王忠波,張金博,王 斌,李殿興,張興義
煤矸石填充對溝道導排水性能和土壤肥力及重金屬污染的影響
王忠波1,2,張金博2,王 斌2,李殿興2,張興義3
(1. 農(nóng)業(yè)部農(nóng)業(yè)水資源高效利用重點實驗室,哈爾濱 150030;2. 東北農(nóng)業(yè)大學水利與土木工程學院,哈爾濱 150030;3. 中國科學院東北地理與農(nóng)業(yè)生態(tài)研究所,哈爾濱 150081)
為探尋適合東北黑土區(qū)侵蝕溝復墾的技術方法,該文研究了一種基于復墾后導排水能力最大的侵蝕溝煤矸石填充復墾技術方法,通過模擬一定深度的溝道、應用響應曲面法探究覆土和煤矸石填充厚度的變化對于復墾溝道導排水性能的影響及最優(yōu)厚度搭配組合預測。同時引入土工布并考察土工布對煤矸石淋溶過程中重金屬的隔絕作用。選擇一條用煤矸石填充復墾4 a后的侵蝕溝,在耕層(0~20 cm)進行土壤肥力以及重金屬污染情況的調(diào)查研究。結(jié)果表明:1)土層厚度增加減弱溝道導排水能力,混合粒徑、大粒徑煤矸石層厚度增加增大溝道導排水能力,土層與大粒徑煤矸石層組合存在交互作用。覆土、混合粒徑及大粒徑煤矸石層厚度分別為53.42、38.51、90 cm時,模擬2 m深溝道導排水能力最強。2)溝道復墾4 a后,容重增加、酸度改善、全磷含量持平于對照土壤,全氮、全鉀及有機質(zhì)含量顯著低于對照土壤。綜合肥力小于對照土壤,略高于黑龍江省第二積溫帶的土壤綜合肥力。3)復墾土壤Pb含量持平于當?shù)貙φ胀寥兰氨尘爸?,Cr、Cu含量高于當?shù)貙φ胀寥兰氨尘爸?,但均未超過環(huán)境質(zhì)量二級標準值,3種重金屬存在輕度污染及富集現(xiàn)象。研究結(jié)果可為土地整理規(guī)劃提供一定借鑒。
侵蝕;復墾;重金屬;煤矸石;導排水;土壤肥力
中國黑土區(qū)開墾較晚,但由于高強度掠奪式的經(jīng)營方式,水土流失嚴重部分地區(qū)甚至出現(xiàn)了“破皮黃”現(xiàn)象[1]。水利部2013年《第一次全國水利普查水土保持情況公報》顯示,東北黑土區(qū)超過100 m長度的侵蝕溝有29.6萬條,溝道本身損毀土地約4 000 km2,60%以上侵蝕溝分布于耕地中,88.7%侵蝕溝處于發(fā)展狀態(tài)[2]。侵蝕溝形成和發(fā)展過程造成的土地破碎、土壤肥力下降、農(nóng)業(yè)機械化生產(chǎn)困難等問題也得到了學者們的廣泛關注[3-7]。
面對日益嚴峻的土地資源短缺威脅,廣大科研工作者結(jié)合實際,總結(jié)得到了一些土地復墾的技術方法與經(jīng)驗。如:引污泥復墾土地[8-10],引黃河泥沙填充復墾土地[11-14],回收固體廢棄物粉煤灰復墾土地[15-16]等。而在中國,煤矸石的堆放侵占了大量的耕地、林地,每生產(chǎn)一定數(shù)量的原煤會附帶產(chǎn)生15%~20%的煤矸石[17],如能將煤矸石作為復墾土地的填充材料,既能變廢為寶,又可為國家節(jié)約土地資源。目前,國內(nèi)關于利用煤矸石填充復墾土地已經(jīng)取得一部分成果,但針對復墾后土壤的理化性質(zhì)[18-19]、土壤菌群與微生物狀況[20-21]、土壤重金屬污染[22-24]等復墾效應問題上的研究較多,填充復墾技術上的研究較少,缺乏技術上的實質(zhì)性研究。如:李正軍[25]總結(jié)徐州張雙樓煤礦煤矸石深埋充填塌陷地工程,對土地復墾與煤矸石綜合利用結(jié)合的問題進行了探討,在土地利用率及經(jīng)濟效益上得到了肯定性結(jié)論。然而深究侵蝕溝發(fā)生的根本原因是長期的水力侵蝕,那么在填充復墾侵蝕溝時,如何衰減地表徑流量,增大溝道導排水性能,從根源上杜絕二次侵蝕及土壤養(yǎng)分流失當為首先要考慮的因素,基于此目的煤矸石填充復墾技術研究在國內(nèi)外的研究還未見報道。
本文在綜合前人研究成果基礎上,初步研究一種基于復墾后導排水能力最大的侵蝕溝煤矸石填充復墾技術方法,通過模擬一定深度的溝道、應用響應曲面法(RSM)探究覆土和煤矸石填充厚度的變化對于復墾溝道導排水性能的影響及最優(yōu)厚度搭配組合預測。針對一條用煤矸石填充復墾4 a后的侵蝕溝,在耕層(0~20 cm)進行土壤肥力及重金屬污染情況的調(diào)查研究與評價。試圖探討此煤矸石填充侵蝕溝技術的可行性及突破點,為中國復墾規(guī)劃提供一定的借鑒。
黑龍江新華農(nóng)場位于三江平原腹地、小興安嶺南麓,地處黑龍江省第二積溫帶(47°08′49″N、130°06′16″E,海拔143.4 m)??偯娣e約647 km2。平均年降水量651.5 mm,年平均風速2.8 m/s,年平均氣溫3.8 ℃,全年日照時間2 518.7 h。土地利用以坡耕地為主,溝蝕和面蝕均較重。
