亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        NaOH預(yù)處理提高甘蔗葉產(chǎn)甲烷性能及其機(jī)理分析

        2019-03-05 03:56:48趙立欣孟海波李秀金袁海榮任雅薇于佳動(dòng)黃開明

        羅 娟,趙立欣,孟海波,李秀金,馮 晶,袁海榮,任雅薇,于佳動(dòng),黃開明

        NaOH預(yù)處理提高甘蔗葉產(chǎn)甲烷性能及其機(jī)理分析

        羅 娟1,2,趙立欣1,孟海波1※,李秀金2,馮 晶1,袁海榮2,任雅薇1,于佳動(dòng)1,黃開明1

        (1. 農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計(jì)研究院,農(nóng)業(yè)農(nóng)村部農(nóng)業(yè)廢棄物能源化利用重點(diǎn)實(shí)驗(yàn)室,北京 100125;2. 北京化工大學(xué)環(huán)境科學(xué)與工程系,北京 100029)

        為提高甘蔗葉厭氧消化的產(chǎn)甲烷性能,采用NaOH對(duì)粉碎后的甘蔗葉進(jìn)行了預(yù)處理,得到了不同NaOH濃度、不同預(yù)處理時(shí)間條件下甘蔗葉厭氧消化的甲烷產(chǎn)率,并研究比較了預(yù)處理前后甘蔗葉微觀物理形態(tài)、化學(xué)分子結(jié)構(gòu)和化學(xué)組分的變化。結(jié)果表明:與未預(yù)處理甘蔗葉相比,NaOH預(yù)處理甘蔗葉的累計(jì)產(chǎn)甲烷量提高了22.02%~89.94%,厭氧消化時(shí)間80縮短了2~4 d,其中6%NaOH-5d預(yù)處理甘蔗葉的產(chǎn)甲烷性能最好;NaOH破壞了甘蔗葉表面蠟質(zhì)層和細(xì)胞壁結(jié)構(gòu),促進(jìn)了甘蔗葉表面二氧化硅、木質(zhì)素等分解,打破了對(duì)纖維素的束縛;預(yù)處理后甘蔗葉的木質(zhì)纖維素結(jié)構(gòu)發(fā)生明顯變化,其中木質(zhì)素的羥基、甲氧基和羰基等部分官能團(tuán)發(fā)生不同程度斷裂,緊致的大分子結(jié)構(gòu)發(fā)生分解,纖維素的結(jié)晶度降低,部分氫鍵遭到破壞,半纖維素發(fā)生了分子間和分子內(nèi)的降解;預(yù)處理甘蔗葉的木質(zhì)纖維素含量均有不同程度的降低,可被微生物分解利用的有機(jī)物質(zhì)增多,其中6%NaOH-5d預(yù)處理甘蔗葉厭氧消化的木質(zhì)素、纖維素、半纖維素降解率分別提高了9.27%、25.14%和21.52%。因此NaOH預(yù)處理是一種提高甘蔗葉厭氧消化產(chǎn)甲烷性能的有效方法。

        廢棄物;發(fā)酵;沼氣;甘蔗葉;NaOH預(yù)處理;機(jī)理分析

        0 引 言

        甘蔗是重要的能源和糖料作物,在世界農(nóng)業(yè)經(jīng)濟(jì)中占有重要地位,在中國(guó)常年糖料種植面積中占比高達(dá)85%以上[1]。據(jù)中國(guó)統(tǒng)計(jì)年鑒,2017年中國(guó)糖料作物的播種面積為154.6萬(wàn)hm2,其中甘蔗播種面積為137.1萬(wàn)hm2,總產(chǎn)量10 440.4萬(wàn)t,主要集中在廣東、廣西、云南、海南等省區(qū),每年產(chǎn)生的甘蔗葉高達(dá)3 600萬(wàn)t[2]。甘蔗葉主要由纖維素類物質(zhì)、蛋白質(zhì)、果膠和礦物質(zhì)元素等成分組成,是厭氧消化生產(chǎn)沼氣的一種良好原料[3]。但是由于其中纖維素類物質(zhì)含量占比約為總干物質(zhì)質(zhì)量的70%~75%,直接進(jìn)行厭氧消化易出現(xiàn)啟動(dòng)時(shí)間長(zhǎng)、轉(zhuǎn)化效率低、生物降解率低等問(wèn)題[4]。因此,需要對(duì)甘蔗葉進(jìn)行適當(dāng)?shù)念A(yù)處理。

        堿法預(yù)處理是提高甘蔗葉等秸稈類物料的產(chǎn)沼氣效率的一種有效手段,它通過(guò)堿液的作用來(lái)破壞半纖維素和纖維素之間的氫鍵,并利用皂化反應(yīng)水解木質(zhì)素和半纖維素之間的酯鍵,降低纖維素的結(jié)晶度,從而提高物料的生物轉(zhuǎn)化率。由于堿法預(yù)處理可在常壓室溫條件下進(jìn)行,對(duì)溫度和壓力要求較低,因此應(yīng)用較為廣泛。常用的堿有NaOH、KOH、Ca(OH)2和氨水[5-6],部分學(xué)者對(duì)玉米秸稈、水稻秸稈、小麥秸稈、高粱秸稈、蘆竹等[7-10]的堿法預(yù)處理效果進(jìn)行了研究。與其他化學(xué)預(yù)處理方法相比,NaOH預(yù)處理對(duì)秸稈的物理結(jié)構(gòu)和化學(xué)結(jié)構(gòu)破壞程度更大、糖損失更少[11],因此相關(guān)研究更多。楊立等[12]采用不同濃度NaOH對(duì)水稻秸稈進(jìn)行預(yù)處理,結(jié)果表明6%NaOH處理效果最好,沼氣產(chǎn)量比未預(yù)處理水稻秸稈高出110%。De Vrije等[13]在70 ℃條件下用NaOH處理秸稈,發(fā)現(xiàn)木質(zhì)素和半纖維素的去除率分別達(dá)到76%和43%。Sarnbusiti等[14]發(fā)現(xiàn)在55 ℃條件下使用10%NaOH對(duì)青貯高粱飼料預(yù)處理12 h后,其厭氧消化的甲烷產(chǎn)量比對(duì)照組提高了19%。Zhu等[15]采用4種濃度NaOH對(duì)玉米秸稈進(jìn)行預(yù)處理,結(jié)果表明5%NaOH處理的沼氣產(chǎn)量達(dá)到372.4 L/kg,比對(duì)照組提高了37%。

