亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        長(zhǎng)期保護(hù)性耕作對(duì)稻田土壤團(tuán)聚體穩(wěn)定性和碳氮含量的影響

        2019-03-05 01:21:06祁劍英井震寰張海林

        王 興,祁劍英,井震寰,李 超,張海林

        長(zhǎng)期保護(hù)性耕作對(duì)稻田土壤團(tuán)聚體穩(wěn)定性和碳氮含量的影響

        王 興,祁劍英,井震寰,李 超,張海林※

        (中國(guó)農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,農(nóng)業(yè)農(nóng)村部農(nóng)作制度重點(diǎn)實(shí)驗(yàn)室,北京 100193)

        為研究雙季稻()土壤團(tuán)聚體穩(wěn)定性及C、N含量對(duì)耕作方式的響應(yīng),該研究利用已進(jìn)行12 a的包括翻耕+秸稈不還田(CT),翻耕+秸稈還田(CTS),旋耕+秸稈還田(RTS)和免耕+秸稈還田(NTS)的保護(hù)性耕作稻田定位試驗(yàn),運(yùn)用濕篩等方法測(cè)算了團(tuán)聚體的構(gòu)成與穩(wěn)定性,C、N含量及其對(duì)土壤總C、N的貢獻(xiàn)。結(jié)果表明:長(zhǎng)期秸稈還田顯著增加0~10 cm土層大團(tuán)聚體比重,弱化翻耕、旋耕和免耕等不同耕法對(duì)表層大團(tuán)聚體的差異化影響(>0.05),但5~30 cm土層大團(tuán)聚體隨耕作強(qiáng)度的減弱有所提高??傮w來(lái)看,稻田土壤團(tuán)聚體以>2 mm粒徑為主(占35.02%~64.44%),其C、N貢獻(xiàn)率分別達(dá)52.12%和52.16%;秸稈還田有利于微團(tuán)聚體向大團(tuán)聚體的轉(zhuǎn)化,外源C、N更多被大團(tuán)聚體固持和保護(hù)。NTS在0~20 cm的>2 mm團(tuán)聚體對(duì)土壤C、N的貢獻(xiàn)率顯著大于其他處理;土壤C、N含量與團(tuán)聚體穩(wěn)定性呈顯著正相關(guān)關(guān)系(<0.05)。相比于CTS與RTS,長(zhǎng)期采取NTS顯著改善土壤C、N含量,促進(jìn)大團(tuán)聚體的形成和穩(wěn)定,對(duì)改善稻田耕層(尤其0~20 cm)土壤團(tuán)聚體穩(wěn)定性具有顯著的效果(<0.05)。因此,采取保護(hù)性耕作措施對(duì)南方雙季稻田土壤質(zhì)量及農(nóng)業(yè)生態(tài)持續(xù)性具有積極的作用。

        土壤;團(tuán)聚體;耕作;秸稈還田;土壤碳氮;雙季稻

        0 引 言

        土壤團(tuán)聚體是反映土壤肥力、功能的重要參數(shù)之一[1-2],是土壤功能結(jié)構(gòu)的基本組成單元,能夠影響水分轉(zhuǎn)運(yùn)儲(chǔ)存、通氣性、生物活性、以及作物生產(chǎn)狀況等[3-6]。良好的土壤團(tuán)聚體結(jié)構(gòu)為穩(wěn)定與固持土壤有機(jī)質(zhì)提供了重要載體[7],而有機(jī)質(zhì)的積累也促進(jìn)土壤團(tuán)聚體組分及不同粒級(jí)團(tuán)聚體C、N分布的動(dòng)態(tài)變化[8]。因此,構(gòu)建和維持良好的土壤團(tuán)聚體結(jié)構(gòu)是實(shí)現(xiàn)農(nóng)田土壤可持續(xù)利用的基礎(chǔ)。團(tuán)聚體結(jié)構(gòu)受諸如土壤利用類(lèi)型[9]、土壤管理措施[10]、土壤生物組成[11]、土壤母質(zhì)[2]等自身及外界條件的影響。農(nóng)田生態(tài)系統(tǒng)作為具有強(qiáng)烈人為影響的作物生產(chǎn)系統(tǒng),土壤養(yǎng)分及團(tuán)聚體性能不可避免地會(huì)對(duì)耕作、秸稈還田等管理措施產(chǎn)生響應(yīng)。近年來(lái),國(guó)內(nèi)外學(xué)者從耕作措施、種植方式、秸稈投入等多角度對(duì)這種響應(yīng)進(jìn)行了研究,研究認(rèn)為耕作方式對(duì)土壤團(tuán)聚體的形成及其穩(wěn)定性有重要影響[12],會(huì)影響不同粒級(jí)團(tuán)聚體里C、N含量[13];減少土壤擾動(dòng)會(huì)增加土壤團(tuán)聚體的穩(wěn)定性,且會(huì)增加大團(tuán)聚體中C含量[14];田慎重等[15]認(rèn)為免耕秸稈還田能顯著增加土壤水穩(wěn)性團(tuán)聚體比例及穩(wěn)定性等。綜合來(lái)看,當(dāng)前關(guān)于耕作措施下土壤團(tuán)聚體特征及其養(yǎng)分分布特性的研究已取得一些重要認(rèn)識(shí),但在稻作區(qū)采取長(zhǎng)期保護(hù)性耕作措施的影響仍需要進(jìn)一步系統(tǒng)研究。