復墾4 a的監(jiān)測溝行政區(qū)域位于新華農(nóng)場一連。復墾前侵蝕溝長度258 m,溝寬1.90 m,最深溝深1.14 m,溝底比降4.27%。復墾時在溝頭對溝道進行整形,使溝道整形后溝深1 m,底部鋪設50 cm深煤矸石并設置出流管,煤矸石取材自鶴崗礦區(qū),隨后在煤矸石上覆土50 cm,總體復墾長度100 m。
本次試驗模擬實際溝道深度為2 m,試驗槽長×寬×深為2 m×1 m×2.2 m?;谧畲蟪潭壬蠈⒌乇韽搅鬓D(zhuǎn)換為地下導排水的原則并保證一定的土層厚度,擬定大粒徑煤矸石厚度范圍為70~90 cm,覆土厚度為40~60 cm,同時在二者之間填放一定厚度的混合粒徑煤矸石起到承上啟下的作用,擬定厚度為30~50 cm,試驗方案見表1。試驗中,材料填充完畢后,用水車以固定流量開始向試驗槽內(nèi)灌水,以出流管承接固定水量的出流時間來表征復墾溝道導排水能力。本次試驗采取比較接滿第一桶水時間大小來比較平均出流速率(經(jīng)過預試驗觀察,接滿第一桶水過程中,出流管流態(tài)變化過程基本一致,均為開始出流到小股流再逐漸變大到穩(wěn)定大股流,基本代表了整個入滲過程)。出流時間越短,平均出流速率越大,復墾溝道導排水能力越大;反之,復墾溝道導排水能力越小。試驗槽中各種材料填放完畢后,開始灌水隨即計時,當出流水接滿第一桶水后停止灌水,計時結(jié)束。每組試驗完成置換新料石與新土,重復此過程至所有試驗結(jié)束??傮w試驗重復2次,最后取平均值。
圖1 復墾材料填放順序
土壤肥力調(diào)查指標選取土壤容重、pH值、有機質(zhì)、全氮、全磷、全鉀,土壤重金屬指標選取煤矸石中含量較高且易發(fā)生轉(zhuǎn)移的Cr、Pb、Cu 3種元素[26]。土壤采集于2018年10月秋收期后,由于調(diào)查溝道屬于狹長地形,故采用“S”型采樣法,復墾溝內(nèi)取5處采樣點(T1,T2,T3,T4,T5),遠離復墾溝1km處取一處對照點CK,共計6處采樣點。每個采樣點劃分出0.5 m×0.5 m的采樣網(wǎng)格區(qū)域,首先在每個網(wǎng)格區(qū)域用環(huán)刀取樣測定土壤容重,每個采樣點取3個處理,隨后在每個網(wǎng)格區(qū)域,先用鐵鏟在垂直方向0~20 cm深將土樣挖出,依照四分法用木鏟混合后分別取土樣2.0 kg用于土壤肥力及重金屬含量的測試分析。
表1 試驗設計分組結(jié)果
1.3.1 土壤肥力評價
土壤肥力綜合評價方法采用基于模糊評判的土壤肥力綜合評價法(IFI),IFI值越高,土壤綜合肥力水平越高。其基本形式為
式中W為第個指標的權(quán)重;N為第個指標的隸屬度值。
由變異系數(shù)法和熵權(quán)法確定養(yǎng)分指標的客觀權(quán)重并取平均,計算步驟詳見文獻[26-27]。式(2)為隸屬度函數(shù)表達式,用以計算各土壤養(yǎng)分因子的隸屬度值。為下限,為上限。表2為各土壤養(yǎng)分因子的隸屬度函數(shù)值上下限[28]。
表2 土壤養(yǎng)分因子隸屬度上下限值
1.3.2 土壤重金屬污染評價
土壤重金屬污染評價采用單因子污染指數(shù)法(PI)、富集因子法(EF)。單因子污染指數(shù)法(PI)用以評價單項重金屬元素的污染情況。富集因子法(EF)用以評價土壤是否受到人為活動的影響而發(fā)生重金屬的富集污染,選用Co[29]作為參比元素。計算公式分別如下
表3 重金屬污染、富集程度及潛在生態(tài)風險分級標準
烘干法測土壤容重,玻璃電極法測土壤pH值,重鉻酸鉀外加熱法測有機質(zhì),流動分析儀測全氮、全磷、全鉀,原子吸收分光光度計測重金屬Cr、Pb、Cu含量。
試驗數(shù)據(jù)采用響應曲面法配套軟件Design Expert、Excel 2010、Origin分別進行數(shù)據(jù)整理、方差分析以及作圖。
2.1.1 多元二次回歸模型的建立
以覆土厚度、混合粒徑煤矸石層厚度、大粒徑煤矸石層厚度為變量,以出流時間為響應值,消除量綱的影響,應用Design Expert得到編碼值多元二次回歸模型如下
式中為出流時間,s;1為覆土厚度,cm;2為混合煤矸石層厚度,cm;3為大粒徑煤矸石層厚度,cm。
對建立的模型進行方差分析,結(jié)果見表4。從方差分析中,模型顯著性=12.45,模型=0.000 2<0.001,R=0.918 1。模型達到極顯著水平,建立的二次回歸模型可靠度高,建立的模型有效。覆土厚度1、混合粒徑煤矸石層厚度2和大粒徑煤矸石層厚度3的值分別為0.025 8、0.002 1和<0.000 1,三者均為因變量顯著影響項(<0.05),其中大粒徑煤矸石層厚度3達到極顯著水平。
