亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        燃煤電廠SCR煙氣脫硝催化劑壽命預(yù)測研究

        2019-03-28 06:58:16唐詩潔王則祥吳昱廷董長青楊勇平
        熱力發(fā)電 2019年3期
        關(guān)鍵詞:灰色電廠煙氣

        唐詩潔,陸 強(qiáng),王則祥,吳昱廷,董長青,楊勇平

        ?

        燃煤電廠SCR煙氣脫硝催化劑壽命預(yù)測研究

        唐詩潔,陸 強(qiáng),王則祥,吳昱廷,董長青,楊勇平

        (華北電力大學(xué)生物質(zhì)發(fā)電成套設(shè)備國家工程實(shí)驗(yàn)室,北京 102206)

        為保證燃煤電廠煙氣脫硝系統(tǒng)的安全、穩(wěn)定運(yùn)行,需要制定科學(xué)合理的選擇性催化還原(SCR)催化劑壽命預(yù)測方案。SCR催化劑失效是多個物理和化學(xué)因素共同作用的結(jié)果,難以用傳統(tǒng)的物理模型或數(shù)學(xué)公式對其失活程度進(jìn)行預(yù)測。本研究針對電廠大數(shù)據(jù)特性,對原始數(shù)據(jù)進(jìn)行預(yù)處理,建立了曲線擬合、灰色預(yù)測、BP神經(jīng)網(wǎng)絡(luò)、灰色神經(jīng)網(wǎng)絡(luò)4種預(yù)測模型。實(shí)例對比分析發(fā)現(xiàn):數(shù)據(jù)預(yù)處理可以提高預(yù)測精度;當(dāng)數(shù)據(jù)滿足等時距特性時,灰色神經(jīng)網(wǎng)絡(luò)優(yōu)化后的直接輸出模型預(yù)測精度較高;當(dāng)數(shù)據(jù)不滿足等時距特性時,使用BP神經(jīng)網(wǎng)絡(luò)模型預(yù)測效果更好。

        煙氣脫硝系統(tǒng);SCR催化劑;壽命預(yù)測;曲線擬合;灰色預(yù)測;BP神經(jīng)網(wǎng)絡(luò);灰色神經(jīng)網(wǎng)絡(luò)

        選擇性催化還原(SCR)法已成為國際上火電廠應(yīng)用最廣、最為成熟的NO排放控制技術(shù)[1]。催化劑是SCR脫硝工藝的核心,SCR脫硝催化劑(簡稱SCR催化劑)長期在高溫、復(fù)雜的煙氣環(huán)境中工作,會受到物理和化學(xué)因素的影響而逐漸失活[2]。SCR催化劑服役時間即使用壽命決定著SCR脫硝系統(tǒng)的運(yùn)行成本。因此,正確預(yù)估SCR催化劑的使用壽命并及時更換催化劑,對減小電廠運(yùn)行成本和節(jié)約資源具有重要意義[3-4]。

        目前,國內(nèi)外學(xué)者已對SCR催化劑失活的過程和原因進(jìn)行了探索,并針對催化劑的失活原因建立了多種催化劑失活動力學(xué)模型。Lei等人[5]研究了SCR催化劑不同中毒過程中催化劑堿金屬中毒的失活速率。姜燁等[6]研究了不同形態(tài)鉀和鉛導(dǎo)致SCR脫硝催化劑失活的機(jī)理,并在漸進(jìn)殼模型的基礎(chǔ)上建立了鉀和鉛中毒失活動力學(xué)方程。吳俊升等[7]采用流化磨損測試方法分析研究了不同粒徑催化劑的磨損行為,建立了相應(yīng)的失活動力學(xué)模型。孫克勤等[8]研究了煤燃燒過程中砷的遷移規(guī)律以及SCR催化劑砷中毒對SCR脫硝系統(tǒng)影響的失活動力學(xué)。Upadhyay等人[9]以表面反應(yīng)動態(tài)模型為基礎(chǔ),引入時間因素對脫硝反應(yīng)動態(tài)過程進(jìn)行了實(shí)驗(yàn)研究。此外,也有學(xué)者從催化劑整體失活的角度出發(fā),建立了不同的催化劑活性預(yù)測模型。對于早期的催化劑失活程度預(yù)測可以使用Gauss和Logistic回歸模型,根據(jù)實(shí)驗(yàn)曲線擬合得到失活公式[10],但精度較差。董長青等[11]在SCR催化劑失活動力學(xué)模型的基礎(chǔ)上,分別從物理和數(shù)學(xué)角度進(jìn)行了修正。傅玉等[12]按照數(shù)據(jù)是否滿足等時距要求,分別建立了灰色預(yù)測模型和多種曲線擬合模型,對催化劑的相對活性進(jìn)行預(yù)測。

        SCR催化劑失活機(jī)理復(fù)雜,通過傳統(tǒng)的物理模型或建立數(shù)學(xué)公式對其活性進(jìn)行預(yù)測的難度較大且準(zhǔn)確度不高。此外,在電廠實(shí)際運(yùn)行過程中,很難通過隨時停機(jī)來采集催化劑的活性數(shù)據(jù)和運(yùn)行參數(shù);且隨著負(fù)荷的變化,流經(jīng)催化劑的煙氣參數(shù)也會時刻變化,SCR催化劑活性波動性較大。因此,本文以5個電廠的實(shí)際運(yùn)行數(shù)據(jù)為例,將實(shí)際運(yùn)行數(shù)據(jù)預(yù)處理后用于曲線擬合、灰色預(yù)測、BP神經(jīng)網(wǎng)絡(luò)、灰色神經(jīng)網(wǎng)絡(luò)4類模型的SCR催化劑壽命預(yù)測模擬,探索預(yù)測SCR催化劑壽命的最佳方法。

