0 mg·L-12,4-D的NN69培養(yǎng)基誘導(dǎo)愈傷組織;將獲得的不同狀態(tài)愈傷組織制作石蠟切片并進(jìn)行組織細(xì)胞學(xué)觀察;通過(guò)實(shí)時(shí)熒光定量PCR(qRT-PCR)對(duì)在4種不同狀態(tài)愈傷組織中的表達(dá)進(jìn)行分析。【結(jié)果】克隆獲得‘秋蜜紅’的cDNA全長(zhǎng)序列1 881 bp,編碼626個(gè)氨基酸,其蛋白質(zhì)理論分子量為68.99 kD,理論等電點(diǎn)為5.38,具有完整的SERK蛋白的保守結(jié)構(gòu)域,與牡丹()等物種的同源性為67.88%—92.71%,且與秘魯番茄()和溫州蜜柑()的相似性最高。在與其他物種的SERK蛋白構(gòu)建的系統(tǒng)進(jìn)化樹(shù)中,PpSERK2與SpSERK1、CitSERK1和PsSERK2等聚在一起,與同源性比對(duì)結(jié)果一致。以‘秋蜜紅’花藥為外植體誘導(dǎo)獲得4種不同狀態(tài)的愈傷組織,組織細(xì)胞學(xué)觀察發(fā)現(xiàn)黃色疏松狀(球形胚出現(xiàn))、綠色緊實(shí)狀(心形胚出現(xiàn))和淺黃色透明狀(尚未完全形成的魚(yú)雷形胚結(jié)構(gòu)出現(xiàn))的3種狀態(tài)的愈傷組織細(xì)胞小、排列緊密;而黃白色水漬狀愈傷組織細(xì)胞體積大、排列不規(guī)則,細(xì)胞質(zhì)稀且染色淺。根據(jù)形態(tài)學(xué)和組織學(xué)的鑒定結(jié)果,可知黃色疏松狀、綠色緊實(shí)狀和淺黃色透明狀的3種狀態(tài)的愈傷組織均為胚性愈傷組織,而黃白色水漬狀愈傷組織為非胚性愈傷組織。實(shí)時(shí)熒光定量PCR(qRT-PCR)結(jié)果表明,在‘秋蜜紅’3種狀態(tài)的胚性愈傷組織中的表達(dá)量顯著高于非胚性愈傷組織,且在3種胚性愈傷組織中的表達(dá)量有差異,其中在黃色疏松狀愈傷組織中表達(dá)量最高,綠色緊實(shí)狀次之,淺黃色透明狀中最低?!窘Y(jié)論】克隆獲得的cDNA全長(zhǎng)序列,其在3種狀態(tài)的胚性愈傷組織中的表達(dá)量明顯高于非胚性愈傷組織,且在黃色疏松狀胚性愈傷組織中的表達(dá)量最高,在桃體細(xì)胞胚發(fā)育的早期發(fā)揮作用。
桃;體細(xì)胞胚發(fā)生;;胚性愈傷組織
【研究意義】植物體細(xì)胞胚胎發(fā)生指外植體的體細(xì)胞在離體條件下,經(jīng)過(guò)特定培養(yǎng),發(fā)生與合子胚相類(lèi)似的發(fā)育途徑,最終形成新個(gè)體的過(guò)程[1]。植物遺傳轉(zhuǎn)化的眾多研究已經(jīng)證明通過(guò)胚性愈傷組織誘導(dǎo)體細(xì)胞胚再生系統(tǒng)轉(zhuǎn)化率較高且穩(wěn)定,因此,胚狀體再生系統(tǒng)是最為理想的遺傳轉(zhuǎn)化受體系統(tǒng)[2]。桃是重要的果樹(shù)之一,目前,制約現(xiàn)代生物技術(shù)應(yīng)用于桃上的關(guān)鍵環(huán)節(jié)就是缺乏成熟的離體再生和遺傳轉(zhuǎn)化體系[3]?;诖?,開(kāi)展桃胚性愈傷組織和體細(xì)胞胚的誘導(dǎo)及研究控制體細(xì)胞胚發(fā)生的相關(guān)基因?qū)Τ晒Λ@得桃胚狀體再生系統(tǒng)具有重要意義?!厩叭搜芯窟M(jìn)展】已成功離體培養(yǎng)獲得體細(xì)胞胚的植物,大多數(shù)為草本植物,木本植物中僅有核桃、落葉松、板栗、烏桕、柑橘、葡萄等體細(xì)胞胚誘導(dǎo)獲得成功[4-10],其中,柑橘和葡萄還利用胚狀體再生途徑建立了穩(wěn)定高效的遺傳轉(zhuǎn)化體系[11-12]。已經(jīng)克隆的與植物體細(xì)胞胚發(fā)生相關(guān)的基因有()、()、()和(somatic embryogenesis receptor-like kinases,SERKs)等,、和等能提高體細(xì)胞胚發(fā)生率或維持體細(xì)胞胚發(fā)生[13-15],在體細(xì)胞胚產(chǎn)生后才發(fā)揮作用,不能促使體細(xì)胞從營(yíng)養(yǎng)生長(zhǎng)向胚性生長(zhǎng)的轉(zhuǎn)化。SERK蛋白廣泛存在于植物當(dāng)中,Schmidt等[16]首先從胡蘿卜組織中獲得第一個(gè),并發(fā)現(xiàn)它只在胚性細(xì)胞內(nèi)表達(dá)。隨后,相繼在擬南芥[17]、玉米[18]、苜蓿[19]、向日葵[20]、水稻[21]、小麥[22]、棉花[23]等植物中獲得,且在體胚發(fā)生過(guò)程中均可以檢測(cè)到它們的表達(dá)。擬南芥在花芽和發(fā)育初期的合子胚中表達(dá)顯著高于葉、根和莖[17, 24]。Andrea等[25]研究表明甘藍(lán)型油菜(和)在小孢子培養(yǎng)1—5 d后表達(dá)量明顯上調(diào),在整個(gè)小孢子胚期(microspore-derived embryos,MDEs)表達(dá)量持續(xù)上升。