表4 響應回歸模型參數(shù)方差分析結(jié)果
2.1.2 填充材料厚度變化對整體出流時間的影響
為探究填充材料厚度變化對整體出流時間的影響,對建立的多元二次回歸模型進行單因素效應分析。單因素效應分析即是對回歸模型進行降維處理,目的是僅考查某一因素變化對于因變量影響。同時對得到的單因素效應函數(shù)進一步求導,得到單因素邊際效應函數(shù),用以探究影響因素對于結(jié)果的正負效應及效應能力的大小。由式 (5)得出覆土厚度、混合煤矸石層厚度、大粒徑煤矸石層厚度對于整體出流時間影響單因素效應函數(shù)為
對單因素效應函數(shù)求導,得到單因素邊際效應函數(shù)為
各因素單因素效應曲線及單因素邊際效應函數(shù)見圖 2。整體上,在有效編碼值范圍內(nèi)(-1~1),整體出流時間隨著覆土厚度增加呈逐漸增大趨勢、隨著混合粒徑煤矸石層厚度、大粒徑煤矸石層厚度增加呈減小趨勢。覆土厚度呈現(xiàn)正效應,即隨著覆土厚度增加,整體出流時間會逐漸增大?;旌狭矫喉肥瘜雍穸认瘸尸F(xiàn)負效應后呈現(xiàn)正效應。大粒徑煤矸石整體上都呈現(xiàn)負效應。對比單因素邊際效應函數(shù)斜率大小可以得出:邊際效應大小從大到小順序為大粒徑煤矸石厚度>覆土厚度>混合粒徑煤矸石層厚度。
2.1.3 填充材料間的交互作用
交互項方差分析結(jié)果只有土層厚度與大粒徑煤矸石層厚度組合達到顯著水平(=0.0087<0.05)。土與混合粒徑煤矸石(=0.9045>0.05)、混合粒徑與大粒徑煤矸石(=0.5086>0.05)交互作用不顯著,故不再做分析。采用Design Expert軟件繪制三維響應曲面圖和等高線圖,并分析自變量與響應值之間交互作用關系。圖3為覆土厚度和大粒徑煤矸石層厚度相互影響出流時間響應面圖和等高線圖。一般來說,響應面圖中,圓形等高線圖表示因素間交互作用不明顯,橢圓形或馬鞍形等高線圖則表示因素間交互作用較強。由圖3可知土層厚度與大粒徑煤矸石層厚度二者之間交互作用較強。
圖2 單因素效應與單因素邊際效應
圖3 覆土厚度和大粒徑煤矸石層厚度相互影響出流時間等高線和響應面
2.1.4 最優(yōu)厚度搭配組合及驗證
由Design Expert軟件計算多元二次回歸模型得到的最優(yōu)厚度搭配結(jié)果為:覆土厚度53.42 cm、混合粒徑煤矸石層厚度38.51 cm、大粒徑煤矸石層厚度90 cm,預測最小出流時間為:145.129 s。設置覆土厚度53 cm、混合粒徑煤矸石層厚度38 cm、大粒徑煤矸石層厚度90 cm試驗組對模型結(jié)果加以驗證。重復3次,驗證的出流時間分別為:141、147、145 s,驗證偏差率分別為2.84%、1.38%、0.08%,滿足預期設想。
表5給出了用煤矸石填充侵蝕溝復墾4 a后耕層土壤5個采樣點T1、T2、T3、T4、T5及對照土壤CK的肥力現(xiàn)狀,相比當?shù)貙φ胀寥繡K,在單項肥力指標上,土壤容重略有所增加,增幅在0.84%~5.88%之間,土壤酸堿度有所改善,增幅在14.20%~17.96%。對于植物生長最為重要的營養(yǎng)物質(zhì)方面,磷素水平基本持平于對照土壤CK,但氮素、鉀素及土壤有機質(zhì)含量均有不同程度上的虧欠,虧欠幅度分別為37.33%~48.24%、19.05%~38.10%和33.86%~46.06%。通過變異系數(shù)法及熵權(quán)法計算的容重、pH值、有機質(zhì)、全氮、全磷、全鉀權(quán)重分別為0.133、0.110、0.208、0.199、0.203、0.147和0.139、0.122、0.201、0.192、0.196、0.153,綜合權(quán)重為0.139、0.122、0.201、0.192、0.196、0.150。計算的綜合肥力評價指數(shù)如圖4所示,復墾土壤耕層綜合肥力IFI值在0.497至0.602之間,明顯小于當?shù)貙φ胀寥谰C合肥力IFI值0.745,綜合肥力水平只達到對照土壤的66.71%~80.81%,均值只達到72.75%,說明用煤矸石填充侵蝕溝復墾4 a后耕層土壤的綜合肥力相比于當?shù)卣M寥烙兴啡薄5珜Ρ扔诤邶埥〉诙e溫帶的土壤綜合肥力[28],復墾土壤耕層綜合肥力總體略高于地區(qū)平均水平,土壤綜合肥力水平尚可。
表5 監(jiān)測溝土壤肥力調(diào)查現(xiàn)狀
注:T1~T5均為復墾溝內(nèi)采樣點。CK為距復墾溝1km處的對照點。下同。
Note:T1-T5 are sampling points in the reclamation gully. CK is the comparison point at 1km from reclamation gully. The same as below.