        1 數(shù)據(jù)預(yù)處理

        1.1 催化劑活性計(jì)算

        催化劑活性可用于衡量其催化氨與氮氧化物反應(yīng)的綜合能力,主要由催化劑自身性能、煙氣條件、操作情況及機(jī)組運(yùn)行狀態(tài)決定。準(zhǔn)確了解并計(jì)算催化劑活性是預(yù)測催化劑壽命的基礎(chǔ)[13-14]。電廠實(shí)際運(yùn)行條件下的催化劑活性計(jì)算公式[15]為

        式中:AV為面速度,m/h;MR為氨氮摩爾比;為脫硝效率。

        1.2 運(yùn)行數(shù)據(jù)預(yù)處理

        本文以5個在役電廠的實(shí)際運(yùn)行數(shù)據(jù)為基礎(chǔ),進(jìn)行數(shù)據(jù)預(yù)處理。以電廠1為例,該電廠給出了2016年1月10日到2017年1月3日期間的運(yùn)行數(shù)據(jù),包括機(jī)組負(fù)荷、煙氣量、SCR脫硝反應(yīng)器入口和出口NO質(zhì)量濃度等。通過式(1)得到不同運(yùn)行時間對應(yīng)的SCR催化劑活性如圖1所示。

        圖1 電廠1催化劑活性變化示意

        由圖1可以發(fā)現(xiàn),電廠的催化劑活性數(shù)據(jù)十分繁雜,難以觀察其變化規(guī)律。如果直接使用這些數(shù)據(jù)進(jìn)行模擬預(yù)測而不考慮數(shù)據(jù)的內(nèi)在特征,會導(dǎo)致最終預(yù)測結(jié)果誤差較大,因此需進(jìn)行相應(yīng)的數(shù)據(jù)預(yù)處理。

        數(shù)據(jù)預(yù)處理步驟如下:1)從每天不同時刻的中選出最大值;2)算出每5天最大值的平均值;3)找到5天中與最大值的平均值最接近的實(shí)際數(shù)據(jù),并去掉明顯不符合催化劑活性變化規(guī)律的數(shù)據(jù),最后得到預(yù)測樣本。

        對電廠1的數(shù)據(jù)進(jìn)行上述預(yù)處理后得到催化劑活性變化如圖2所示。

        圖2 電廠1預(yù)處理后催化劑活性變化示意

        對比圖1、圖2可見,預(yù)處理后的數(shù)據(jù)更便于觀察,也更符合電廠SCR催化劑活性變化規(guī)律,可直接用于催化劑活性預(yù)測研究。因此,對電廠2—電廠5的數(shù)據(jù)也進(jìn)行同樣的預(yù)處理。

        2 預(yù)測模型

        對于與SCR催化劑失活相關(guān)的多因素耦合、繁復(fù)的數(shù)據(jù)信息,從數(shù)據(jù)驅(qū)動的角度可以避免建立復(fù)雜物理模型。本文分別使用曲線擬合、灰色預(yù)測、BP神經(jīng)網(wǎng)絡(luò)、灰色神經(jīng)網(wǎng)絡(luò)4類方法進(jìn)行預(yù)測,從而篩選出可以提高催化劑壽命預(yù)測準(zhǔn)確度的預(yù)測模型。

        2.1 曲線擬合

        曲線擬合以離散的觀測數(shù)據(jù)點(diǎn)為基礎(chǔ),用連續(xù)曲線近似地?cái)M合觀測數(shù)據(jù),并分析變量之間的關(guān)系。工程中常用的曲線擬合方法有多項(xiàng)式法、指數(shù)法和高斯擬合法,下面是幾種典型曲線擬合方法的趨勢模型[16](模型中a、bc均為模型參數(shù))。

        1)多項(xiàng)式模型

        =01+22+…at(2)

        2)指數(shù)模型

        e(3)

        3)高斯模型

        2.2 灰色預(yù)測模型

        灰色系統(tǒng)理論是我國學(xué)者鄧聚龍教授提出的針對不確定性問題的研究方法[17]。對于同時含有已知信息和未知不確定信息的灰色系統(tǒng),其數(shù)據(jù)可能是雜亂無章的,但是灰色預(yù)測可以通過鑒別各因素之間發(fā)展趨勢的相異程度,對原始數(shù)據(jù)進(jìn)行處理,建立微分方程尋找灰色系統(tǒng)數(shù)據(jù)變動的規(guī)律,從而預(yù)測系統(tǒng)未來的發(fā)展趨勢?;疑P蛯?shí)測數(shù)據(jù)沒有嚴(yán)格要求,所需數(shù)據(jù)量較少[18-19]。本文采用單一變量(1,1)灰色預(yù)測模型,使用此模型的前提是建模序列必須滿足等時距的要求。