        甘蔗葉等秸稈類生物質(zhì)的碳氮比高、含有大量木質(zhì)纖維素等難降解物質(zhì),且表面覆有蠟質(zhì)層,厭氧消化時(shí)降解難度大、發(fā)酵時(shí)間長(zhǎng)、產(chǎn)甲烷量較低。前期研究結(jié)果表明,經(jīng)NaOH預(yù)處理后,甘蔗葉的甲烷產(chǎn)率提高、消化時(shí)間縮短,厭氧消化性能明顯改善[16],但預(yù)處理的內(nèi)在作用機(jī)理尚不清楚。因此,本文采用掃描電鏡、傅立葉變換紅外光譜等現(xiàn)代測(cè)試分析手段,從多視角分析研究NaOH預(yù)處理前后甘蔗葉的物理結(jié)構(gòu)、化學(xué)組分以及化學(xué)結(jié)構(gòu)等的變化,探索這些變化對(duì)提高生物可降解性、甲烷產(chǎn)量等的影響,為進(jìn)一步優(yōu)化預(yù)處理方法、開發(fā)工程化應(yīng)用技術(shù)提供理論依據(jù)。

        1 材料與方法

        1.1 試驗(yàn)材料

        試驗(yàn)原料為甘蔗葉,取自廣東省茂名市電白區(qū),自然條件下風(fēng)干后用粉碎機(jī)粉碎至粒徑1 cm以下,于陰涼通風(fēng)處備用;接種用活性污泥取自農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計(jì)研究院沼氣實(shí)驗(yàn)室長(zhǎng)期運(yùn)行的厭氧消化器。試驗(yàn)物料特性見(jiàn)表1。

        表1 物料特性表

        注:a基于干物質(zhì);NDb表示未測(cè)定

        Note:adry basis; NDbmeans not determined

        1.2 試驗(yàn)方法

        1.2.1 NaOH預(yù)處理

        將質(zhì)量分?jǐn)?shù)為2%、4%、6%、8%的NaOH(相對(duì)于甘蔗葉干物質(zhì)質(zhì)量)分別添加到甘蔗葉中,用去離子水將物料含固率調(diào)至約12%,充分?jǐn)嚢枋顾懈收崛~均受到NaOH溶液的潤(rùn)濕,之后將混合物放入廣口瓶?jī)?nèi),密封并置于25 ℃的恒溫培養(yǎng)箱,每個(gè)處理設(shè)置3個(gè)重復(fù)。每隔8 h對(duì)甘蔗葉進(jìn)行攪拌。在第3天、5天和7天時(shí)各取出一個(gè)不同NaOH濃度處理的廣口瓶并打開密封膜,使用果汁壓榨器對(duì)其進(jìn)行固液分離,將固體部分干燥后再次粉碎得到試驗(yàn)用預(yù)處理甘蔗葉。設(shè)置采用去離子水對(duì)甘蔗葉進(jìn)行處理的對(duì)照組,記為CK。

        1.2.2 批式厭氧消化試驗(yàn)

        測(cè)定中溫條件下不同預(yù)處理甘蔗葉的產(chǎn)甲烷性能。每個(gè)發(fā)酵瓶?jī)?nèi)放入甘蔗葉17.5 g(干物質(zhì))和接種污泥100 g(濕質(zhì)量),添加去離子水使混合物的有機(jī)負(fù)荷為60 g/L左右。采用排飽和食鹽水法測(cè)定沼氣產(chǎn)量。試驗(yàn)時(shí),在發(fā)酵瓶?jī)?nèi)裝入一定量的原料和接種物,用氮?dú)獯祾叻磻?yīng)裝置3 min以驅(qū)除瓶子上部氣室中剩余的空氣,保證初始的厭氧環(huán)境。將發(fā)酵瓶密封并放置在(35±1 ℃)恒溫水浴鍋中,以保證厭氧消化所需溫度。每天定時(shí)記錄沼氣產(chǎn)量,并使用氣相色譜儀測(cè)定沼氣中甲烷含量。每天搖晃厭氧發(fā)酵瓶1次。設(shè)置只添加接種污泥的空白組,以下試驗(yàn)結(jié)果均為扣除空白組甲烷產(chǎn)量后的結(jié)果。每組試驗(yàn)設(shè)置3個(gè)平行。

        1.2.3 分析測(cè)試方法

        1)物理形貌分析

        采用S4800型冷場(chǎng)發(fā)射掃描電子顯微鏡(日本Hitachi公司)對(duì)預(yù)處理前后甘蔗葉的表面進(jìn)行掃描分析和能譜分析,觀察樣品表面的微觀形貌變化。

        2)傅立葉變換紅外光譜分析

        采用壓片法,利用傅立葉變換紅外光譜儀(spectrum 400型,美國(guó)PE公司)對(duì)預(yù)處理前后的甘蔗葉進(jìn)行化學(xué)結(jié)構(gòu)變化分析。甘蔗葉樣品經(jīng)充分干燥后進(jìn)行粉碎,過(guò)0.425 mm孔徑篩后使用。

        3)主要組分含量變化分析

        主要測(cè)定纖維素、半纖維素和木質(zhì)素等木質(zhì)纖維素含量的變化,使用纖維素分析儀(FT350,丹麥FOSS分析儀器公司)測(cè)定,采用的測(cè)定方法為Van Soest法[17]。按照GB/T 2677.4—1993測(cè)定水抽出物含量,按照GB/T 2677.5—1993測(cè)定NaOH抽出物含量。

        4)其他指標(biāo)測(cè)試

        原料的總固體(total solid,TS)與揮發(fā)性固體(volatile solid,VS)采用質(zhì)量法測(cè)定,其中樣品烘干與灼燒使用的儀器為分析天平(BSA223S-CW,賽多利斯,德國(guó))、電熱恒溫鼓風(fēng)干燥箱(DGG-9240B,上海森信)與高效節(jié)能快速升溫馬弗爐(2200型,北京華北)。日產(chǎn)沼氣量和累積產(chǎn)氣量利用排飽和食鹽水法測(cè)定。沼氣中甲烷含量采用氣相色譜分析(6890N,Agilent,美國(guó))。總碳和總氮含量采用元素分析儀分析(Vario EL Cube,Elementar Inc.,德國(guó))。