圖4 土壤綜合肥力評價結(jié)果
表6給出了用煤矸石填充侵蝕溝復墾4 a后耕層土壤重金屬調(diào)查現(xiàn)狀及描述統(tǒng)計分析??梢钥闯鐾寥乐亟饘僦蠵b含量對比于當?shù)貙φ胀寥繡K及背景值基本持平,Cr、Cu含量要高于當?shù)貙φ胀寥繡K及背景值,說明相比于正常對照土壤,監(jiān)測溝復墾土壤受到一定程度上的重金屬污染,但對比于國家環(huán)境質(zhì)量二級標準值[34],調(diào)查的3 種重金屬均未超過標準值。變異系數(shù)結(jié)果顯示Cr、Pb、Cu 3種重金屬均不超過15%,屬于低度變異[36],說明現(xiàn)階段受到外來因素的影響較小,比較3種重金屬的變異系數(shù):Cr>Pb>Cu,說明重金屬Cr更容易在“煤矸石-土壤系統(tǒng)”中向上遷移,其次是Pb元素,最后是Cu元素。圖5為復墾溝道土壤重金屬污染及富集狀況,計算的Cr、Pb、Cu 3種重金屬元素單因子污染指數(shù)PI值均處在1~2之間,富集因子法EF值處在1~3之間,比較分級標準可以得出,復墾溝土壤受到了Cr、Pb、Cu 3種重金屬元素的輕度污染,已經(jīng)發(fā)生輕微的富集現(xiàn)象,但程度較低。
表6 監(jiān)測溝土壤重金屬調(diào)查現(xiàn)狀及描述統(tǒng)計
圖5 土壤重金屬污染與富集狀況
本文通過模擬一定深度侵蝕溝,探究了一種“土-混合粒徑煤矸石-大粒徑煤矸石”結(jié)構(gòu)填充復墾侵蝕溝后溝道導排水能力,結(jié)果顯示,覆土厚度對復墾溝道的整體出流時間呈現(xiàn)正效應,混合粒徑及大粒徑煤矸石層厚度呈現(xiàn)負效應,即增加土厚會減弱復墾溝道導排水能力,增加煤矸石厚度會增強復墾溝道導排水能力,這與黨宏宇等[36]及馬保國等[37]的部分研究結(jié)果一致。產(chǎn)生這種現(xiàn)象的原因是土體本身孔隙度對比堆石體要小,水通過的速率要慢,同時土體本身也能保存一部分水,只有土體中蓄水能力達到飽和時,水分才會繼續(xù)流向下一層結(jié)構(gòu),隨著土層厚度的增加,土層也會截留更多的水分,水分通過土層的時間也會越來越長。而混合粒徑煤矸石以及大粒徑煤矸石幾乎沒有蓄水能力,水分通過兩種介質(zhì)的時間只跟介質(zhì)間的孔隙度有關?;旌狭矫喉肥捎诹捷^小,試驗中也觀察到混合粒徑煤矸石填充后,整體結(jié)構(gòu)較為致密,介質(zhì)間的孔隙度自然比大粒徑煤矸石要小,水分通過的時間要比大粒徑要長。同時馬保國等的試驗結(jié)果還表明不同矸土質(zhì)量比下,水分入滲時間不同,這與本文的研究結(jié)果相似,不同類型介質(zhì)之間的確存在一定的交互作用,但馬保國等[37]的試驗研究并未對矸石不同粒徑大小與土復合體下與水分整體入滲速率之間的關系進行研究。
通過對煤矸石填充復墾侵蝕溝后土壤肥力進行調(diào)查,發(fā)現(xiàn)復墾土壤容重有所增加(0.84%~5.88%),土壤酸性有所改善(14.20%~17.96%),氮素(37.33%~48.24%)、鉀素(19.05%~38.10%)及土壤有機質(zhì)含量(33.86%~46.06%)均有所虧欠,僅磷素水平基本持平于對照土壤CK。綜合肥力相比對照土壤有所欠缺,水平相當于對照土壤CK的66.71%~80.81%,均值只達到72.75%。究其綜合肥力欠缺的原因主要是復墾溝道地理位置處在黑土區(qū)漫山漫崗區(qū)域,本身處于匯水線范圍內(nèi),復墾前就已經(jīng)形成侵蝕溝,是水蝕的重災區(qū),溝道在用煤矸石填充復墾后,溝道的導排水能力得以進一步加強,承接了更多的水分入滲,伴隨而來的是土壤淋溶現(xiàn)象的加劇。調(diào)查可知,對照土壤pH值為5.07,土壤本身呈酸性,復墾土壤在長期淋溶的過程,會帶走土壤中過量的氫離子,使土壤酸性得以改善,土壤中的黏粒也會隨水被帶走,土壤容重增大[38],對于復墾土壤重要的營養(yǎng)物質(zhì),特別是氮、磷、鉀及可溶有機質(zhì)的淋溶作用更強[39-40],綜上造成了復墾土壤綜合肥力的欠缺。在今后耕作過程中,需注重復墾溝道土壤的肥料補充。
煤矸石是產(chǎn)煤過程中的產(chǎn)生的固體廢棄物,自身含有一定量的重金屬元素。許多研究[41-42]也證明煤矸石露天堆放形成的矸石山在雨水或酸雨的淋溶作用下,也會迫使周圍的生態(tài)環(huán)境發(fā)生改變甚至造成人為的二次污染,最明顯的污染情況是土壤重金屬的嚴重富集。本文研究顯示,用煤矸石填充復墾侵蝕溝4 a后,通過計算3種重金屬元素Cr、Pb、Cu:單因子污染指數(shù)法1 1)覆土厚度增加會增大復墾溝道整體出流時間,導排水能力變?nèi)?,混合粒徑煤矸石厚度、大粒徑煤矸石厚度增加會減少復墾溝道整體出流時間,導排水能力增強。覆土厚度與大粒徑煤矸石厚度間交互作用明顯。覆土、混合粒徑及大粒徑煤矸石層厚度分別為53.42、38.51、90 cm時,模擬2 m深溝道導排水能力最強。 2)在用煤矸石填充復墾侵蝕溝4 a后,相較于對照土壤CK,監(jiān)測溝復墾土壤容重有所增加,土壤酸性有所改善,氮素、鉀素及土壤有機質(zhì)含量均有所虧欠,僅磷素水平基本持平于對照土壤CK。土壤綜合肥力水平相當于對照土壤CK的66.71%~80.81%,均值只達到72.75%。但對比于黑龍江省第二積溫帶地區(qū)土壤綜合肥力平均水平,復墾土壤綜合肥力略高與該水平,土壤肥力尚可。 3)監(jiān)測溝復墾土壤重金屬Pb含量基本持平于當?shù)貙φ胀寥繡K及背景值,但復墾土壤中Cr、Cu含量要高于當?shù)貙φ胀寥繡K及背景值,但3種監(jiān)測溝復墾土壤重金屬均未超過國家環(huán)境質(zhì)量二級標準值。單因子污染指數(shù)法及富集因子法計算結(jié)果表明:監(jiān)測溝復墾土壤重金屬Cr、Pb、Cu存在輕度污染及輕微富集,可以將煤矸石作為侵蝕溝填充復墾的一種材料,但在長時間上,復墾時還需注意土壤重金屬富集的問題。 [1]水利部,中國科學院,中國工程院,中國水土流失防治與生態(tài)安全:東北黑土區(qū)卷[M].北京:科學出版社,2010:64-66. [2]張興義,劉曉冰,趙軍,黑土利用與保護[M].北京:科學出版社,2018:131-132. [3]李益敏,管成文,郭麗琴,等.基于生態(tài)敏感性分析的江川區(qū)土地利用空間格局優(yōu)化配置[J].農(nóng)業(yè)工程學報,2018,34(20):267-276. Li Yimin, Guan Chengwen, Guo Liqin, et al. Optimization of land use spatial pattern in Jiangchuan district based on ecological sensitivity analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 267-276. (in Chinese with English abstract) [4]成玉婷,李鵬,徐國策,等.凍融條件下土壤可蝕性對坡面氮磷流失的影響[J].