        2.3 BP神經(jīng)網(wǎng)絡(luò)

        2.3.1 簡介

        BP(back propagation)人工神經(jīng)網(wǎng)絡(luò)是模仿生物神經(jīng)系統(tǒng)功能和結(jié)構(gòu)發(fā)展起來的信息處理系統(tǒng)[20]。人工神經(jīng)網(wǎng)絡(luò)由大量簡單的處理單元以某種方式彼此互聯(lián)而成的復(fù)雜網(wǎng)絡(luò)系統(tǒng),具有學(xué)習(xí)、記憶、聯(lián)想、歸納和自適應(yīng)學(xué)習(xí)能力。在眾多人工神經(jīng)網(wǎng)絡(luò)模型中,按誤差逆?zhèn)鞑ニ惴ㄓ?xùn)練的BP神經(jīng)網(wǎng)絡(luò),因其運(yùn)算能力強(qiáng)、建模過程簡單,已經(jīng)成為目前應(yīng)用最廣泛的神經(jīng)網(wǎng)絡(luò)模型。BP神經(jīng)網(wǎng)絡(luò)具備大規(guī)模并行處理數(shù)據(jù)的特點(diǎn),可以存儲和學(xué)習(xí)大量輸入-輸出模式的映射關(guān)系,非常適合應(yīng)用于需要同時考慮諸多因素和條件的不精確或者模糊的信息處理問題。

        BP神經(jīng)網(wǎng)絡(luò)通常由單層的輸入層、輸出層和層數(shù)不等的隱含層構(gòu)成,而每層都由若干個神經(jīng)元組成。圖3為典型多層前饋型BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)。圖3中,表示輸入數(shù)據(jù),、表示閾值,表示網(wǎng)絡(luò)輸出結(jié)果,表示激勵函數(shù)。

        圖3 BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)

        2.3.2 原理

        BP神經(jīng)網(wǎng)絡(luò)需要通過輸入和輸出樣本對網(wǎng)絡(luò)進(jìn)行訓(xùn)練,即通過學(xué)習(xí)和修正網(wǎng)絡(luò)的閾值和權(quán)值,并不斷重復(fù)該過程,最終得到符合條件的輸入或輸出。BP神經(jīng)網(wǎng)絡(luò)算法由信號的正向傳播(前向計(jì)算過程)和誤差的反向傳播兩個階段組成。兩個過程反復(fù)交替,不斷調(diào)整權(quán)值和閾值,直至網(wǎng)絡(luò)達(dá)到收斂為止,具體過程如下[21-22]。

        1)信號的正向傳播過程

        輸入量由輸入層經(jīng)過隱含層逐層計(jì)算,并傳向網(wǎng)絡(luò)的輸出層。計(jì)算中每層的神經(jīng)元狀態(tài)只會影響下一層的神經(jīng)元狀態(tài)。網(wǎng)絡(luò)的權(quán)值在信號正向傳播過程中固定不變。如果輸出層不能得到符合其期望的輸出,則轉(zhuǎn)入誤差反向傳播過程。

        2)誤差的反向傳播

        由前向計(jì)算過程得出的網(wǎng)絡(luò)輸出與期望輸出之前的差值即為誤差。誤差信號由網(wǎng)絡(luò)的輸出端開始,沿網(wǎng)絡(luò)的連接路線返回并計(jì)算各權(quán)值和閾值對總誤差的影響。最后根據(jù)誤差梯度下降法對權(quán)值和閾值進(jìn)行調(diào)整。

        2.3.3結(jié)構(gòu)設(shè)計(jì)

        對于大多數(shù)復(fù)雜的數(shù)學(xué)問題,單隱含層BP神經(jīng)網(wǎng)絡(luò)即可滿足要求,本研究也采用圖3所示的輸入層-單隱含層-輸出層的3層BP神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)[23]。

        1)確定輸入及輸出變量

        電廠SCR催化劑在多因素耦合且復(fù)雜的煙氣環(huán)境中工作,煙氣量、噴氨量、運(yùn)行時間、運(yùn)行溫度及煤種等都會影響SCR催化劑的活性。為了建立簡潔、有效的BP神經(jīng)網(wǎng)絡(luò)模型,首先要對預(yù)處理后的數(shù)據(jù)進(jìn)行相關(guān)性分析,找到對SCR催化劑活性有顯著影響的參數(shù)作為BP神經(jīng)網(wǎng)絡(luò)的輸入變量。本文利用統(tǒng)計(jì)分析軟件SPSS進(jìn)行相關(guān)性分析。 此外,由于各輸入量單位不同,需對輸入變量進(jìn) 行歸一化處理,以均衡對BP神經(jīng)網(wǎng)絡(luò)的影響,降低誤差。本文BP神經(jīng)網(wǎng)絡(luò)輸出變量為SCR催化劑活性。

        2)確定隱含層神經(jīng)元個數(shù)

        確定BP神經(jīng)網(wǎng)絡(luò)各層神經(jīng)元的數(shù)量是構(gòu)建BP神經(jīng)網(wǎng)絡(luò)的重要環(huán)節(jié)。隱含層神經(jīng)元數(shù)需要先通過經(jīng)驗(yàn)公式(5)確定大致范圍后,再對不同網(wǎng)絡(luò)結(jié)構(gòu)的訓(xùn)練結(jié)果進(jìn)行對比,選擇預(yù)測誤差最小時的隱含層神經(jīng)元個數(shù)。