        2 結(jié)果與分析

        2.1 NaOH預(yù)處理對(duì)甘蔗葉厭氧消化性能的影響

        2.1.1 日產(chǎn)甲烷量與累計(jì)產(chǎn)甲烷量

        未預(yù)處理及不同NaOH預(yù)處理甘蔗葉厭氧消化的日產(chǎn)甲烷量變化曲線如圖1所示。各組甘蔗葉的日產(chǎn)甲烷量變化曲線大致相同,均具有2個(gè)較為明顯的產(chǎn)甲烷高峰,第1個(gè)峰值出現(xiàn)在7~8 d,第2峰值約為第12天,20 d后日產(chǎn)甲烷量低于50 mL。這可能是由于水解產(chǎn)酸菌經(jīng)過(guò)短暫的時(shí)間適應(yīng)后,迅速生長(zhǎng)繁殖,并不斷將甘蔗葉中的纖維素、半纖維素等物質(zhì)分解轉(zhuǎn)化,產(chǎn)生乙酸、丙酸、丁酸等簡(jiǎn)單的物質(zhì)以及二氧化碳、氫氣等氣體,產(chǎn)甲烷菌則利用這些簡(jiǎn)單的物質(zhì)代謝產(chǎn)生甲烷。由于甘蔗葉中的有機(jī)物成分復(fù)雜、降解難易程度不同,易于酸化水解的物質(zhì)被消耗完后,相對(duì)較難降解的有機(jī)物才開始被逐漸分解,表現(xiàn)為日產(chǎn)甲烷量出現(xiàn)較大幅度下降;隨著難降解有機(jī)物不斷被轉(zhuǎn)化利用,日產(chǎn)甲烷量有所回升;當(dāng)能夠被降解的有機(jī)物基本被降解完后,日產(chǎn)甲烷量大幅降低。與未預(yù)處理甘蔗葉相比,NaOH預(yù)處理甘蔗葉的日產(chǎn)甲烷峰值提前了4~5 d,且數(shù)值提高了27.81%~157.64%(未預(yù)處理甘蔗葉日產(chǎn)甲烷量為152.25 mL/d),其中6%NaOH-5d預(yù)處理甘蔗葉的日產(chǎn)甲烷最大值最高,達(dá)到328.50 mL/d。說(shuō)明經(jīng)預(yù)處理后甘蔗葉中可被厭氧微生物分解利用的有機(jī)成分增多,產(chǎn)甲烷性能提高。

        a. 2%NaOHb. 4%NaOHc. 6%NaOHd. 8%NaOH

        注:甘蔗葉17.5 g(干物質(zhì))和接種污泥100 g(濕質(zhì)量)。

        Note: The dry mass of sugarcane leaves is 17.5 g, and the wet mass of inoculated sludge is 100 g.

        圖1 不同NaOH預(yù)處理甘蔗葉的日產(chǎn)甲烷量

        Fig. 1 Daily methane yield of sugarcane leaves (SL) with different NaOH pretreatment

        各組物料的累積產(chǎn)甲烷量變化如表2所示,可以看出預(yù)處理甘蔗葉的累積產(chǎn)甲烷量明顯高于未預(yù)處理甘蔗葉,其中6%NaOH-5d處理的累積產(chǎn)甲烷量最高(2 696.33 mL),其次是4%NaOH-7d和6%NaOH-7d,其值分別為2 364.19和2 320.91 mL,分別比未預(yù)處理甘蔗葉(1 423.20 mL)提高了89.94%、66.12%和63.15%。

        表2 不同NaOH預(yù)處理甘蔗葉的厭氧消化時(shí)間與甲烷產(chǎn)率

        注:50、80、90分別表示甘蔗葉在一個(gè)厭氧消化周期內(nèi)達(dá)到累積產(chǎn)甲烷量的50%、80%和90%所需的時(shí)間。

        Note:50,80and90are the time needed to produce 50%, 80% and 90% of the maximum methane production in anaerobic digestion respectively.

        2.1.2 厭氧消化時(shí)間與甲烷產(chǎn)率

        厭氧消化底物的消化時(shí)間是反映厭氧消化效率的較為直觀的指標(biāo)之一,對(duì)實(shí)際沼氣工程運(yùn)營(yíng)具有重要的指導(dǎo)意義[5]。根據(jù)甘蔗葉的累積產(chǎn)甲烷量計(jì)算出50%、80%和90%累積產(chǎn)甲烷量的數(shù)值,以及相應(yīng)的厭氧消化時(shí)間(分別用50、80、90表示),如表2所示。與未預(yù)處理甘蔗葉相比,預(yù)處理甘蔗葉在反應(yīng)各階段的消化時(shí)間均有所縮短,其中50縮短了3~4 d,80縮短2~4 d,90縮短3~5 d;累積產(chǎn)甲烷量提高了18.76%~87.95%。根據(jù)累積產(chǎn)甲烷量計(jì)算得到單位干物質(zhì)產(chǎn)甲烷量(即甲烷產(chǎn)率,見(jiàn)表2)。甲烷產(chǎn)率反映了物料的生物可降解性和轉(zhuǎn)化率,是衡量物料生物可降解性和轉(zhuǎn)化率的一個(gè)重要參數(shù)[18-19]。各組甘蔗葉的甲烷產(chǎn)率與累積產(chǎn)甲烷量大小趨勢(shì)一致,其中6%NaOH-5d的甲烷產(chǎn)率最高(154.08 mL/g),比未預(yù)處理甘蔗葉(81.33 mL/g)提高了89.45%。

        由此可見(jiàn),經(jīng)NaOH預(yù)處理后,甘蔗葉的厭氧消化時(shí)間縮短,累積產(chǎn)甲烷量、甲烷產(chǎn)率均大幅增加,說(shuō)明NaOH預(yù)處理可以加快甘蔗葉的產(chǎn)沼氣速率,提高可生物降解性能和物質(zhì)轉(zhuǎn)化率。該技術(shù)如果應(yīng)用到實(shí)際工程中,可以減少物料在厭氧反應(yīng)器中的停留時(shí)間,生產(chǎn)出更多甲烷,從而降低成本、提高工程運(yùn)行效率和效益。綜合考慮日產(chǎn)甲烷量、厭氧消化時(shí)間、甲烷產(chǎn)率等指標(biāo),12組預(yù)處理甘蔗葉中6%NaOH-5d的厭氧消化性能最優(yōu)。