農(nóng)業(yè)工程學報,2017,33(24):141-149. Cheng Yuting, Li Peng, Xu Guoce, et al. Effect of soil erodibility on nitrogen and phosphorus loss under condition of freeze-thaw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(24): 141-149. (in Chinese with English abstract) [5]Artem V Gusarov, Valentin N Golosov, Aidar G Sharifullin. Contribution of climate and land cover changes to reduction in soil erosion rates within small cultivated catchments in the eastern part of the Russian Plain during the last 60 years[J]. Environmental Research, 2018, 167: 21-33. [6]Liu Chun, Li Zhongwu, Chang Xiaofeng, et al. Soil carbon and nitrogen sources and redistribution as affected by erosion and deposition processes: A case study in a loess hilly-gully catchment, China[J]. Agriculture, Ecosystems and Environment, 2018, 253: 11-22. [7]Ali Reza Vaezi, Morvarid Ahmadi, Artemi Cerdà. Contribution of raindrop impact to the change of soil pHysical properties and water erosion under semi-arid rainfalls[J]. Science of the Total Environment, 2017, 583: 382-392. [8]朱紅霞,汪海英,王華春,等.剩余活性污泥用于鉛污染土地復墾的初步研究[J].環(huán)境科學與技術,2015,38(S1):281-284,311. Zhu Hongxia, Wang Haiying, Wang Huachun, et al. A preliminary study for activated sludge of lead-contaminated land reclamation [J]. Environmental Science & Technology,2015,38(S1):281-284, 311. (in Chinese with English abstract) [9]Wenlin Yvonne Lin, Wei Cheng Ng, Belinda Shu Ee Wong, et al. Evaluation of sewage sludge incineration ash as a potential land reclamation material[J]. Journal of Hazardous Materials, 2018, 357: 63-72. [10]時洪超. 湖泥充填采煤沉陷區(qū)復墾技術在大屯公司的應用[J].中國高新技術企業(yè),2010(3):69-70. [11]胡振琪,王培俊,邵芳.引黃河泥沙充填復墾采煤沉陷地技術的試驗研究[J].農(nóng)業(yè)工程學報,2015,31(3):288-295. Hu Zhenqi, Wang Peijun, Shao Fang. Technique for filling reclamation of mining subsidence land with Yellow River sediment[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 288-295. (in Chinese with English abstract) [12]李晶,殷守強,于加春,等.黃河流域礦區(qū)充填復墾泥沙供需狀況及輸沙路徑分析[J].農(nóng)業(yè)工程學報,2019,35(5):268-277. Li Jing, Yin Shouqiang, Yu Jiachun, et al. Analysis of supply-demand and transportation path of sediments for filling reclamation of mining areas in Yellow River basin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(5): 268 -277. (in Chinese with English abstract) [13]王曉彤,胡振琪,梁宇生,等.基于水分特性的采煤沉陷地充填復墾黃河泥沙容重優(yōu)選[J].農(nóng)業(yè)工程學報,2018,34(16):258-264.Wang Xiaotong, Hu Zhenqi, Liang Yusheng, et al. Optimal bulk density infilling reclamation of mining subsidence land with Yellow River sediment based on water characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(16): 258 -264. (in Chinese with English abstract) [14]胡振琪,邵芳,多玲花,等.黃河泥沙間隔條帶式充填采煤沉陷地復墾技術及實踐[J].煤炭學報,2017,42(3):557-566. Hu Zhenqi, Shao Fang, Duo Linghua, et al. Technique of reclaiming subsided land with Yellow River sediments in the form of spaced strips[J].Journal of China Coal Society,2017,42(3):557-566. (in Chinese with English abstract) [15]徐良驥,許善文,嚴家平,等.基于粉煤灰基質(zhì)充填覆土復墾的最佳覆土厚度[J].煤炭學報,2012,37(S2):485-488. Xu Liangji, Xu Shanwen, Yan Jiaping, et al. Optimum soil coverage thickness of reclamation land filled with fly ash [J]. Journal of China Coal Society, 2012, 37(S2): 485-488. (in Chinese with English abstract) [16]寧松瑞,韓霽昌,張揚,等.粉煤灰在土地整治工程中的研究及應用現(xiàn)狀[J].環(huán)境工程,2016,34(S1):1025-1028,1033. Ning Songrui, Han Jichang, Zhang Yang, et al. The status of applications and researches of fly ash used in land consolidation engineering[J]. Environmental Engineering, 2016, 34(S1): 1025-1028,1033. (in Chinese with English abstract) [17]郭彥霞,張圓圓,程芳琴.煤矸石綜合利用的產(chǎn)業(yè)化及其展望[J].化工學報,2014,65(7):2443-2453. Guo Yanxia, Zhang Yuanyuan, Cheng Fangqin. Industrial development and prospect about comprehensive utilization of coal gangue[J]. CIESC Journal, 2014, 65(7): 2443-2453. (in Chinese with English abstract) [18]嚴家平,陳孝楊,蔡毅,等.不同風化年限的淮南礦區(qū)煤矸石理化性質(zhì)變化規(guī)律[J].農(nóng)業(yè)工程學報,2017,33(3):168-174. Yan Jiaping, Chen Xiaoyang, Cai Yi, et al. Physicochemical property change regularities of coal gangue with different weathering ages in Huainan mining area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2017,33(3):168-174.