        式中,和分別為輸入層和輸出層神經(jīng)元個數(shù),為常數(shù)且1<<10。

        3)確定訓(xùn)練和測試樣本

        選擇一部分預(yù)處理后的數(shù)據(jù)作為訓(xùn)練樣本對網(wǎng)絡(luò)進(jìn)行訓(xùn)練,其余數(shù)據(jù)作為測試樣本。將測試樣本的輸入變量代入訓(xùn)練好的BP神經(jīng)網(wǎng)絡(luò)中,然后將SCR催化劑活性預(yù)測結(jié)果與真實(shí)值進(jìn)行對比,分析其誤差。

        2.4 灰色神經(jīng)網(wǎng)絡(luò)

        灰色預(yù)測模型的對象系統(tǒng)中允許存在未知項(xiàng),所需數(shù)據(jù)少,并且不要求數(shù)據(jù)具有一致性,但它缺乏自學(xué)習(xí)、自適應(yīng)能力,對非線性信息的處理能力較弱,而BP神經(jīng)網(wǎng)絡(luò)算法恰好可以彌補(bǔ)灰色預(yù)測模型的這些不足[24]。本文將灰色預(yù)測模型與BP神經(jīng)網(wǎng)絡(luò)結(jié)合在一起,形成灰色神經(jīng)網(wǎng)絡(luò),尤其適合處理SCR催化劑失效這種多因素耦合、繁復(fù)的問題。按照神經(jīng)網(wǎng)絡(luò)的輸出數(shù)據(jù)類別,可將灰色神經(jīng)網(wǎng)絡(luò)模型分為殘差輸出和直接輸出2類。

        2.4.1 殘差模型

        灰色神經(jīng)網(wǎng)絡(luò)中的殘差修正模型首先將原始數(shù)據(jù)通過灰色預(yù)測方法預(yù)測,隨后將灰色預(yù)測結(jié)果的殘差作為BP神經(jīng)網(wǎng)絡(luò)的輸入輸出,從而達(dá)到自身修正、降低誤差的目的。

        2.4.2 直接輸出模型

        灰色神經(jīng)網(wǎng)絡(luò)直接輸出模型首先將原始數(shù)據(jù)用灰色預(yù)測方法預(yù)測,隨后把灰色預(yù)測的結(jié)果與SCR催化劑服役時間同時作為BP神經(jīng)網(wǎng)絡(luò)的輸入,最后得到網(wǎng)絡(luò)輸出即SCR催化劑活性預(yù)測值。

        3 工程實(shí)例分析

        3.1 曲線擬合

        隨著運(yùn)行時間的延長,SCR催化劑活性會逐漸降低,因此使用曲線擬合法預(yù)測時,將時間作為自變量,SCR催化劑活性則為因變量。用MATLAB軟件中的cftool工具箱直接對樣本數(shù)據(jù)進(jìn)行曲線擬合。以電廠1為例,在進(jìn)行數(shù)據(jù)預(yù)處理后共得到51組數(shù)據(jù),取1—46組數(shù)據(jù)作為樣本數(shù)據(jù),擬合得到SCR催化劑活性變化公式,然后將47—51組數(shù)據(jù)作為測試數(shù)據(jù),代入式(1)得到SCR催化劑活性擬合值,并與SCR催化劑活性真實(shí)值進(jìn)行對比,結(jié)果見表1、表2。

        表1 SCR催化劑活性預(yù)測

        Tab.1 The activity prediction results for SCR catalysts

        表2 曲線擬合法不同模型SCR催化劑活性誤差分析

        Tab.2 Error analysis of different models for predicting activity of the SCR catalysts using the curve fitting method

        3.2 灰色預(yù)測

        預(yù)處理后的電廠1數(shù)據(jù)滿足等時距特性,此時可以使用(1,1)模型進(jìn)行預(yù)測,取1—46組數(shù)據(jù)作為樣本數(shù)據(jù),將47—51組數(shù)據(jù)作為測試數(shù)據(jù),結(jié)果見表3。由表3預(yù)測結(jié)果顯示,曲線擬合和灰色預(yù)測模型的預(yù)測精度較低,平均誤差高達(dá)39.118 3%。因此,使用單一的曲線擬合或灰色預(yù)測模型往往無法反映催化劑活性與各影響因素間復(fù)雜的非線性關(guān)系。

        表3 灰色預(yù)測SCR催化劑活性結(jié)果與誤差

        Tab.3 The results and errors of the SCR catalysts’ activity prediction using the grey model

        3.3 BP神經(jīng)網(wǎng)絡(luò)

        以電廠1為例,經(jīng)過SPSS軟件分析可知,機(jī)組負(fù)荷、脫硝效率、煙溫、煙氣量、時間、FGD(煙氣脫硫)出口NO質(zhì)量濃度、噴氨量、煤中硫、砷質(zhì)量濃度都與SCR催化劑活性顯著相關(guān),因此將這些影響因素作為BP神經(jīng)網(wǎng)絡(luò)的輸入并進(jìn)行歸一化處理,SCR催化劑活性作為BP神經(jīng)網(wǎng)絡(luò)的輸出。

        經(jīng)過計(jì)算比較后發(fā)現(xiàn),當(dāng)BP神經(jīng)網(wǎng)絡(luò)中隱含層神經(jīng)元為4時預(yù)測誤差最小,因此BP神經(jīng)網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)為9-4-1(輸入層神經(jīng)元數(shù)-隱含層神經(jīng) 元數(shù)-輸出層神經(jīng)元數(shù))。取1—46組數(shù)據(jù)作為樣 本數(shù)據(jù),將47—51組數(shù)據(jù)作為測試數(shù)據(jù),BP神 經(jīng)網(wǎng)絡(luò)的預(yù)測結(jié)果與誤差見表4,其平均誤差為17.153 4%。