        2.2 預(yù)處理甘蔗葉微觀物理形態(tài)變化

        2.2.1 微觀表面形貌

        掃描電鏡(scanning electron microscope,SEM)是用來(lái)觀察物料物理結(jié)構(gòu)變化的有效方法之一[20]。為深入探究NaOH預(yù)處理甘蔗葉產(chǎn)甲烷量大幅增加的原因,對(duì)預(yù)處理前后甘蔗葉進(jìn)行SEM分析,結(jié)果如圖2所示。圖 2a為未經(jīng)處理的甘蔗葉(CK),圖2b~m為NaOH預(yù)處理甘蔗葉。從圖中可以看出未預(yù)處理甘蔗葉的表面比較規(guī)則、平整光滑,結(jié)構(gòu)致密無(wú)損傷;經(jīng)NaOH預(yù)處理后,甘蔗葉的表面變得粗糙,原有的平整表面和致密結(jié)構(gòu)被破壞,出現(xiàn)了一些裂紋、裂片和溝槽,呈現(xiàn)出多孔結(jié)構(gòu),碎片化嚴(yán)重。隨著NaOH濃度的增大和預(yù)處理時(shí)間的增加,甘蔗葉結(jié)構(gòu)被破壞的程度越大,這表明甘蔗葉與NaOH發(fā)生了化學(xué)反應(yīng),表面蠟質(zhì)層被破壞或降解,木質(zhì)素、半纖維素對(duì)纖維素的包裹和束縛被打破,這些物理結(jié)構(gòu)的變化可以有效改善厭氧消化性能[21],如粗糙的表面有利于生物膜附著生長(zhǎng),厭氧微生物與纖維素的接觸面積更大,可供轉(zhuǎn)化利用的有機(jī)物質(zhì)增多[22],進(jìn)而提高甲烷產(chǎn)量。

        圖2 未預(yù)處理與預(yù)處理甘蔗葉的掃描電鏡照片

        2.2.2 表面元素分析

        利用SEM對(duì)甘蔗葉表面元素進(jìn)行分析,比較預(yù)處理前后甘蔗葉纖維表面的C、O、Na、Si等主要元素含量及O/C值,結(jié)果如圖3所示。甘蔗葉等秸稈類物料的外表面通常由木質(zhì)素或再沉積的木質(zhì)素、二氧化硅、非纖維素等組成[23]。NaOH預(yù)處理甘蔗葉纖維主要受到木質(zhì)素的干擾而重新沉積,而未處理甘蔗葉則被單細(xì)胞束和木質(zhì)素強(qiáng)烈地結(jié)合在一起。未預(yù)處理甘蔗葉的外表面不含Na元素,預(yù)處理甘蔗葉隨著NaOH濃度的增加,表面的C和Si元素含量呈現(xiàn)出明顯降低趨勢(shì),O和Na元素含量分別呈現(xiàn)出略有增加、大幅增加的趨勢(shì)。由圖3可知,甘蔗葉的O/C值隨著NaOH濃度和預(yù)處理時(shí)間的增加,大致呈線性增加趨勢(shì),由0.85增加至0.92~1.94,由于植物纖維的外表面主要由烷烴、高級(jí)脂肪醇及其形成的酯、蠟等物質(zhì)組成,這些物質(zhì)中的C元素含量較高,而纖維素、木質(zhì)素等結(jié)構(gòu)中的O元素含量相對(duì)較高,說(shuō)明在NaOH作用下,甘蔗葉外表面遭到破壞,纖維素等結(jié)構(gòu)被暴露出來(lái),NaOH預(yù)處理促進(jìn)了甘蔗葉表面二氧化硅、木質(zhì)素以及其他元素的分解,更有利于促進(jìn)微生物的滲透以及加快纖維素養(yǎng)分的消耗[24]。

        Note: CK, control; P1, 2%NaOH-3d; P2, 2%NaOH-5d; P3, 2%NaOH-7d; P4, 4%NaOH-3d; P5, 4%NaOH-5d; P6, 4%NaOH-7d; P7, 6%NaOH-3d; P8, 6%NaOH-5d; P9, 6%NaOH-7d; P10, 8%NaOH-3d; P11, 8%NaOH-5d; P12, 8%NaOH-7d. Same as below.

        2.3 預(yù)處理甘蔗葉化學(xué)分子結(jié)構(gòu)變化

        2.3.1 甘蔗葉化學(xué)結(jié)構(gòu)變化

        圖4為未預(yù)處理及不同NaOH預(yù)處理甘蔗葉的傅立葉變換紅外光譜圖,顯示了從波數(shù)400 到4 000 cm ̄1之間的變化曲線??梢钥闯觯A(yù)處理前后甘蔗葉的紅外光譜特征吸收峰形狀大致相同,都具有4個(gè)明顯的特征吸收峰,包括:3 288 cm ̄1附近強(qiáng)而寬的羧基中OH伸縮振動(dòng)吸收峰,是木質(zhì)素紅外光譜的可觀測(cè)特性吸收峰[25];2 917 cm ̄1附近強(qiáng)而窄的峰,是CH2的不對(duì)稱伸縮振動(dòng)吸收峰;2 848 cm ̄1附近較強(qiáng)而窄的峰,是CH2的對(duì)稱伸縮振動(dòng)吸收峰[26];1 030 cm ̄1附近強(qiáng)而較寬的峰,是典型多糖物質(zhì)的吸收峰。這說(shuō)明經(jīng)NaOH預(yù)處理后,甘蔗葉的主體結(jié)構(gòu)沒(méi)有發(fā)生大的改變,但內(nèi)部木質(zhì)纖維素化學(xué)結(jié)構(gòu)發(fā)生了變化,表現(xiàn)為某些特征吸收峰強(qiáng)度減弱或增強(qiáng),包括3種類型:1)官能團(tuán)消失,如未預(yù)處理甘蔗葉在波數(shù)為1 731 cm ̄1附近有一個(gè)表示酯鍵、酚鍵的吸收以及非共軛羰基或羧基中的C=O鍵伸縮振動(dòng)的吸收峰[27-29],當(dāng)NaOH添加量較高(≥6%)及預(yù)處理時(shí)間較長(zhǎng)(≥5 d)時(shí),光譜圖上不再有該吸收峰,這是由于在NaOH作用下木質(zhì)素發(fā)生溶解,木質(zhì)素和半纖維素等物質(zhì)之間的酯鍵遭到破壞,官能團(tuán)被分解[30]。2)官能團(tuán)減弱或減少,如波數(shù)2 920 cm ̄1附近表示纖維素分子中亞甲基伸縮振動(dòng)的吸收峰,隨著NaOH添加量的增大,尤其是增加至4%及以上時(shí)官能團(tuán)的減弱更為明顯,這是由于纖維素中有一部分甲基和亞甲基在NaOH的作用下發(fā)生斷裂,大分子結(jié)構(gòu)被破壞,導(dǎo)致官能團(tuán)的吸收強(qiáng)度減弱[31];預(yù)處理甘蔗葉波數(shù)3 300 cm ̄1附近的羥基OH 伸縮振動(dòng)減弱,說(shuō)明纖維素內(nèi)的部分氫鍵被破壞。3)出現(xiàn)新的官能團(tuán),如預(yù)處理甘蔗葉波數(shù)1 250 cm ̄1附近表征芳環(huán)伸縮振動(dòng)的吸收峰,波數(shù)1 200 cm ̄1附近表征酯類的C-O-C不對(duì)稱伸縮振動(dòng)的吸收峰,波數(shù)838 cm ̄1附近表征C-H面外彎曲振動(dòng)的吸收峰,波數(shù)700 cm ̄1附近表征O-H的面外彎曲伸縮振動(dòng)的吸收峰等。這表明NaOH在一定程度上破壞了甘蔗葉的木質(zhì)纖維素結(jié)構(gòu),促使其溶解,亞甲基、酯鍵、甲氧基、羥基等官能團(tuán)發(fā)生斷裂,芳構(gòu)化成分和取代芳香結(jié)構(gòu)增加[32]。