Péreznú?ez等[26]研究表明的表達(dá)與椰子體細(xì)胞胚的產(chǎn)生有關(guān),它在胚性愈傷組織中表達(dá),而在非胚性愈傷組織中低表達(dá)或檢測(cè)不到。相似的結(jié)果在香蕉和棉花中發(fā)現(xiàn),其中香蕉體細(xì)胞胚的發(fā)生頻率與的表達(dá)量呈正相關(guān)[24];過(guò)量表達(dá)使棉花體胚發(fā)生能力增強(qiáng)[27],而在生殖器官中表達(dá)量明顯高于營(yíng)養(yǎng)器官,在體胚發(fā)生過(guò)程中在球形胚中的表達(dá)量最高[23]。以上結(jié)果表明不僅能促進(jìn)體細(xì)胞胚的發(fā)生,還標(biāo)志著體細(xì)胞從營(yíng)養(yǎng)生長(zhǎng)向胚性生長(zhǎng)轉(zhuǎn)變,預(yù)示可能會(huì)被發(fā)展成為體細(xì)胞胚發(fā)生的標(biāo)記基因[16]?!颈狙芯壳腥朦c(diǎn)】桃離體再生體系研究進(jìn)展極其緩慢,有關(guān)體細(xì)胞胚的誘導(dǎo)及體細(xì)胞胚發(fā)生相關(guān)基因的研究報(bào)道較少。通過(guò)對(duì)桃的克隆和表達(dá)分析,有助于從分子水平了解在桃胚性愈傷組織及體胚發(fā)生過(guò)程中的作用,探究桃再生體系建立困難的原因?!緮M解決的關(guān)鍵問(wèn)題】本研究通過(guò)克隆桃,分析其在不同狀態(tài)愈傷組織中的表達(dá),揭示在桃胚性愈傷組織及體細(xì)胞胚胎發(fā)生中的作用,為提高桃胚性愈傷組織的體細(xì)胞胚胎發(fā)生能力提供理論指導(dǎo)。
‘秋蜜紅’(‘Qiumihong’)莖尖取自河南農(nóng)業(yè)大學(xué)果樹(shù)種質(zhì)資源圃,樣品采集后迅速放入液氮速凍并帶回實(shí)驗(yàn)室,-80℃保存。
以‘秋蜜紅’花藥為外植體誘導(dǎo)愈傷組織,‘秋蜜紅’花蕾采摘于河南農(nóng)業(yè)大學(xué)果樹(shù)種質(zhì)資源圃,采回后取花藥在無(wú)菌條件下進(jìn)行培養(yǎng),獲得的不同狀態(tài)的愈傷組織,用于后續(xù)的石蠟切片制作和表達(dá)分析。
采用改良的CTAB法[28]提取桃莖尖及愈傷組織RNA,用1.5%瓊脂糖凝膠電泳檢測(cè)RNA的質(zhì)量。利用反轉(zhuǎn)錄試劑盒(High Capacity cDNAReverse Transcription Kit,ABI)合成cDNA,-20℃保存?zhèn)溆谩?/p>
根據(jù)目標(biāo)研究基因在GenBank(登錄號(hào)為XP_007201734.1)中已知的cDNA序列,利用Vector NTI軟件設(shè)計(jì)特異性引物(上游引物5′-ATGGAGAG CAAGGTAGGGAA-3′,下游引物5′-TCACCTTGGA CCAGATAATTCA-3′),以桃莖尖RNA反轉(zhuǎn)錄合成的cDNA為模板進(jìn)行PCR反應(yīng),PCR反應(yīng)體系(20 μL)為1 μL cDNA、上下游引物(10 μmol·L-1)各1 μL、10 μL 2×Plus Mster Mix(Dye Plus),補(bǔ)ddH2O至20 μL。PCR反應(yīng)條件為95℃4 min;95℃ 30 s,57℃30 s,72℃ 110 s,30個(gè)循環(huán);72℃10 min。擴(kuò)增產(chǎn)物經(jīng)1.5%瓊脂糖凝膠電泳檢測(cè),回收目的片段,連接至PMD 20-T載體,轉(zhuǎn)化大腸桿菌DH5α感受態(tài)細(xì)胞,篩選陽(yáng)性克隆送至生工生物工程(上海)股份有限公司進(jìn)行測(cè)序。
所有序列均來(lái)自于NCBI(http://www.ncbi.nlm. nih.gov/);運(yùn)用Expy Protparatam(http://www.expasy. ch//tools/protparam.htmL)在線(xiàn)預(yù)測(cè)編碼蛋白質(zhì)的理化性質(zhì);運(yùn)用TMPred(http://embnet.vital-it. ch/software/TMPRED_form.html)進(jìn)行PpSERK2跨膜區(qū)的預(yù)測(cè);利用plant-mPloc(http://www.csbio.sjtu.edu. cn/bioinf/plant-multi/)預(yù)測(cè)亞細(xì)胞定位;采用InterProScan(http://www.ebi.ac.uk/InterProScan/)程序分析保守結(jié)構(gòu)域;用DNAMAN軟件對(duì)不同植物的氨基酸序列進(jìn)行同源比對(duì);利用MEGA 5.0軟件對(duì)不同植物的SERK序列構(gòu)建系統(tǒng)進(jìn)化樹(shù)。