        表4 BP神經(jīng)網(wǎng)絡(luò)預(yù)測SCR催化劑活性結(jié)果與誤差

        Tab.4 The results and errors of the SCR catalysts’ activity prediction using the BP neural network model

        3.4 灰色神經(jīng)網(wǎng)絡(luò)

        3.4.1 殘差模型

        經(jīng)過計(jì)算比較后發(fā)現(xiàn),當(dāng)灰色神經(jīng)網(wǎng)絡(luò)殘差模型拓?fù)浣Y(jié)構(gòu)為3-6-1時預(yù)測誤差最小。取1—46組數(shù)據(jù)作為樣本數(shù)據(jù),將47—51組數(shù)據(jù)作為測試數(shù)據(jù),灰色神經(jīng)網(wǎng)絡(luò)殘差模型3-6-1結(jié)構(gòu)SCR催化 劑活性預(yù)測結(jié)果與誤差見表5,其平均誤差為30.373 8%。

        表5 灰色神經(jīng)網(wǎng)絡(luò)殘差模型SCR催化劑活性預(yù)測結(jié)果與誤差

        Tab.5 The results and errors of the SCR catalysts’ activity prediction using the grey neural network residual model

        3.4.2 直接輸出模型

        計(jì)算比較后發(fā)現(xiàn)當(dāng)灰色神經(jīng)網(wǎng)絡(luò)直接輸出模型拓?fù)浣Y(jié)構(gòu)為2-5-1時誤差最小。取1—46組數(shù)據(jù)作為樣本數(shù)據(jù),將47—51組數(shù)據(jù)作為測試數(shù)據(jù),灰色神經(jīng)網(wǎng)絡(luò)直接輸出模型2-5-1結(jié)構(gòu)預(yù)測結(jié)果與誤差見表6,其平均誤差為32.634 9%。

        表6 灰色神經(jīng)網(wǎng)絡(luò)直接輸出模型SCR催化劑活性預(yù)測結(jié)果與誤差

        Tab.6 The results and errors of the SCR catalysts’ activity prediction using the grey neural network direct output model

        為了進(jìn)一步降低誤差,將SCR催化劑活性影響因素也作為灰色神經(jīng)網(wǎng)絡(luò)直接輸出模型的輸入變量對模型進(jìn)行優(yōu)化。即輸入變量包括灰色預(yù)測殘差和機(jī)組負(fù)荷、脫硝效率、煙溫、煙氣量、時間、FGD出口NO質(zhì)量濃度、噴氨量、煤中硫質(zhì)量濃度、砷質(zhì)量濃度。經(jīng)過計(jì)算比較后發(fā)現(xiàn)當(dāng)灰色神經(jīng)網(wǎng)絡(luò)直接輸出模型拓?fù)浣Y(jié)構(gòu)為10-2-1時誤差最小。取1—46組數(shù)據(jù)作為樣本數(shù)據(jù),將47—51組數(shù)據(jù)作為測試數(shù)據(jù),預(yù)測結(jié)果與誤差見表7,其平均誤差為15.391 6%。

        表7 直接輸出模型(優(yōu)化后)SCR催化劑活性預(yù)測結(jié)果與誤差

        Tab.7 The results and errors of the SCR catalysts’ activity prediction using the optimized direct output model

        3.5 不同預(yù)測方法分析比較

        上述預(yù)測模型計(jì)算結(jié)果見表8,對比可知灰色神經(jīng)網(wǎng)絡(luò)中優(yōu)化后的直接輸出模型預(yù)測誤差最小。為了進(jìn)一步驗(yàn)證該結(jié)論,本文對在役電廠2、3、4、5的數(shù)據(jù)進(jìn)行預(yù)處理后用同樣的方法進(jìn)行預(yù)測,比較其預(yù)測誤差,結(jié)果見表9。分析表9發(fā)現(xiàn),灰色神經(jīng)網(wǎng)絡(luò)中優(yōu)化后直接輸出模型的SCR催化劑活性誤差最小。因此,在燃煤電廠實(shí)際運(yùn)行過程中,當(dāng)數(shù)據(jù)滿足等時距特性時,可將灰色神經(jīng)網(wǎng)絡(luò)中的直接輸出模型(優(yōu)化后)作為SCR催化劑的壽命預(yù)測模型。

        表8 電廠1各預(yù)測模型SCR催化劑活性預(yù)測誤差

        Tab.8 The prediction errors of the SCR catalysts’activity using different models for Power Plant 1 %

        表9 各電廠不同預(yù)測模型SCR催化劑活性預(yù)測誤差

        Tab.9 The prediction errors of the SCR catalysts’ activity using different models for each power plant %