        圖4 NaOH預(yù)處理甘蔗葉的FTIR光譜圖

        由此可見(jiàn),NaOH預(yù)處理使甘蔗葉的化學(xué)結(jié)構(gòu)發(fā)生明顯變化,破壞了木質(zhì)纖維素中的酯鍵、醚鍵等化學(xué)鍵,部分降解脂肪族化合物和碳水化合物。這種化學(xué)鍵的斷裂和化學(xué)成分的降解有利于增加厭氧微生物的可及度,提高甘蔗葉的生物降解率和厭氧消化性能。

        2.3.2 甘蔗葉結(jié)晶度變化

        甘蔗葉中的木質(zhì)纖維素具有結(jié)晶結(jié)構(gòu)和無(wú)定形結(jié)構(gòu),對(duì)纖維素水解效率有很大影響。紅外光譜中波數(shù)2 900、1 430、1 375和900 cm ̄1是與結(jié)晶區(qū)和無(wú)定形區(qū)密切相關(guān)的特征峰,根據(jù)光譜的吸收率可以計(jì)算出甘蔗葉的纖維素結(jié)晶度指數(shù)(crystallinity index,CI)和總結(jié)晶度指數(shù)(total crystallinity index,TCI),其中CI由A1430/A898計(jì)算得出,TCI由A1375/A2900計(jì)算得出[33]。由此計(jì)算得到各組物料的CI和TCI變化趨勢(shì)如圖5所示。

        注:CI、TCI分別為纖維素結(jié)晶度指數(shù)和總結(jié)晶度指數(shù)。

        未預(yù)處理甘蔗葉的CI和TCI分別為0.88和0.94。預(yù)處理后甘蔗葉的CI和TCI提高,且隨著NaOH濃度的增加大致呈先升高后降低趨勢(shì),其中CI值為0.93~1.03,TCI值為0.97~1.19。這是由于NaOH滲透到甘蔗葉的無(wú)定形區(qū),造成了無(wú)定形區(qū)中半纖維素和木質(zhì)素的溶解,改變了甘蔗葉的結(jié)構(gòu),結(jié)晶區(qū)在纖維素中的占比提高,從而導(dǎo)致結(jié)晶度升高,Kian等[34]也得到了類似的結(jié)論。當(dāng)NaOH濃度增大到8%時(shí),進(jìn)一步對(duì)甘蔗葉的結(jié)晶區(qū)造成破壞,使得結(jié)晶度下降,這與鄭明霞等[35]的研究結(jié)果相符。

        2.4 預(yù)處理甘蔗葉主要組分含量變化

        2.4.1 木質(zhì)纖維素與抽出物含量變化

        分析纖維素、半纖維素和木質(zhì)素等木質(zhì)纖維素(lignin,cellulose,hemicellulose,簡(jiǎn)稱LCH)含量變化對(duì)研究甘蔗葉厭氧消化性能提高的原因具有重要的意義[36]。表3比較了NaOH預(yù)處理前后甘蔗葉的LCH含量變化。與未預(yù)處理甘蔗葉相比,NaOH預(yù)處理甘蔗葉的LCH含量均有不同程度的降低,其中纖維素、半纖維素和木質(zhì)素含量分別降低了4.65%~17.77%、8.21%~21.51%和3.04%~27.81%;水抽出物、1%NaOH抽出物含量均有不同程度的增加,其中冷水抽出物、熱水抽出物含量分別增加了87.0%~127.0%和98.0%~131.0%,1%NaOH抽出物含量增加了1.20%~17.00%,表明有相當(dāng)數(shù)量的LCH被降解,這可能是由于NaOH中的OH ̄破壞了纖維素與木質(zhì)素、半纖維素之間的連接,改變了LCH的天然結(jié)構(gòu),使其分離或分解[37]。NaOH預(yù)處理一方面打破了木質(zhì)素和半纖維素對(duì)纖維素的包裹與束縛,提高了厭氧微生物對(duì)纖維素的可及性,從而改善厭氧消化性能;另一方面,促進(jìn)了LCH的降解,使得可被微生物分解利用的有機(jī)物含量增加,在厭氧消化過(guò)程中被轉(zhuǎn)化產(chǎn)生更多甲烷[38]。從纖維素、半纖維素和木質(zhì)素的單項(xiàng)成分和三者的總含量來(lái)看,其值隨著NaOH濃度的增加而降低,說(shuō)明NaOH濃度越高,破壞作用越強(qiáng),越有利于去除甘蔗葉中的半纖維素和木質(zhì)素;但當(dāng)NaOH濃度過(guò)高時(shí),系統(tǒng)中Na+濃度和OH-濃度隨之升高,抑制厭氧菌群的生長(zhǎng)代謝,降低厭氧消化效率[39]。根據(jù)文獻(xiàn)[36]報(bào)道,可以使用木質(zhì)素與纖維素的比值(L/C)來(lái)評(píng)估底物的生物降解性,L/C越低,表明越容易生物降解。從表3可以看出,預(yù)處理后甘蔗葉的L/C值均有所降低,這表明在預(yù)處理過(guò)程中,由于去除木質(zhì)素而釋放的纖維素和半纖維素的量增加,可供厭氧微生物分解利用的底物更多,從而提高產(chǎn)甲烷性能。

        表3 NaOH預(yù)處理前后甘蔗葉的LCH和抽出物含量變化

        2.4.2 LCH厭氧消化降解率分析

        LCH厭氧消化降解率是指LCH在厭氧消化過(guò)程中減少的量與厭氧消化前LCH含量的比值(以百分?jǐn)?shù)計(jì)),反映了LCH在厭氧消化過(guò)程中被生物轉(zhuǎn)化的量,可按照如下公式進(jìn)行計(jì)算。