(in Chinese with English abstract) [19]陳孝楊,周育智,嚴家平,等.覆土厚度對煤矸石充填重構(gòu)土壤活性有機碳分布的影響[J].煤炭學報,2016,41(5):1236-1243. Chen Xiaoyang, Zhou Yuzhi, Yan Jiaping, et al. Effects of topsoil thickness on active organic carbon distribution in reconstruction soil filled with coal gangue[J]. Journal of China Coal Society,2016,41(5) :1236-1243. (in Chinese with English abstract) [20]Lourdes Luna, Roberta Pastorelli, Felipe Bastida, et al. The combination of quarry restoration strategies in semiarid climate induces different responses in biochemical and microbiological soil properties[J]. Applied Soil Ecology, 2016, 107: 33-47. [21]馬守臣,張合兵,王銳,等.煤矸石填埋場土壤微生物學特性的時空變異[J].煤炭學報,2015,40(7):1608-1614. Ma Shouchen, Zhang Hebing,Wang Rui, et al. Spatial-temporal variation of soil microbial characteristics in coal gangue field[J]. Journal of China Coal Society,2015,40(7) : 1608-1614. (in Chinese with English abstract) [22]Hua Chunyu, Zhou Guangzhu, Yin Xin, et al. Assessment of heavy metal in coal gangue: Distribution, leaching characteristic and potential ecological risk[J]. Environmental Science and Pollution Research International, 2018, 25: 32321-32331. [23]Shi Yakun, Mu Xingmin, Li Kairong, et al. Soil characterization and differential patterns of heavy metal accumulation in woody plants grown in coal gangue wastelands in Shaanxi, China.[J]. Environmental Science and Pollution Research International, 2016, 13: 13489-13497. [24]宋天奇,黃艷利,張吉雄,等. 底板巖性對煤矸石充填體重金屬元素遷移影響規(guī)律數(shù)值模擬[J].煤炭學報,2018,43(7):1983-1989. Song Tianqi, Huang Yanli, Zhang Jixiong, et al. Numerical simulation on migration effects of heavy metal elements in coal gangue backfilling body caused by the lithology of coal seam floor[J]. Journal of China Coal Society, 2018, 43(7): 1983-1989. (in Chinese with English abstract) [25]李正軍.煤矸石深埋充填采煤塌陷區(qū)復墾造地技術研究[J]. 煤炭科技,2017(2):42-46. Li Zhengjun. Study on reclaimed land reclamation technology of coal gangue in deep filling mining subsidence area[J]. Coal Science and Technology, 2017(2): 42-46. (in Chinese with English abstract) [26]汪嘉楊,翟慶偉,郭倩,等.太湖流域水環(huán)境承載力評價研究[J].中國環(huán)境科學,2017,37(5):1979-1987. Wang Jiayang, Zhai Qingwei, Guo Qian, et al. Study on water environmental carrying capacity evaluation in Taihu lake Basin[J]. China Environmental Science, 2017, 37(5): 1979-1987. (in Chinese with English abstract) [27]顧曉昀,徐宗學,劉麟菲,等. 北京北運河河流生態(tài)系統(tǒng)健康評價[J].環(huán)境科學,2018,39(6):2576-2587. Gu Xiaoyun, Xu Zongxue, Liu Linfei, et al. Health assessment of the stream ecosystem in the North Canal River Basin,Beijing,China[J]. Environmental Sciences, 2018, 39(6): 2576-2587. (in Chinese with English abstract) [28]于秋竹,孔宇,陳東升,等. 寒地不同積溫帶黑土土壤肥力評價的研究[J].現(xiàn)代化農(nóng)業(yè),2015(3):11-12. [29]史文嬌,汪景寬,魏丹,等. 黑龍江省南部黑土區(qū)土壤微量元素空間變異及影響因子——以雙城市為例[J].土壤學報,2009,46(2):342-347. Shi Wenjiao, Wang Jingkuan, Wei Dan, et al. Spatial variability of soil trace elements in black soil region of south Heilongjiang province and its affecting factors: A case study of Shuangcheng city[J]. Acta Pedologica Sinica, 2009, 46(2): 342-347. (in Chinese with English abstract) [30]李永亮,李健,李桂蓮. 水稻田重金屬污染調(diào)查及環(huán)境風險評價[J].甘肅農(nóng)業(yè)大學學報,2016,51(5):95-99. Li Yongliang, Li Jian, Li Guilian. Investigation and soil environmental quality assessment on heavy metal pollution of rice fields in jiamusi[J]. Journal of GanSu agricultural university, 2016, 51(5): 95-99. (in Chinese with English abstract) [31]王粟,孫彬,汪潮柱,等.東北典型黑土區(qū)土壤重金屬污染現(xiàn)狀評價與分析[J].