        3.6 預(yù)測方法優(yōu)化

        在采用上述幾種同樣的模型進(jìn)行SCR催化劑活性預(yù)測時,電廠1的預(yù)測誤差最大。為了降低其預(yù)測誤差,將數(shù)據(jù)預(yù)處理改為由煙氣量作為標(biāo)準(zhǔn)對數(shù)據(jù)進(jìn)行篩選的方法。電廠1的原始數(shù)據(jù)中煙氣量變化范圍為527.8~1 564.5 km3/h(標(biāo)準(zhǔn)狀態(tài),下同),以煙氣量在1 000~1 021 km3/h范圍內(nèi)為標(biāo)準(zhǔn),篩選后共得到70組數(shù)據(jù)。這些數(shù)據(jù)樣本不再具有等時距特性,不滿足灰色神經(jīng)網(wǎng)絡(luò)預(yù)測模型的使用條件,故使用BP神經(jīng)網(wǎng)絡(luò)進(jìn)行預(yù)測。將1—65組數(shù)據(jù)作為訓(xùn)練樣本,66—70組作為預(yù)測樣本,BP神經(jīng)網(wǎng)絡(luò)SCR催化劑活性預(yù)測結(jié)果與誤差見表10。

        表10 數(shù)據(jù)優(yōu)化后電廠1 SCR催化劑活性BP神經(jīng)網(wǎng)絡(luò)預(yù)測結(jié)果與誤差

        Tab.10 The prediction results and errors of the SCR catalysts’ activity using the BP neural network model for Power Plant 1 after data optimization

        比較表8和表10,以煙氣量為標(biāo)準(zhǔn)進(jìn)行篩選后使用BP神經(jīng)網(wǎng)絡(luò)預(yù)測的誤差顯著降低,改進(jìn)后的平均誤差僅為2.181 9%。

        4 結(jié) 論

        1)針對燃煤電廠實(shí)際運(yùn)行數(shù)據(jù)十分繁雜的特點(diǎn),首先對數(shù)據(jù)進(jìn)行預(yù)處理,然后使用曲線擬合、灰色預(yù)測、BP神經(jīng)網(wǎng)絡(luò)、灰色神經(jīng)網(wǎng)絡(luò)4種模型進(jìn)行SCR催化劑活性預(yù)測。比較發(fā)現(xiàn),當(dāng)數(shù)據(jù)滿足等時距特性時,灰色神經(jīng)網(wǎng)絡(luò)直接輸出模型(優(yōu)化后)的預(yù)測誤差最小,準(zhǔn)確度更高。

        2)對于煙氣參數(shù)尤其是煙氣量波動較大的在役電廠,先以煙氣量為標(biāo)準(zhǔn)對數(shù)據(jù)進(jìn)行篩選,再使用BP神經(jīng)網(wǎng)絡(luò)預(yù)測方法,這樣可進(jìn)一步降低SCR催化劑活性預(yù)測誤差,提高預(yù)測精度。

        [1] 安敬學(xué), 王磊, 秦淇, 等. SCR脫硝系統(tǒng)催化劑磨損機(jī)理分析與治理[J]. 熱力發(fā)電, 2015, 44(12): 119-125. AN Jingxue, WANG Lei, QIN Qi, et al. Mechanism research on catalyst attrition in SCR denitration system and the treatment[J]. Thermal Power Generation, 2015, 44(12): 119-125.

        [2] 姚燕, 王麗朋, 孔凡海, 等. SCR脫硝系統(tǒng)蜂窩式催化劑性能評估及壽命管理[J]. 熱力發(fā)電, 2016, 45(11): 114-119.YAO Yan, WANG Lipeng, KONG Fanhai, et al. Performance evaluation and life management of honeycomb catalyst for SCR denitrification system[J]. Thermal Power Generation, 2016, 45(11): 114-119.

        [3] 喻小偉, 周瑜, 劉帥, 等. SCR脫硝催化劑失活原因分析及再生處理[J]. 熱力發(fā)電, 2014, 43(2): 109-113. YU Xiaowei, ZHOU Yu, LIU Shuai, et al. Reason analysis for deactivation of commercial SCR de-NOcatalyst and its regeneration[J]. Thermal Power Generation, 2014, 43(2): 109-113.

        [4] 徐秀林, 吳衛(wèi)紅, 柳東海, 等. SCR蜂窩狀脫硝催化劑磨損數(shù)值模擬研究[J]. 應(yīng)用化工, 2015, 44(6): 986-990. XU Xiulin, WU Weihong, LIU Donghai. et al. Numerical study of erosion on honeycomb SCR catalyst[J]. Applied Chemical Industry, 2015, 44(6): 986-990.

        [5] LEI T Y, LI Q C, CHEN S F, et al. KCl-induced deactivation of V2O5-WO3/TiO2catalyst during selective catalytic reduction of NO by NH3: comparison of poisoning methods[J]. Chemical Engineering Journal, 2016, 296: 1-10.

        [6] 姜燁. 鈦基SCR催化劑及其鉀、鉛中毒機(jī)理研究[D]. 杭州: 浙江大學(xué), 2010: 34. JIANG Ye. Study on titania-based SCR catalysts and their poisoning mechanism of potassium and lead[D]. Hangzhou: Zhejiang University, 2010: 34.

        [7] 吳俊升, 李曉剛, 公銘揚(yáng), 等. 幾種催化裂化催化劑的磨損機(jī)制與動力學(xué)[J]. 中國腐蝕與防護(hù)學(xué)報, 2010, 30(2): 135-140. WU Junsheng, LI Xiaogang, GONG Mingyang, et al. Kinetics and mechanism of attrition of several FCC caytalysts[J]. Journal of Chinese Society for Corrosion and Protection, 2010, 30(2): 135-140.

        [8] 孫克勤, 鐘秦, 于愛華. SCR催化劑的砷中毒研究[J]. 中國環(huán)保產(chǎn)業(yè), 2008(1): 40-42. SUN Keqin, ZHONG Qin, YU Aihua, Arsenic poisoning of SCR catalyst[J]. China Environmental Protection Industry, 2008(1): 40-42.