將田間采集的‘秋蜜紅’小花蕾期花蕾去除下部芽鱗片,在洗滌劑中浸泡15—30 min,流水沖洗0.5—1 h。在無(wú)菌條件下,首先將花蕾用75%酒精進(jìn)行消毒,無(wú)菌水沖洗3次;然后用0.1%NaClO消毒處理5 min,無(wú)菌水沖洗5—6次;在超凈工作臺(tái)內(nèi)將花藥接種到NN69+6-BA 2.0 mg·L-1+2,4-D 1.0 mg·L-1+蔗糖60 g·L-1培養(yǎng)基,于25℃暗培養(yǎng)至愈傷組織長(zhǎng)出,每4周繼代一次。
將需要固定的花藥愈傷組織放入盛有FAA固定液的標(biāo)本瓶中,蓋上橡膠蓋,用注射器緩慢抽氣,除去材料表面的氣泡直至材料沉于瓶子底部,不再有氣泡冒出為止,4℃固定24—72 h。參照李和平[29]的方法制作石蠟切片,在正置光學(xué)顯微鏡(Nikon Eclipse E100,日本)下采集圖像信息。
根據(jù)已得到的全長(zhǎng),利用Primer 3.0在線(xiàn)工具(http://primer3.ut.ee/)設(shè)計(jì)實(shí)時(shí)熒光定量PCR引物(F:5′-TGTTGCTTGATTGGGTGAAA-3′;R:5′-CATTGGAGAACCTTGTGC-3′),以桃為內(nèi)參基因(F:5′-AGCTGGTCATGTCAAAGTCCA-3′;R:5′-ACAAGCCAACTCGGAACT-3′),引物由生工生物工程(上海)股份有限公司合成。以‘秋蜜紅’不同狀態(tài)的愈傷組織cDNA為模板,對(duì)進(jìn)行qRT-PCR分析。實(shí)時(shí)熒光定量PCR體系為SYBR Premix(2×)10.0 μL、上下游引物(10 μmol·L-1)各1.0 μL、cDNA 2.0 μL和DEPC H2O 6.0 μL。qRT-PCR反應(yīng)條件參照韓亞萍[30]方法,每處理重復(fù)3次,以2-ΔΔCT法進(jìn)行數(shù)據(jù)分析。
運(yùn)用SPSS17.0軟件進(jìn)行試驗(yàn)數(shù)據(jù)的統(tǒng)計(jì)學(xué)分析,采用鄧肯式新復(fù)極差法進(jìn)行處理間差異分析(<0.05)。
用1.5%瓊脂糖凝膠電泳檢測(cè)‘秋蜜紅’莖尖RNA,28S和18S條帶清晰,且28S條帶比18S的條帶亮,結(jié)果表明,RNA的質(zhì)量和濃度均可用于下一步的試驗(yàn)(圖1-A)。以‘秋蜜紅’莖尖cDNA為模板進(jìn)行PCR擴(kuò)增,獲得一條約為1 881 bp的目的片段(圖1-B)。
A:‘秋蜜紅’莖尖RNA;B:PpSERK2的PCR擴(kuò)增,M:DNA marker DL2000
全長(zhǎng)1 881 bp,編碼626個(gè)氨基酸(圖2)。運(yùn)用Protparatam在線(xiàn)預(yù)測(cè)其蛋白質(zhì)的理論分子量為68.99 kD,為5.38,不穩(wěn)定系數(shù)是41.73(不穩(wěn)定),分子式為C3084H4873N837O907S25,脂融指數(shù)為91.71,總平均疏水指數(shù)為-0.115,具疏水性。蛋白由22種氨基酸組成,其中亮氨酸(14.2%)含量最多,其次是甘氨酸(7.5%),半胱氨酸(1.4%)含量最少。TMpred預(yù)測(cè)結(jié)果推測(cè)PpSERK2具備跨膜結(jié)構(gòu),屬于跨膜蛋白。亞細(xì)胞定位預(yù)測(cè)結(jié)果顯示PpSERK2定位于細(xì)胞膜。
用DNAMAN軟件將PpSERK2氨基酸序列與已知不同植物的SERK序列進(jìn)行同源性比對(duì)。結(jié)果顯示,PpSERK2氨基酸序列與秘魯番茄()SpSERK1相似性最高,為92.71%,與溫州蜜柑()CitSERK1次之,為92.01%,與擬南芥()AtSERK5的最低,為67.88%(圖3)。InterProScan分析PpSERK2結(jié)果顯示,其含有多個(gè)保守區(qū)典型SERK結(jié)構(gòu),N端存在1個(gè)編碼信號(hào)肽(signal peptide,SP),緊接著是1個(gè)亮氨酸拉鏈結(jié)構(gòu)(leu zipper,ZIP)、5個(gè)富亮氨酸重復(fù)序列(leu-rich repeat,LRR)、1個(gè)編碼SPP(Ser-Pro-Pro)基序的富脯氨酸結(jié)構(gòu)域、1個(gè)跨膜結(jié)構(gòu)域(transmembrane region,TM)和11個(gè)亞區(qū)的激酶結(jié)構(gòu)域(kinase domains)。此外,PpSERK2蛋白還存在1個(gè)C端結(jié)構(gòu)域(圖3)。
利用MEGA5.0軟件對(duì)不同植物的SERK氨基酸序列構(gòu)建系統(tǒng)進(jìn)化樹(shù)(圖4),結(jié)果顯示,PpSERK2與SpSERK1、CitSERK1、PsSERK2、AtSERK1、AtSERK2等雙子葉植物同源性較高;二穗短柄草()、菠蘿()、水稻()、玉米()等單子葉植物聚為一類(lèi),進(jìn)化樹(shù)結(jié)果與同源性比對(duì)結(jié)果一致;擬南芥AtSERK3、AtSERK4、AtSERK5獨(dú)處于一個(gè)分支。