        式中為L(zhǎng)CH的厭氧消化降解率,%;為厭氧消化后LCH含量,%;為厭氧消化前LCH含量,%。

        測(cè)定未預(yù)處理及不同NaOH預(yù)處理甘蔗葉厭氧消化后的纖維素、半纖維素和木質(zhì)素含量,計(jì)算得出降解率如圖6所示。纖維素、半纖維素降解率分別為61.75%~77.27%和54.12%~65.92%,木質(zhì)素降解率為14.31%~16.82%。6%NaOH-5d甘蔗葉的LCH降解率最高,其中纖維素、半纖維素降解率分別為77.27%和65.77%,比未預(yù)處理甘蔗葉提高了25.14%和21.52%(<0.05);木質(zhì)素降解率相對(duì)較低(16.82%),提高了9.27%。由此可見(jiàn),纖維素和半纖維素在消化過(guò)程中比木質(zhì)素更容易被厭氧微生物分解轉(zhuǎn)化,LCH降解率是影響甘蔗葉甲烷產(chǎn)率的重要因素之一(見(jiàn)表2),提高降解率可以增加甲烷產(chǎn)率,與文獻(xiàn)[36,40]報(bào)道的結(jié)論一致。

        圖6 不同預(yù)處理甘蔗葉厭氧消化的LCH降解率

        3 結(jié) 論

        本研究對(duì)不同NaOH預(yù)處理?xiàng)l件下甘蔗葉的厭氧消化產(chǎn)甲烷性能及化學(xué)作用機(jī)理進(jìn)行了分析研究,得到如下結(jié)論:

        1)與未預(yù)處理甘蔗葉相比,NaOH預(yù)處理甘蔗葉中溫厭氧消化的累計(jì)甲烷產(chǎn)量提高了22.02%~89.94%,厭氧消化時(shí)間80縮短了2~4 d。其中6%NaOH-5d處理效果最好,最高日產(chǎn)甲烷量為328.50 mL/d,單位總固體甲烷產(chǎn)率達(dá)到154.08 mL/g。

        2)甘蔗葉經(jīng)NaOH預(yù)處理后表面蠟質(zhì)層和細(xì)胞壁結(jié)構(gòu)遭到破壞,致密的結(jié)構(gòu)變得蓬松碎裂,纖維素和半纖維素被暴露出來(lái),比表面積增大,纖維表面 C、Si、O、Na等元素含量發(fā)生變化,木質(zhì)素等發(fā)生分解,厭氧微生物對(duì)纖維素的可及度增加。

        3)預(yù)處理甘蔗葉的木質(zhì)纖維素結(jié)構(gòu)發(fā)生明顯變化,其中木質(zhì)素的羥基、甲氧基和羰基等部分官能團(tuán)發(fā)生不同程度斷裂,緊致的大分子結(jié)構(gòu)發(fā)生分解,纖維素的部分氫鍵遭到破壞,連接鍵發(fā)生斷裂,半纖維素發(fā)生了分子間和分子內(nèi)的降解。

        4)從化學(xué)組分來(lái)看,預(yù)處理甘蔗葉的半纖維素和木質(zhì)素含量大幅降低,水抽出物、1%NaOH抽出物等可被微生物分解利用的有機(jī)物質(zhì)增多,厭氧消化降解率和甲烷產(chǎn)率均顯著提高(<0.05)。其中,6%NaOH-5d處理的纖維素、半纖維素降解率比未預(yù)處理樣品分別提高了25.14%和21.52%。

        [1] 董學(xué)虎,李榮,李官保,等. 國(guó)內(nèi)外甘蔗中耕施肥機(jī)現(xiàn)狀與發(fā)展趨勢(shì)[J]. 農(nóng)業(yè)機(jī)械月刊,2016(10):143-145. Dong Xuehu, Li Rong, Li Guanbao, et al. Current situation and development trend of sugarcane cultivator at home and abroad[J]. Farm Machinery, 2016(10): 143-145. (in Chinese with English abstract)

        [2] 杜嵇華,張勁,公譜,等. 主要熱帶作物田間廢棄物的飼料化技術(shù)應(yīng)用現(xiàn)狀及展望[J]. 中國(guó)熱帶農(nóng)業(yè),2013(6):33-36. Du Jihua, Zhang Jing, Gong Pu, et al. Application status and prospect of feed technology for main tropical crops[J]. China Tropical Agriculture, 2013(6): 33-36. (in Chinese with English abstract)

        [3] 羅娟,趙立欣,姚宗路,等. 甘蔗葉與豬糞、牛糞混合厭氧消化工藝參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(5):212-218. Luo Juan, Zhao Lixin, Yao Zonglu, et al. Parameter optimization in anaerobic co-digestion of NaOH pretreated sugarcane leaves and pig manure-dairy manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(5): 212-218. (in Chinese with English abstract)

        [4] Stefan H, Nadja S J, Frank L, et al. Improving anaerobic sigestion of wheat straw by plasma-assisted pretreatment[J]. Journal of Atomic and Molecular Physics, 2013, 27(3): 1-7.

        [5] Luo J, Meng H B, Yao Z L, et al. Anaerobic co-digestion of sodium hydroxide pretreated sugarcane leaves with pig manure and dairy manure[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(4): 224-229.

        [6] Chen M, Zhao J, Xia L M. Comparison of four different chemical pretreatments of corn stover for enhancing enzymatic digestibility[J]. Biomass & Bioenergy, 2009, 33(10): 1381-1385.

        [7] Cheng Y S, Zheng Y, Yu C W, et al. Evaluation of high solids alkaline pretreatment of rice straw[J]. Applied Biochemistry & Biotechnology, 2010, 162(6): 1768

        [8] Mcintosh S, Vancov T. Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment[J]. Bioresource Technology, 2010, 101(17): 6718-6727.

        [9] Grigatti M, Montecchio D, Francioso O, et al. Structural and thermal investigation of three agricultural biomasses following mild-NaOH pretreatment to increase anaerobic biodegradability[J]. Waste & Biomass Valorization, 2015, 6(6): 1135-1148.

        [10] Wei Y F, Li X J, Yu L, et al. Mesophilic anaerobic co-digestion of cattle manure and corn stover with biological and chemical pretreatment[J]. Bioresource Technology, 2015, 198: 431-436.

        [11] Gaspar M, Reczey K K. Corn fiber as a raw material for hemicellulose and ethanol production[J]. Process Biochemistry, 2007, 42(7): 1135-1139.

        [12] 楊立,張婷,龔乃超,等. 稀堿法預(yù)處理對(duì)秸稈厭氧發(fā)酵產(chǎn)氣的影響研究[J]. 安徽農(nóng)業(yè)科學(xué),39(15):9165-9166. Yang Li, Zhang Ting, Gong Naichao, et al. Effect of alkali pretreatment on the biogas production in the anaerobic fermentation of stalk[J]. Journal of Anhui Agricultural Sciences, 2011, 39(15): 9165-9166. (in Chinese with English abstract)

        [13] De Vrije T D, De Haas G G, TAN G B, et al. Pretreatment of miscanthus for hydrogen production by[J]. International Journal of Hydrogen Energy, 2002, 27(11): 1381-1390.