        [9] UPADHYAY D, NIEUWSTADT M V. Robust separation of signal domain from single channel mixed signal output of automotive urea based selective catalytic reduction systems[J]. Journal of Dynamic Systems Measurement & Control, 2014, 136: 115-134.

        [10] 楊志雄, 袁岱菁. 非線性混合效應(yīng)模型和廣義線性模型擬合隨機(jī)效應(yīng)logistic回歸的應(yīng)用比較[J]. 中國衛(wèi)生統(tǒng), 2011, 28(3): 321-323. YANG Zhixiong, YUAN Daijing. Application of logistic regression in random effects of non-linear mixed effects models and generalized linear models[J]. Chinese Journal of Health Statistics, 2011, 28(3): 321-323.

        [11] 董長青, 馬帥, 傅玉, 等. 火電廠SCR脫硝催化劑壽命預(yù)估研究[J]. 華北電力大學(xué)學(xué)報(自然科學(xué)版), 2016, 43(3): 64-68. DONG Changqing, MA Shuai, FU Yu, et al. Study on life prediction of SCR denitrification Catalyst in Thermal Power Plants[J]. Journal of North China Electric Power University (Natural Science Edition), 2016, 43(3): 64-68.

        [12] 傅玉, 陸強(qiáng), 莊柯, 等. 基于灰色預(yù)測模型和曲線擬合模型的SCR煙氣脫硝催化劑壽命預(yù)測[J]. 熱力發(fā)電, 2017, 46(7): 60-65. FU Yu, LU Qiang, ZHUANG Ke, et al. Life prediction for SCR flue gas denitrification catalyst in coal-fired power plants[J]. Thermal Power Generation, 2017, 46(7): 60-65.

        [13] ANDONOVA S, VOVK E, SJ?BLOM J, et al. Chemical deactivation by phosphorous under lean hydrothermal conditions over Cu/BEA NH3-SCR catalysts[J]. Applied Catalysis B Environmental, 2013, 147(8): 251-263.

        [14] MUZIO L J, SMITH R A. In-line localized monitoring of catalyst activity in selective catalytic NOreduction systems: US7635593[P]. 2009-12-22.

        [15] 宋玉寶, 楊杰, 金理鵬, 等. SCR脫硝催化劑宏觀性能評估和壽命預(yù)測方法研究[J]. 中國電力, 2016(4): 17-22. SONG Yubao, YANG Jie, JIN Lipeng, et al. Study on methodology of SCR catalyst macroscopical perfor- mance evaluation and lifetime prediction[J]. Electric Power, 2016(4): 17-22.

        [16]楊繼旺, 吳熳紅. 幾種負(fù)荷預(yù)測方法及其應(yīng)用[J]. 農(nóng)村電氣化, 2004(7): 9-10. YANG Jiwang, WU Manhong. Several load forecasting methods and their applications[J]. Rural Electrification, 2004(7): 9-10.

        [17] 王曉佳. 基于數(shù)據(jù)分析的預(yù)測理論與方法研究[D]. 合肥: 合肥工業(yè)大學(xué), 2012: 31. WANG Xiaojia. Research on forecasting theory and method based on data analysis[D]. Hefei: Hefei University of Technology, 2012: 31.

        [18] 吳劍, 張迎春. 軟基路堤最終沉降量的灰色預(yù)測[J]. 西部探礦工程, 2003(7): 30-32. WU Jian, ZHANG Yingchun. Gray forecast of final settlement of soft foundation[J]. West-China Exploration Engineering, 2003(7): 30-32.

        [19]ZHANG W P, ZHAO S Q. Forecasting research on the total volume of import and export trade of Ningbo Port by gray forecasting model[J]. Journal of Software, 2013, 8(2): 466.

        [20] 黃文燕, 羅飛, 許玉格, 等. 基于模擬退火PSO-BP算法的鋼鐵生產(chǎn)能耗預(yù)測研究[J]. 科學(xué)技術(shù)與工程, 2012, 12(30): 7906-7910. HUANG Wenyan, LUO Fei, XU Yuge, et al. Research of steel production consumption forecast based on simulated annealing PSO-BP algorithm[J]. Science Technology and Engineering, 2012, 12(30): 7906-7910.

        [21] 劉冰, 郭海霞. MATLAB神經(jīng)網(wǎng)絡(luò)超級學(xué)習(xí)手冊[M]. 人民郵電出版社, 2014: 160-161. LIU Bing, GUO Haixia. MATLAB neural network super study manual [M]. Post &Telecom Press, 2014: 160-161.

        [22] 墨蒙, 趙龍章, 龔嬡雯, 等. 基于遺傳算法優(yōu)化的BP神經(jīng)網(wǎng)絡(luò)研究應(yīng)用[J]. 現(xiàn)代電子技術(shù), 2018, 41(9): 41-44. MO Meng, ZHAO Longzhang, GONG Yuanwen, et al. Research on application of BP neural network based on genetic algorithm optimization[J]. Modern Electronics Technique, 2018, 41(9): 41-44.