將‘秋蜜紅’花藥接種到添加6-BA和2,4-D的NN69培養(yǎng)基,培養(yǎng)1周后,花藥顏色逐漸變?yōu)楹稚?;培養(yǎng)15 d后,有的在其中部或端部的藥室內(nèi)形成裂縫,從中長(zhǎng)出黃色的顆粒狀愈傷組織。繼續(xù)培養(yǎng)2周,對(duì)獲得的愈傷組織進(jìn)行形態(tài)學(xué)觀察,可將花藥培養(yǎng)獲得的愈傷組織分為4類(lèi),黃色疏松狀、綠色緊實(shí)狀、淺黃色透明狀和黃白色水漬狀(圖5)。組織細(xì)胞學(xué)觀察發(fā)現(xiàn)黃色疏松狀和綠色緊實(shí)狀的愈傷組織細(xì)胞小、排列緊密且染色比較深(圖5-E和圖5-F),分別出現(xiàn)球形胚和心形胚結(jié)構(gòu);淺黃色透明狀愈傷組織細(xì)胞排列緊密、細(xì)胞體積小,靠近愈傷組織邊緣的細(xì)胞排列比較緊密且細(xì)胞體積?。▓D5-G),疑似魚(yú)雷形胚結(jié)構(gòu)尚未完全形成;而黃白色水漬狀愈傷組織細(xì)胞體積大、排列不規(guī)則,細(xì)胞質(zhì)稀且染色淺(圖5-H)。根據(jù)形態(tài)學(xué)和組織學(xué)的鑒定結(jié)果,可知黃色疏松狀、綠色緊實(shí)狀和淺黃色透明狀的3種狀態(tài)愈傷組織均為胚性愈傷組織,而黃白色水漬狀愈傷組織為非胚性愈傷組織。
通過(guò)對(duì)‘秋蜜紅’4種狀態(tài)愈傷組織中的表達(dá)分析(圖6),結(jié)果表明,在‘秋蜜紅’3種狀態(tài)胚性愈傷組織中的表達(dá)量均顯著高于黃白色水漬狀非胚性愈傷組織,且在3種胚性愈傷組織中,在黃色疏松狀愈傷組織中的表達(dá)量最高,結(jié)合組織細(xì)胞學(xué)觀察發(fā)現(xiàn)黃色疏松狀愈傷組織中有球形胚出現(xiàn),其表達(dá)量明顯高于綠色緊實(shí)狀(心形胚)和淺黃色透明狀(疑似魚(yú)雷形胚出現(xiàn)),球形胚為體細(xì)胞胚發(fā)育過(guò)程的第一個(gè)階段,即在桃體細(xì)胞胚發(fā)生的早期高表達(dá)。
圖2 PpSERK2的cDNA序列及其推導(dǎo)的氨基酸序列
PpSERK2:桃Prunus persica,XP_007201734.1;PsSERK2:牡丹Paeonia suffruticosa,KY200849.1;CitSERK1:溫州蜜柑Citrus unshiu,AB115767.1;BdSERK2:二穗短柄草Brachypodium distachyon,XP_003571417.2;SpSERK1:秘魯番茄Solanum peruvianu,EF623824.1;AcSERK1:菠蘿Ananas comosus,HM236375.2;AcSERK2:菠蘿Ananas comosus,HM236376.1;HvSERK1:大麥Prunus persica,AK372118.1;OsSERK1:水稻Oryza sativa,AB188247.1;OsSERK2:水稻Oryza sativa,XP_015636497.1;ZmSERK1:玉米Zea mays,AJ277702.1;ZmSERK2:玉米Zea mays,AJ277703.1;
圖4 PpSERK2與其他植物的SERK蛋白系統(tǒng)進(jìn)化樹(shù)
A:黃色疏松狀胚性愈傷組織;B:綠色緊實(shí)狀胚性愈傷組織;C:淺黃色透明狀胚性愈傷組織;D:黃白色水漬狀非胚性愈傷組織;E:黃色疏松狀胚性愈傷組織細(xì)胞組織切片(箭頭所示為球形胚結(jié)構(gòu));F:綠色緊實(shí)狀胚性愈傷組織細(xì)胞組織切片(箭頭所示為心形胚結(jié)構(gòu));G:淺黃色透明狀胚性愈傷組織細(xì)胞組織切片(箭頭所示為尚未完全形成的魚(yú)雷形胚結(jié)構(gòu));H:黃白色水漬狀非胚性愈傷組織細(xì)胞組織切片。A—D:圖標(biāo)比例尺為1 mm;E—H:圖標(biāo)比例尺為200 μm
數(shù)據(jù)為平均值±標(biāo)準(zhǔn)誤(n=3);不同小寫(xiě)字母表示差異顯著(P<0.05)
體細(xì)胞胚發(fā)生途徑是植物離體再生的一條重要途徑,而體細(xì)胞胚是研究植物胚胎發(fā)育和遺傳轉(zhuǎn)化的良好受體。在體細(xì)胞胚發(fā)生過(guò)程中,體細(xì)胞胚不僅生理生化及形態(tài)發(fā)生變化,它的基因表達(dá)方式也發(fā)生變化。
SERKs基因?qū)儆谀じ涣涟彼嶂貜?fù)序列類(lèi)受體蛋白激酶(leucinerich repeat receptor-like kinases,LRR-RLKs)家族[31]。根據(jù)胞外LRR結(jié)構(gòu)和數(shù)量的差異,LRR-RLKs可分為13個(gè)亞類(lèi),而SERK蛋白屬于第2類(lèi)[32]。SERK結(jié)構(gòu)保守,具LRR結(jié)構(gòu)域、富含絲氨酸-脯氨酸結(jié)構(gòu)域(SPP)、跨膜結(jié)構(gòu)域和胞內(nèi)激酶活性結(jié)構(gòu)域[33-34]。本研究從桃莖尖中克隆了的cDNA全長(zhǎng),編碼626個(gè)氨基酸,生物信息學(xué)分析表明其具有完整的SERK蛋白的保守結(jié)構(gòu)域,因而能獨(dú)立完成信號(hào)的接收、跨膜轉(zhuǎn)導(dǎo)和胞內(nèi)傳遞,將其命名為PpSERK2。PpSERK2與雙子葉植物秘魯番茄和溫州蜜柑的SERK蛋白同源性較高,與單子葉植物的水稻、玉米、菠蘿等同源性較低。