        [14] Sambusiti C, Ficara E, Malpei F, et al. Influence of alkaline pre-treatment conditions on structural features and methane production from ensiled sorghum forage[J]. Chemical Engineering Journal, 2012, 211/212: 488-492.

        [15] Zhu J, Wan C, Li Y. Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment[J]. Bioresource Technology, 2010, 101(19): 7523-7528.

        [16] 羅娟,李秀金,袁海榮. 不同預(yù)處理對(duì)甘蔗葉厭氧消化性能的影響[J]. 中國(guó)沼氣,2016,34(1):32-36. Luo Juan, Li Xiujin, Yuan Hairong. Effect of different pretreatment on anaerobic digestion performance of sugarcane leaves[J]. China Biogas, 2016, 34(1):32-36. (in Chinese with English abstract)

        [17] Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition[J]. Journal of Dairy Science, 1991, 74(10): 3583-359.

        [18] 馬旭光,江滔,唐瓊,等. 油菜秸稈和雞糞比例及含固率對(duì)其發(fā)酵產(chǎn)甲烷特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(12):236-244. Ma Xuguang, Jiang Tao, Tang Qiong, et al. Effect of total solid content on biogas production from rape stalk and chicken manure with different mixing ratios[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(12): 236-244. (in Chinese with English abstract)

        [19] 勒系意,黃運(yùn)紅,任雨涵,等. 梯度有機(jī)負(fù)荷下農(nóng)業(yè)廢棄物厭氧發(fā)酵特性及微生物群落[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(17):239-247. Le Xiyi, Huang Yunhong, Ren Yuhan, et al. Anaerobic digestion characteristics and microbial structure of agricultural wastes under gradient organic loadings[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(17): 239-247. (in Chinese with English abstract)

        [20] Xu Z, Wang Q H, Jiang Z H, et al. Enzymatic hydrolysis of pretreated soybean straw[J]. Biomass Bioenergy, 2007, 31: 162-167.

        [21] Jaffar M, Pang Y Z, Yuan H R, et al. Wheat straw pretreatment with KOH for enhancing biomethane production and fertilizer value in anaerobic digestion[J]. Chinese Journal of Chemical Engineering, 2016,24: 404-409.

        [22] Chen M, Zhao J, Xia L M. Comparison of four different chemical pretreatments of corn stover for enhancing enzymatic digestibility[J]. Biomass & Bioenergy, 2009, 33(10): 1381-1385.

        [23] Liu H P, Feng Y J, Wu S H, et al. The role of ash particles in the bed agglomeration during the fluidized bed combustion of rice straw[J]. Bioresource Technology, 2009, 100: 6505-6513.

        [24] Lu P, Hsieh Y-L. Highly pure amorphous silica nano-disks from rice straw[J]. Powder Technology, 2012, 225: 149-155.

        [25] Monteil-Rivera F, Phuong M, Ye M, et al. Isolation and characterization of herbaceous lignins for applications in biomaterials[J]. Industrial Crops & Products, 2013, 41(1): 356-364.

        [26] Boeriu C G, Bravo D, Gosselink R J, et al. Characterization of structure-dependent functional properties of lignin with infrared spectroscopy[J]. Industrial Crops & Products, 2004, 20(1): 205-218.

        [27] Jung H J G, Himmelsbach D S. Isolation and characterization of wheat straw lignin[J]. Journal of Agricultural and Food Chemistry, 1989, 37(1): 81-87.

        [28] Lawther J M, Sun R, Banks W B. Fractional characterization of wheat strawlignin components by alkaline nitrobenzene oxidation and FT-IR spectroscopy[J]. Journal of Agricultural and Food Chemistry, 1996, 44(5): 1241-1247.

        [29] Gao A H, Bule M V, Laskar D D, et al. Structural and thermal characterization of wheat straw pretreated with aqueous ammonia soaking[J]. Journal of Agricultural and Food Chemistry, 2012, 60(35): 8632-8639.

        [30] Sun R, Sun X F, Wang S Q, et al. Ester and ether linkages between hydroxycinnamic acids and lignins from wheat, rice, rye, and bar-ley straws, maize stems, and fast-growing poplar wood[J]. Industrial Crops & Products, 2001, 15(1): 179-188.

        [31] Gastaldi G, Capretti G, Focher B, et al. Characterization and proprieties of cellulose isolated from the Crambe abyssinica hull[J]. Industrial Crops and Products, 1998, 8(3): 205-218.

        [32] 黃丹蓮,曾光明,黃國(guó)和,等. 白腐菌固態(tài)發(fā)酵條件最優(yōu)化及其降解植物生物質(zhì)的研究[J]. 環(huán)境科學(xué)學(xué)報(bào),2005,25(2):232-237. Huang Danlian, Zeng Guangming, Huang Guohe, et al. Optimum conditions of solid-state fermentation for white-rot fungi and for it's degrading straw[J]. Acta Scientiae Circumstantiae, 2005, 25(2): 232-237. (in Chinese with English abstract)

        [33] Salehian P, Karimi K, Zilouei H, et al, Improvement of biogas production from pine wood by alkali pretreatment[J]. Fuel, 2013, 106: 484-489.

        [34] Kian L K, Jawaid M, Ariffin H, et al, Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose[J]. International Journal of Biological Macromolecules, 2018, 114: 54-63.

        [35] 鄭明霞,李來(lái)慶,鄭明月,等. 堿處理對(duì)玉米秸稈纖維素結(jié)構(gòu)的影響[J]. 環(huán)境科學(xué)與技術(shù),2012,35(6):27-31. Zheng Mingxia, Li Laiqing, Zheng Mingyue, et al. Effect of alkali pretreatment on cellulosic structural changes of corn stover[J]. Environmental Science & Technology, 2012, 35(6): 27-31. (in Chinese with English abstract)

        [36] Yuan H R, Li R P, Zhang Y T, et al. Anaerobic digestion of ammonia-pretreated corn stover[J]. Biosystems Engineering, 2015, 129: 142-148.

        [37] Shetty D J, Kshirsagar P, Tapadia Maheshwari S, et al. Alkali pretreatment at ambient temperature: A promising method to enhance biomethanation of rice straw[J]. Bioresource Technology, 2017, 226: 80-88.