        [23] 楊碧源, 趙金笑, 魏宏鴿, 等. 基于BP神經(jīng)網(wǎng)絡(luò)的SCR蜂窩狀催化劑脫硝性能預(yù)測[J]. 中國電力, 2016, 49(10): 127-131. YANG Biyuan, ZHAO Jinxiao, WEI Hongge, et al. Prediction of denitration performance of SCR honeycomb catalyst based on BP neural network[J]. Electric Power, 2016, 49(10): 127-131.

        [24] 袁景凌, 鐘珞, 李小燕. 灰色神經(jīng)網(wǎng)絡(luò)的研究及發(fā)展[J].武漢理工大學(xué)學(xué)報, 2009, 31(3): 91-93. YUAN Jingling, ZHONG Luo, LI Xiaoyan. Grey neural network research and development [J]. Journal of Wuhan University of Technology, 2009, 31(3): 91-93.

        Life prediction of SCR flue gas denitration catalyst in coal-fired power plants

        TANG Shijie, LU Qiang, WANG Zexiang, WU Yuting, DONG Changqing, YANG Yongping

        (National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing 102206, China)

        In order to ensure the safe and stable operation of denitrification system in coal-fired power plants, a scientific and reasonable life prediction plan must be formulated for the SCR catalysts. The deactivation of the SCR catalysts is determined by the combined effects of multiple physical and chemical factors. Therefore, it is difficult to predict the catalysts’ service life by using conventional physical models and mathematical formulas. According to the characteristics of big data in power plants, this article preprocessed the raw data and established four prediction models, including curve fitting model, grey prediction model, BP neural network model and grey neural network model. Through case analysis, it is found that data preprocessing can improve the prediction accuracy. Generally, the optimized direct output model of the grey neural network shows high accuracy for the data that met the equidistant time requirement. Whereas, the BP neural network model can achieve better prediction results for the non-equidistant time data.

        flue gas denitration system, SCR catalyst, life prediction, curve fitting, grey model prediction, BP neural network, grey neural network

        National Basic Research Program of China (973 Program)(2015CB251501); Beijing Nova Program (Z171100001117064); Fok Ying Tung Education Foundation (161051)

        唐詩潔(1993—),女,碩士研究生,主要研究方向?yàn)镾CR煙氣脫硝催化劑壽命預(yù)測,tangsj1120@126.com。

        TM621

        A

        10.19666/j.rlfd.201806099

        唐詩潔, 陸強(qiáng), 王則祥, 等. 燃煤電廠SCR煙氣脫硝催化劑壽命預(yù)測研究[J]. 熱力發(fā)電, 2019, 48(3): 61-68. TANG Shijie, LU Qiang, WANG Zexiang, et al. Life prediction of SCR flue gas denitration catalyst in coal-fired power plants[J]. Thermal Power Generation, 2019, 48(3): 61-68.

        2018-06-28

        國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃)項(xiàng)目(2015CB251501);北京市科技新星(Z171100001117064);霍英東教育基金會(161051)

        陸強(qiáng)(1982—),男,博士,教授,碩士生導(dǎo)師,qianglu@mail.ustc.edu.cn。

        (責(zé)任編輯 楊嘉蕾)

        猜你喜歡
        灰色電廠煙氣
        固體吸附劑脫除煙氣中SOx/NOx的研究進(jìn)展
        化工管理(2022年13期)2022-12-02 09:21:52
        淺灰色的小豬
        世界上最大海上風(fēng)電廠開放
        軍事文摘(2018年24期)2018-12-26 00:57:54
        基于參數(shù)自整定模糊PID的SCR煙氣脫硝控制
        智慧電廠來襲
        能源(2018年6期)2018-08-01 03:41:50
        智慧電廠來襲,你準(zhǔn)備好了嗎?
        能源(2018年6期)2018-08-01 03:41:46
        用Citect構(gòu)造電廠輔網(wǎng)
        灰色時代
        Coco薇(2017年2期)2017-04-25 17:59:38
        她、它的灰色時髦觀
        Coco薇(2017年2期)2017-04-25 17:57:49
        感覺
        AV在线毛片| 18分钟处破好疼哭视频在线观看| 久久99精品久久久久久| 日韩不卡av高清中文字幕| 亚洲精品一区二在线观看| 青青草成人原视频在线播放视频| 成熟的女人毛茸茸色视频| 美女很黄很色国产av| 无码色av一二区在线播放| 久久99精品国产99久久6尤物| 国产美女69视频免费观看| 久久久婷婷综合五月天| 精品少妇人妻av一区二区蜜桃| 中国美女a级毛片| 小荡货奶真大水真多紧视频 | 美女下蹲露大唇无遮挡| 一区二区三区人妻无码| 人妻影音先锋啪啪av资源| 亚洲日本在线va中文字幕| 亚洲国产一区二区三区视频在线 | 色男色女午夜福利影院| 亚洲一区二区免费在线观看视频| 亚洲热妇无码av在线播放 | 亚洲地区一区二区三区| 亚洲中文字幕熟女五十| 国产91精品高潮白浆喷水| 亚洲 自拍 另类小说综合图区| 99热视热频这里只有精品| 中文字幕大乳少妇| 日本办公室三级在线看| 中文字幕在线看精品乱码| 99久久久国产精品免费蜜臀| 国产女人18一级毛片视频| 日本一区二区三区中文字幕视频| 黄色影院不卡一区二区| 国产福利视频在线观看| 久久尤物AV天堂日日综合| 亚洲在线一区二区三区四区| 日韩精品人妻系列中文字幕| 欧美黑人群一交| 91精选视频在线观看|