桃胚性愈傷組織誘導(dǎo)及體細(xì)胞胚發(fā)生獲得成功的報(bào)道較少[35-36]。Hammerschlag等[35]從白色、緊密、節(jié)球狀胚性愈傷組織中誘導(dǎo)出胚狀體結(jié)構(gòu);劉航空等[36]以‘華光’葉片為外植體誘導(dǎo)出黃綠色疏松狀胚性愈傷組織。以桃花藥為外植體誘導(dǎo)獲得胚性愈傷組織鮮有報(bào)道。本研究以‘秋蜜紅’花藥為外植體誘導(dǎo)出4種狀態(tài)的愈傷組織,組織細(xì)胞學(xué)觀察到2種細(xì)胞形態(tài),其中黃色疏松狀、綠色緊實(shí)狀和淺黃色透明狀3種狀態(tài)的愈傷組織細(xì)胞小,排列緊密且染色深,為胚性愈傷組織;而黃白色水漬狀愈傷組織細(xì)胞體積大,不規(guī)則排列,細(xì)胞質(zhì)稀且染色淺,為非胚性愈傷組織。表明胚性愈傷組織和非胚性愈傷組織在形態(tài)上和細(xì)胞水平均表現(xiàn)明顯差異。本研究誘導(dǎo)出的胚性愈傷組織狀態(tài)與前人不同[35-36],這可能是由于基因型、外植體、培養(yǎng)基和培養(yǎng)條件不同導(dǎo)致的;而組織細(xì)胞學(xué)觀察結(jié)果與前人研究結(jié)果一致[37]。胚性愈傷組織的成功獲得是進(jìn)行體細(xì)胞胚誘導(dǎo)的關(guān)鍵因素。體細(xì)胞胚發(fā)生一般經(jīng)歷球形胚、心形胚、魚(yú)雷形胚和子葉形胚4個(gè)階段。本研究獲得的黃色疏松狀、綠色緊實(shí)狀和淺黃色透明狀3種狀態(tài)愈傷組織均為胚性愈傷組織,且分別出現(xiàn)球形胚、心形胚和尚未完全形成的魚(yú)雷形胚結(jié)構(gòu),這3種狀態(tài)胚性愈傷組織的獲得為后續(xù)體細(xì)胞胚再生途徑的建立提供保障。
目前,植物中已經(jīng)分離出許多與體細(xì)胞胚胎發(fā)生相關(guān)的基因,如[17]、[14]、[13]、[38]等,但只有[16,39]是在體細(xì)胞由營(yíng)養(yǎng)生長(zhǎng)向胚性生長(zhǎng)的轉(zhuǎn)化中以及早期的體細(xì)胞胚胎發(fā)生中起作用?;诖?,推測(cè)可能是一些植物體細(xì)胞胚胎發(fā)生的標(biāo)記基因[31]。本研究中在桃3種狀態(tài)胚性愈傷組織中表達(dá)量均顯著高于非胚性愈傷組織,且在體細(xì)胞胚發(fā)育的早期(黃色疏松狀愈傷組織,出現(xiàn)球形胚)表達(dá)量最高,這與棉花[23]、椰子[26]、葡萄[40]、二穗短柄草[41]等研究結(jié)果相似。在棉花生殖器官中表達(dá)量明顯高于營(yíng)養(yǎng)器官,且在體胚發(fā)生過(guò)程中在球形胚中的表達(dá)量最高[23];在椰子胚性愈傷組織中表達(dá),而在非胚性愈傷組織中低表達(dá)或檢測(cè)不到[26];Schellenbaum等[40]研究發(fā)現(xiàn)在葡萄花藥誘導(dǎo)愈傷組織和體胚發(fā)生的過(guò)程中穩(wěn)定表達(dá);原位雜交結(jié)果表明的轉(zhuǎn)錄本在二穗短柄草胚狀體整個(gè)發(fā)生過(guò)程均可檢測(cè)到[41]。由此認(rèn)為桃在桃胚性愈傷組織中表達(dá),而在非胚性愈傷組織中低表達(dá),且在體細(xì)胞胚發(fā)育的早期發(fā)揮作用。
克隆獲得,其cDNA全長(zhǎng)1 881 bp,編碼626個(gè)氨基酸。PpSERK2與秘魯番茄和溫州蜜柑相似性最高,分別為92.71%和92.01%,擁有SERK蛋白保守結(jié)構(gòu)域。在桃胚性愈傷組織中表達(dá),在非胚性愈傷組織中低表達(dá),且在體細(xì)胞胚發(fā)育的早期發(fā)揮作用。
[1] Rai V R, McComb J. Direct somatic embryogenesis from mature embryos of sandalwood., 2002, 69(1): 65-70.
[2] 吳延軍, 徐昌杰, 張上隆. 桃組織培養(yǎng)和遺傳轉(zhuǎn)化研究現(xiàn)狀及展望. 果樹(shù)學(xué)報(bào), 2002, 19(2): 123-127.
Wu Y J, Xu C J, Zhang S L. Status and prospect of research in peach tissue culture and genetic transformation., 2002, 19(2): 123-127. (in Chinese)