        [38] 劉曉英. 小麥秸稈的預(yù)處理及高效能源轉(zhuǎn)化利用研究[D]. 北京:北京化工大學(xué),2015. Liu Xiaoying. Studu on Pretreatment Technology and Integranted Energy Utilization of Wheat Straw[D]. Beijing: Beijing University of Chemical Technology, 2015. (in Chinese with English abstract)

        [39] 陳羚,羅娟,董保成,等. 復(fù)合菌劑和NaOH 預(yù)處理提高秸稈厭氧消化性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(7):185-190. Chen Ling, Luo Juan, Dong Baocheng, et al. Pretreatment with composite microbe and NaOH to improve anaerobic performance of corn straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(7): 185-190. (in Chinese with English abstract)

        [40] Guan R L, Li X J, Wachemo A C, et al. Enhancing anaerobic digestion performance and degradation of lignocellulosic components of rice straw by combined biological and chemical pretreatment[J]. Science of the Total Environment, 2018, s637/638: 9-17.

        Improving methane production performance via NaOH pretreatment of sugarcane leaves and its mechanism analysis

        Luo Juan1,2, Zhao Lixin1, Meng Haibo1※, Li Xiujin2, Feng Jing1, Yuan Hairong2, Ren Yawei1, Yu Jiadong1, Huang Kaiming1

        (1,,100125,; 2.,,100029,)

        China is a country with a vast agricultural base and a large amount of tropical agricultural wastes including sugarcane leaves (SL). The annual yield of SL in China was as high as 36 million tons in 2017, while the utilization ratio was less than 20%. Significant quantity of SL remained unused and was burned in open fields causing serious environmental problems. Recently, the interest for the use of SL is mainly based on its chemical compositions, which have high carbohydrate content, in the form of cellulose and hemicelluloses (>70%), that can be used for bioenergy production. Anaerobic digestion (AD) of SL to produce biogas may offer a promising approach to SL utilization and mitigate air pollution. However, due to the cellulose and hemicellulose are densely packed by layers of lignin and they are protected from enzymatic hydrolysis, it is necessary to have a pretreatment step prior to biogas production in order to break lignin mesh and expose cellulose and hemicellulose for enzymatic action. NaOH pretreatment method was used to pretreat the crushed SL aimed to improve the methane production performance of SL in this paper. The methane production rate of AD (anaerobic digestion) of sugarcane leaves under different NaOH concentration and different pretreatment time was obtained. The change of micro-physical structure, chemical composition and chemical structure of SL before and after pretreatment were studied and compared, and the internal mechanism of NaOH pretreatment SL was revealed by means of modern analysis and testing, such as scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and so on. The results of the tests indicated that compared with unmodified SL, the cumulative methane production the NaOH modified SL increased by 22.02%-89.94%, and the anaerobic digestion time80shortened by 2-4 days. Among all these treatments, SL of 6% NaOH-5d had the best methane production performance. The maximum daily methane yield was 328.50 mL/d, and the methane yield reached 154.08 mL/g. After the NaOH pretreatment, the epicuticular wax and cell walls structure of SL were destroyed, the decomposition of silica and lignin in the surface of SL were promoted, and the bondage of cellulose was broken. The lignocellulose structure of NaOH modified SL changed obviously. Some functional groups of lignin, such as hydroxyl, methoxy and carbonyl groups, were broken down in varying degrees, the compact macromolecular structure was decomposed, the crystallinity of cellulose was reduced, parts of hydrogen bonds of cellulose were destroyed, and the intermolecular and intramolecular degradation of the hemicellulose took place. The lignocellulose content of NaOH modified SL decreased in varying degrees, and the amount of organic matter that could be decomposed and utilized by microorganisms increased. After AD, the degradation rates of lignin, cellulose and hemicellulose of 6% NaOH-5d increased by 9.27%, 25.14% and 21.52%, respectively. Therefore, NaOH pretreatment is an effective way to improve the methane production performance of SL.

        wastes; fermentation; biogas; sugarcane leaves; NaOH pretreatment; mechanism analysis

        羅 娟,趙立欣,孟海波,李秀金,馮 晶,袁海榮,任雅薇,于佳動(dòng),黃開明. NaOH預(yù)處理提高甘蔗葉產(chǎn)甲烷性能及其機(jī)理分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(24):262-270. doi:10.11975/j.issn.1002-6819.2019.24.031 http://www.tcsae.org

        Luo Juan, Zhao Lixin, Meng Haibo, Li Xiujin, Feng Jing, Yuan Hairong, Ren Yawei,Yu Jiadong, Huang Kaiming. Improving methane production performance via NaOH pretreatment of sugarcane leaves and its mechanism analysis[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 262-270. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.24.031 http://www.tcsae.org

        2019-08-19

        2019-11-28

        公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201503135)

        羅 娟,博士,高級(jí)工程師,主要研究方向?yàn)樯镔|(zhì)能源技術(shù)裝備與環(huán)境保護(hù)。Email:emimi2008@126.com

        孟海波,研究員,主要研究方向?yàn)檗r(nóng)村能源與農(nóng)業(yè)廢棄物資源化利用。Email:newmhb7209@163.com

        10.11975/j.issn.1002-6819.2019.24.031

        S216.4

        A

        1002-6819(2019)-24-0262-09

        欧美老熟妇欲乱高清视频| 末发育娇小性色xxxx| 亚洲国产欧美日韩欧美特级| 色五月丁香五月综合五月4438| 九九九精品成人免费视频小说| 欧美日韩在线观看免费| 亚洲欧美另类激情综合区| 日本一区二区精品88| 国产综合第一夜| 日本高清中文一区二区三区| 亚洲最大不卡av网站| 中文字幕av永久免费在线| 男女肉粗暴进来动态图| 在线成人一区二区| 国语少妇高潮对白在线| 中文乱码字幕高清在线观看| 国产一区二区三区免费小视频| 一区二区三区在线观看视频精品| 高级会所技师自拍视频在线| 色欲网天天无码av| 国产va在线观看免费| 婷婷开心深爱五月天播播| 国产欧美日韩不卡一区二区三区| 亚洲成av人片在线天堂无| 国产精品视频白浆免费视频| 亚洲国产精品久久久久久无码| 51久久国产露脸精品国产| 国产福利酱国产一区二区| 欧美在线观看www| 麻豆成人久久精品二区三区91| 嫩呦国产一区二区三区av| 日韩人妻一区二区三区蜜桃视频| 欧美粗大无套gay| 不卡国产视频| 亚洲图文一区二区三区四区 | 久久韩国漫画无删减漫画歪歪漫画| 亚洲国产欧美另类va在线观看| 人妻中文字幕在线一二区| 午夜时刻免费入口| 18成人片黄网站www| 亚洲aⅴ无码国精品中文字慕|