安徽農(nóng)業(yè)科學,2013,41(10):4350-4352. Wang Su, Sun Bin, Wang Chaozhu, et al. Appraisal and analysis of soil heavy metal pollution of typical black soil region in the Northeast of China [J]. Journal of Anhui Agricultural Sciences, 2013, 41(10): 4350-4352. (in Chinese with English abstract) [32]郭彥海,孫許超,張士兵,等.上海某生活垃圾焚燒廠周邊土壤重金屬污染特征、來源分析及潛在生態(tài)風險評價[J].環(huán)境科學,2017,38(12):5262-5271. Guo Yanhai, Sun Xuchao, Zhang Shibing, et al. Pollution characteristics,source analysis and potential ecological risk assessment of heavy metals in soils surrounding a municipal solid waste incineration plant in Shanghai [J]. Environmental Sciences, 2017, 38(12): 5262-5271. (in Chinese with English abstract) [33]李芳,李新舉.魯西南煤礦區(qū)農(nóng)田耕層重金屬分布特征及污染評價[J].煤炭學報,2018,43(7):1990-1998. Li Fang, Li Xinju. Distribution and pollution assessment of heavy metals in farmland tillage soil at coal mine area of the western-south Shandong Province[J]. Journal of China Coal Society,2018,43(7): 1990-1998. (in Chinese with English abstract) [34]李保杰,王思宇,周生路,等.田塊尺度下農(nóng)田重金屬污染特征及其源匯關系響應解析[J].農(nóng)業(yè)工程學報,2018,34(6):204-209. Li Baojie, Wang Siyu, Zhou Shenglu, et al. Heavy metal pollution characteristics and its response of source-sink relationship in agricultural soil at field scale[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(6): 204-209. (in Chinese with English abstract) [35]徐夕博,呂建樹,徐汝汝.山東省沂源縣土壤重金屬來源分布及風險評價[J].農(nóng)業(yè)工程學報,2018,34(9):216-223. Xu Xibo, Lü Jianshu, Xu Ruru. Source spatial distribution and risk assessment of heavy metals in Yiyuan county of Shandong province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(9): 216-223.(in Chinese with English abstract) [36]黨宏宇,邵明安,陳洪松,等.不同煤矸石厚度及位置對土壤水分入滲過程的影響[J].水土保持學報,2012,26(3):62-66. Dang Hongyu, Shao Mingan, Chen Hongsong, et al. Effects of thickness and location of coal gangue on the process of water infiltration [J]. Journal of Soil and Water Conservation, 2012, 26(3): 62-66. (in Chinese with English abstract) [37]馬保國,王健,劉婧然,等.煤矸石基質(zhì)土壤的水分入滲試驗研究[J].煤炭學報,2014,39(12):2501-2506.Ma Baoguo, Wang Jian, Liu Jingran, et al. Experimental study on water infiltration of soil weathering coal gangue[J]. Journal of China Coal Society,2014,39(12) : 2501-2506. (in Chinese with English abstract) [38]吳林川,王冬梅,盧洋,等. 漓江水陸交錯帶硝態(tài)氮淋失規(guī)律的模擬研究[J].水土保持學報,2016,30(1):20-25. Wu Linchuan, Wang Dongmei, Lu Yang, et al. Simulation study onNO3--N leaching law in aquatic—terrestrial ecotone of Lijiang river[J]. Journal of Soil and Water Conservation, 2016, 30(1): 20-25. (in Chinese with English abstract) [39]Wang Aihua, Marisa Gallardo, Zhao Wei, et al. Yield, nitrogen uptake and nitrogen leaching of tunnel greenhouse grown cucumber in a shallow groundwater region[J]. Agricultural Water Management, 2019, 217: 73-80. [40]Lee Mi-Hee, Ok Yong Sik, Hur Jin. Dynamic variations in dissolved organic matter and the precursors of disinfection by-products leached from biochars: Leaching experiments simulating intermittent rain events[J]. Environmental Pollution, 2018,242:1912-1920. [41]張治國,胡友彪,鄭永紅,等.煤矸石堆存對土壤鹽分空間分布特征的影響及主要因子的研究[J].煤炭學報,2018,43(4):1118-1126. Zhang Zhiguo, Hu Youbiao, Zheng Yonghong, et al. Effect of coal gangue stockpiling on spatial distribution characteristics and main factors of soil salinity[J]. Journal of China Coal Society, 2018, 43(4): 1118-1126. (in Chinese with English abstract) [42]Liu B, Tang Z, Dong S, et al. Vegetation recovery and groundwater pollution control of coal gangue field in a semi-arid area for a field application[J]. International Biodeterioration & Biodegradation, 2017,128:134-140. Effects of coal gangue filling on drainage