[3] Srinivasan C, Scorza R. The influence of genotype on the induction of somatic embryos fromcultured zygotic embryos and adventitious shoot regeneration from cotyledons of peach and nectarine., 2007, 738: 691-696.
[4] 湯浩茹, 王永清, 任正隆. 核桃體細(xì)胞胚發(fā)生與轉(zhuǎn)基因研究進(jìn)展. 林業(yè)科學(xué), 2000, 36(3): 102-110.
Tang H R, Wang Y Q, Ren Z L. An overview of progress in somatic embryogenesis and transformation in walnut., 2000, 36(3): 102-110. (in Chinese)
[5] 宋躍, 甄成, 張含國(guó), 李淑娟. 長(zhǎng)白落葉松胚性愈傷組織誘導(dǎo)及體細(xì)胞胚胎發(fā)生. 林業(yè)科學(xué), 2016, 52(10): 45-54.
Song Y, Zhen C, Zhang H G, Li S J. Embryogenic callus induction and somatic embryogenesis from immature zygotic embryos of., 2016, 52(10): 45-54. (in Chinese)
[6] Li Z X, Fan Y R, Dang S F, Li W F, Qi L W, Han S Y.-mediated auxin biosynthesis and signalling affect somatic embryogenesis in., 2018, 293(6): 1355-1363.
[7] Sezgin M, Dumano?lu H. Somatic embryogenesis and plant regeneration from immature cotyledons of European chestnut (Mill.)., 2014, 50(1): 58-68.
[8] Hou J Y, Wu Y, Shen Y C, Mao Y J, Liu W B, Zhao W W, Mu Y, Li M H, Yang M L, Wu L F. Plant regeneration through somatic embryogenesis and shoot organogenesis from immature zygotic embryos ofRoxb., 2015, 197: 218-225.
[9] Kazmi S K, Khan S, Mirbamar A A, Kabir N. Micropropagation of nucellar embryos and their histological comparative study for regeneration ability with other explants of kinnow mandarin (Blanco)., 2018, 50(1): 345-353.
[10] Ji W, Luo Y X, Guo R R, Li X X, Zhou Q, Ma X H, Wang Y J. Abnormal somatic embryo reduction and recycling in grapevine regeneration., 2017, 36(4): 912-918.
[11] Dutt M, Zambon F T, Erpen L, Soriano L, Grosser J. Embryo-specific expression of a visual reporter gene as a selection system for citrus transformation., 2018, 13(1): e0190413.
[12] Iocco P, Franks T, Thomas M R. Genetic transformation of major wine grape cultivars ofL.., 2001, 10(2): 105.
[13] Boutilier K, Offringa R, Sharma V K, Kieft H, Ouellet T, Zhang L, Hattori J, Liu C M, van Lammeren A A M, Miki B L A, Custers J B M, van Lookeren Campagne M M. Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth., 2002, 14(8): 1737-1749.
[14] Stone S L, Kwong L W, Yee K M, Pelletier J, Lepiniec L, Fischer R L, Goldberg R B, Harada J J.encodes a B3 domain transcription factor that induces embryo development., 2001, 98(20): 11806-11811.
[15] Zuo J, Niu Q W, Frugis G, Chua N HThegene promotes vegetative-to-embryonic transition in., 2002, 30(3): 349-359.
[16] Schmidt E D L, Guzzo F, Toonen M A J, de Vries S C. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos., 1997, 124(10): 2049-2062.
[17] Hecht V, Vielle-Calzada J P, Hartog M V, Schmidt E D L, Boutilier K, Grossniklaus U, de Vries S C. Thegene is expressed in developing ovules and embryos and enhances embryogenic competence in culture., 2001, 127(3): 803-816.
[18] Baudino S, Hansen S, Brettschneider R, Hecht V F G, Dresselhaus T, L?rz H, Dumas C, Rogowsky P M. Molecular characterisation of two novel maize LRR receptor-like kinases, which belong to thegene family., 2001, 213(1): 1-10.
[19] Nolan K E, Irwanto R R, Rose R J. Auxin up-regulatesexpression in bothroot-forming and embryogenic cultures., 2003, 133(1): 218-230.
[20] Thomas C, Meyer D, Himber C, Steinmetz A. Spatial expression of a sunflowergene during induction of somatic embryogenesis and shoot organogenesis., 2004, 42(1): 35-42.
[21] Hu H, Xiong L, Yang Y. Ricegene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection., 2005, 222(1): 107-117.
[22] Singh A, Khurana P. Ectopic expression ofgenes (TaSERKs) control plant growth and development in., 2017, 7(1): 12368.
[23] Liu Z J, Zhao Y P, Zeng L H, Zhang Y, Wang Y M, Hua J P. Characterization ofand its expression associated with somatic embryogenesis and hormones level in Upland cotton, 2018, 17(3): 517-529.
[24] Huang X, Lu X Y, Zhao J T, Zhao J T, Chen J K, Dai X M, Xiao W, Chen Y P, Chen Y F, Huang X L.Gene expression associated with somatic embryogenic competence and disease resistance response in banana (.)., 2010, 28(2): 309-316.
[25] Ahmadi B, Masoomi-aladizgeh F, Shariatpanahi M E, Azadi P, Keshavarz-Alizadeh M. Molecular characterization and expression analysis ofandL.: implication for microspore embryogenesis and plant regeneration., 2016, 35(1): 185-193.
[26] Péreznú?ez M T, Souza R, Sáenz L, Chan J L, Zú?iga-Aguilar J J, Oropeza C. Detection of a SERK-like gene in coconut and analysis of its expression during the formation of embryogenic callus and somatic embryos., 2009, 28(1): 11-19.
[27] da Cunha Soares T, da Silva C R C, Carvalho J M F C, Cavalcanti J J V, de Lima L M, de Albuquerque Melo Filho P, Severino L S, dos Santos R CValidating a probe fromgene for selection of cotton genotypes with somatic embryogenic capacity., 2018, 270: 44-50.
[28] 王其海, 王裔娜, 劉曉華, 吳文江, 丁寧, 牛洪斌, 王林忠, 吳國(guó)良. 桃不同發(fā)育時(shí)期葉片總RNA提取方法的比較. 河南農(nóng)業(yè)科學(xué), 2014, 43(3): 116-120.
Wang Q H, Wang Y N, Liu X H, Wu W J, Ding N, Niu H B, Wang L Z, Wu G L. Comparative analysis of total RNA extraction methods for leaves of peach at different development stages., 2014, 43(3): 116-120. (in Chinese)
[29] 李和平. 植物顯微技術(shù): 第二版. 北京: 科學(xué)出版社, 2009.
Li H P.. Beijing: Science Press, 2009. (in Chinese)
[30] 韓亞萍. 桃體細(xì)胞胚發(fā)生相關(guān)基因的克隆與表達(dá)分析[D]. 鄭州: 河南農(nóng)業(yè)大學(xué), 2017.
HAN Y P. Cloning and expression analysis of somatic embryogenesis related gene
[31] Li Y B, Liu C H, Guo G M, He T, Chen Z W, Gao R H, Xu H W, Faheem M, Lu R J, Huang J H. Expression analysis of three SERK-like genes in barley under abiotic and biotic stresses., 2017, 12(1): 279-285.
[32] Shiu S H, Bleecker A B. Receptor-like kinases fromform a monophyletic gene family related to animal receptor kinases., 2001, 98(19): 10763-10768
[33] Becraft P W. Receptor kinases in plant development., 1998, 3(10): 384-388.
[34] Zhang X R. Leucine-rich repeat receptor-like kinases in plants., 1998, 16(4): 301-311.
[35] Hammerschlag F A, Bauchan G, Scourza R. Regeneration of peach plant from callus derived from immature embryos., 1985, 70(3): 248-251.
[36] 劉航空, 韓明玉, 禹婷, 趙彩平. 影響油桃葉片產(chǎn)生胚性愈傷組織的因素. 果樹(shù)學(xué)報(bào), 2006, 23(3): 370-374.
Liu H K, Han M Y, Yu T, Zhao C P. Factors affecting embryonic callus from leaves of early season nectarine cultivars., 2006, 23(3): 370-374. (in Chinese)
[37] 魯嬌嬌, 嚴(yán)瑞, 何香杉, 靳宏梅, 王錦霞, 王春夏, 孫紅梅. 朱頂紅‘Red Lion’胚性愈傷組織誘導(dǎo)及體細(xì)胞胚發(fā)生. 園藝學(xué)報(bào), 2016, 43(12): 2451-2460.