performance, soil fertility and heavy metal pollution in erosion gully Wang Zhongbo1,2, Zhang Jinbo2, Wang Bin2, Li Dianxing2, Zhang Xingyi3 (1.,,150030,;2.,,150030,; 3.,,150081,) In order to explore the suitable technology for the reclamation of erosion gullies in the black soil area of the Northeast China. In this paper, Xinhua farm is selected as the research area which is located in Hegang City, Heilongjiang Province, China. Aiming at the cause of erosion gullies, a new technology of filling and reclamation erosion gully with coal gangue was introduced and the post effect of the new technology was studied, including, the technological process of filling and reclamation, the influence of the thickness change of reclamation filling materials on the drainage characteristics of the gully, the fertility status and heavy metals pollution degree in the reclaimed soil. This paper aimed to explore the feasibility and breakthrough points of the technology of filling erosion gullies with coal gangue. The results showed that: 1) The increase in soil layer thickness could weaken the drainage capacity of the gully, while the increase of mixed size coal gangue thickness and large size coal gangue could increase the drainage capacity of the gully in different degrees. The interaction between the soil layer thickness and large size coal gangue layer thickness obviously influenced the drainage capacity of the gully. When the thickness of soil layer, mixed size coal gangue layer and large size coal gangue layer were 53.42, 38.51, 90 cm respectively, the shortest outflow time was 145.129 s , the drainage capacity of simulated 2 m deep gully was the strongest in this mode. 2) After 4 years of gully reclamation, the soil bulk increased, the soil acidity improved, the content of total potassium was the same as CK, but the total nitrogen, total phosphorus and organic matter content were lower than CK. And then the comprehensive fertility of soil was less than CK, which is 66.71%-80.81% of CK, and the average level only reach to 72.75%. But it was slightly higher than that of the second accumulated temperature zone in Heilongjiang Province. 3) The content of Pb was basically the same as CK and background value of local control soil; however, as for Cr and Cu, they were higher than CK and background value of local control soil in the reclaimed soil of monitoring gully. But the content of Cr, Pb, Cu are not higher than the second level standard value of national environmental quality of China. . There are slight pollution and slight enrichment of heavy metals Cr, Pb and Cu in monitored gully reclamation soil, so coal gangue can be used as a material for filling erosion gully for reclamation. However, in the long term, attention should be paid to the problem of soil heavy metal enrichment during reclamation. erosion; reclamation; heavy metal; coal gangue; drainage; soil fertility 王忠波,張金博,王 斌,李殿興,張興義. 煤矸石填充對溝道導排水性能和土壤肥力及重金屬污染的影響[J]. 農(nóng)業(yè)工程學報,2019,35(24):289-297. doi:10.11975/j.issn.1002-6819.2019.24.034 http://www.tcsae.org Wang Zhongbo, Zhang Jinbo, Wang Bin, Li Dianxing, Zhang Xingyi. Effects of coal gangue filling on drainage performance, soil fertility and heavy metal pollution in erosion gully[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 289-297. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.24.034 http://www.tcsae.org 2019-06-13 2019-11-27 國家重點研發(fā)計劃項目(2017YFC0504200) 王忠波,副教授,主要從事灌溉排水、水土保持方面理論與技術研究。Email:wangzhongbo71@163.com 10.11975/j.issn.1002-6819.2019.24.034 S281;S276 A 1002-6819(2019)-24-0289-094 結(jié) 論