LU J J, YAN R, HE X S, JIN H M, WANG J X, WANG C X, SUN H M. The embryonic callus induction and somatic embryogenesis of hippeastrum vittatum‘Red Lion’., 2016, 43(12): 2451-2460. (in Chinese)
[38] 林麗霞, 屈瑩, 徐洋, 林玉玲, 賴(lài)鐘雄. 龍眼體胚發(fā)生過(guò)程生長(zhǎng)素響應(yīng)因子的克隆及表達(dá)分析. 西北植物學(xué)報(bào), 2014, 34(6): 1075-1082.
Lin L X, Qu Y, Xu Y, Lai Z X. Cloning and expression analysis ofin the process of somatic embryogenesis inLour.., 2014, 34(6): 1075-1082. (in Chinese)
[39] Thomas T L. Gene expression during plant embryogenesis and germination: an overview., 1993, 5(10): 1401-1410.
[40] Schellenbaum P, Jacques A, Maillot P, Bertsch C, Mazet F, Farine S, Walter B. Characterization of,,, and, genes and their expression during somatic embryogenesis of grapevine (L.)., 2008, 27(12): 1799-1809.
[41] Oliveira E J, Koehler A D, Rocha D I, Vieira L M,Marques Pinheiro M V, de Matos E M, da Cruz A C F, Ferreira da Cruz A C, Ribeiro da Silva T C, Ossamu Tanaka F A, Silveira Nogueira F T, Otoni W C. Morpho-histological, histochemical, and molecular evidences related to cellular reprogramming during somatic embryogenesis of the model grass., 2017, 254(11): 2017-2024.
Cloning and Expression Analysis ofGene in Different Forms of Calli on Peach (L.)
TAN Bin1,2, CHEN TanXing1, HAN YaPing1, ZHANG YaRu1, Zheng XianBo1,2, Cheng Jun1,2, Wang Wei1,2, Feng JianCan1,2
(1College of Horticulture, Henan Agricultural University, Zhengzhou 450002;2Henan Key Laboratory of Fruit and Cucurbit Biology, Zhengzhou 450002)
【Objective】The somatic embryogenesis receptor-like kinase 2 () gene was isolated and cloned from peach (L.). Here, we detected the expression profile ofand the regeneration of embryonic callus. This research will shed on uncovering the molecular mechanism of embryonic callus induction and regeneration in peach with difficulty on tissue culture. 【Method】The full-length cDNA sequence ofgene was obtained by homologous cloning. Then the sequence was analyzed by a series of bioinformatical software packages, including TMPred, DNAMAN and MEGA 5.0 etc. The callus of ‘Qiumihong’ was obtained by using anthers as explants inoculated into NN69 medium supplemented with 2.0 mg·L-16-BA and 1.0 mg·L-12,4-D. Then the different forms of calli were observed by production of paraffin section. Real-time quantitative PCR (qRT-PCR) was used to analyze the expression ofgene in four forms of ‘Qiumihong’ calli. 【Result】The full-length cDNA sequence ofgene was 1 881 bp. It encodes 626 amino acids and contains SERK conserved function domains. The theoretical isoelectric point of PpSERK2 is 5.38 and its molecular weight is 68.99 KD. The PpSERK2 has the high homology similarity from 67.88% to 92.71% at protein level, especially the highest similarity toand. The phylogenetic analysis of SERK proteins from various plant species indicated that PpSERK2, SpSERK1, CitSERK1 and PsSERK2 were clustered together, which showing the consistent result with above protein similarity analysis. Four different forms of calli were obtained from anther of ‘Qiumihong’. The results of histocytology showed that the cells of three forms of calli, including the yellow, loose callus (global embryo), green, compact callus (heart embryo) and pale yellow, transparent callus (suspected torpedo embryo), were small and closely arranged. While the cells of yellow-white, dropsical callus was large and with irregular shapes. Based on histomorphology results, this demonstrated that the yellow, loose callus, green, compact callus and pale yellow, transparent callus were embryonic calli, while yellow-white, dropsical callus was non-embryonic callus. The results of qRT-PCR showed that transcriptional level ofgene in three forms of embryonic calli was remarkably higher than non-embryonic callus. Meanwhile, the transcriptional level ofgene was highest in the yellow, loose callus, followed by the green, compact callus, and lowest in the pale yellow and transparent callus of ‘Qiumihong’. 【Conclusion】The full-length cDNA of thegene was successfully obtained. According to the results ofexpression in four forms calli of ‘Qiumihong’, we speculated thatgene might play a pivotal role on the early stage during the somatic embryogenesis in peach.
peach; somatic embryogenesis;; embryonic callus
10.3864/j.issn.0578-1752.2019.05.010
2018-10-10;
2018-11-17
河南省重大科技專(zhuān)項(xiàng)(151100110900)、河南省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專(zhuān)項(xiàng)(S2014-11-G02)、河南省科技攻關(guān)計(jì)劃(172102410049)、河南省高等學(xué)校重點(diǎn)科研項(xiàng)目(17A210001)
譚彬,E-mail:btan@henau.edu.cn。通信作者馮建燦,E-mail:jcfeng@henau.edu.cn
(責(zé)任編輯 李莉)