        南方雙季稻區(qū)是中國(guó)水稻的主要產(chǎn)區(qū)之一,傳統(tǒng)耕作(如翻耕)仍是當(dāng)?shù)剞r(nóng)戶的主要生產(chǎn)措施,其帶來(lái)的諸如加速土壤侵蝕、促進(jìn)土壤有機(jī)碳(SOC)損失、土壤質(zhì)量退化等負(fù)面效應(yīng)以及更多的勞動(dòng)力需求[16],促使稻田保護(hù)性耕作技術(shù)得到快速推廣。有研究表明,稻田土壤團(tuán)聚體構(gòu)成比例及團(tuán)聚體水穩(wěn)定性是表征土壤質(zhì)量的主要指標(biāo)之一[17]。當(dāng)前關(guān)于在雙季稻系統(tǒng)中長(zhǎng)期采取保護(hù)性耕作措施下土壤團(tuán)聚體穩(wěn)定性及碳氮分布的研究還較少。因此,研究長(zhǎng)期保護(hù)性耕作下雙季稻田土壤團(tuán)聚體特性及C、N分布特征具有重要的意義。本研究基于12 a的長(zhǎng)期保護(hù)性耕作定位試驗(yàn),通過(guò)對(duì)土壤團(tuán)聚體以及相關(guān)C、N含量的分析,評(píng)價(jià)耕作措施對(duì)土壤團(tuán)聚體粒徑分布及團(tuán)聚體穩(wěn)定性的影響,研究不同耕作措施下土壤有機(jī)碳(SOC)、全氮(TN)在不同粒徑團(tuán)聚體中的含量差異,以期對(duì)雙季稻種植區(qū)耕作措施的優(yōu)化提供理論參考。

        1 材料與方法

        1.1 研究區(qū)概況

        本試驗(yàn)在湖南省長(zhǎng)沙市寧鄉(xiāng)市回龍鋪鎮(zhèn)天鵝村(112°18′ E,28°07′ N)試驗(yàn)示范基地進(jìn)行(圖1),為長(zhǎng)期保護(hù)性耕作定位試驗(yàn)(始于2005年),試驗(yàn)建立前,該田塊即采用冬閑-早稻-晚稻種植模式,由農(nóng)戶采取傳統(tǒng)耕法進(jìn)行統(tǒng)一耕種。試驗(yàn)區(qū)域?qū)儆趤啛釒Ъ撅L(fēng)性濕潤(rùn)氣候,周年光熱雨水資源充足,年均氣溫約為16.8 ℃,年均降雨量約為1 358.3 mm,年蒸散量約為1 353.9 mm,年日照時(shí)數(shù)約為1 737.6 h,年平均無(wú)霜期為274 d,具有長(zhǎng)江流域典型雙季稻種植區(qū)特征[18]。試驗(yàn)區(qū)土壤為水稻土,粉質(zhì)黏壤土類(lèi)型(43%砂粒、35%粉粒和22%黏粒)[19],屬典型的湘中紅壤丘陵區(qū)。試驗(yàn)前測(cè)得耕層0~20 cm土壤容重為1.21 g/kg,有機(jī)質(zhì)34.9 g/kg,速效氮224.1 mg/kg,有效磷4.38 mg/kg,速效鉀97.1 mg/kg,全氮1.29 g/kg,全磷1.23 g/kg,全鉀17.63 g/kg,pH值6.30。

        圖1 試驗(yàn)區(qū)位圖

        1.2 試驗(yàn)設(shè)計(jì)

        試驗(yàn)設(shè)翻耕+秸稈不還田(CT)、翻耕+秸稈還田(CTS)、旋耕+秸稈還田(RTS)以及免耕+秸稈還田(NTS)4個(gè)處理。每個(gè)處理重復(fù)3次,共12個(gè)小區(qū),小區(qū)面積為64 m2。試驗(yàn)采用早-晚稻生產(chǎn)體系,采用秧盤(pán)育苗和拋秧技術(shù),早稻品種為湘早秈45號(hào),拋秧前施用復(fù)合肥391 kg/hm2(195.5 kg/hm2N,34.14 kg/hm2P,97.33 kg/hm2K)做基肥,起身后追施尿素47 kg/hm2(21.62 kg/hm2N)。晚稻品種為湘晚稻13號(hào),拋秧前基肥施用復(fù)合肥469 kg/hm2(234.50 kg/hm2N,40.95 kg/hm2P,116.75 kg/hm2K),起身后追施尿素39 kg/hm2(17.94 kg/hm2)。兩季土壤耕作前灌水深約2 cm,收獲后留茬高度約25 cm,還田處理的秸稈年還田量約為12 500 kg/hm2。各處理田間管理措施一致,具體處理方式見(jiàn)表1。

        1.3 樣品采集與測(cè)定

        1.3.1 土樣采集

        供試土壤樣品采集于2016年11月晚稻收獲前,按“S”形多點(diǎn)采集各試驗(yàn)小區(qū)0~5、5~10、10~20、20~30 cm土層原狀土壤,并置于鋁制飯盒密封帶回實(shí)驗(yàn)室(運(yùn)輸時(shí)盡量避免翻壓顛簸)。在室內(nèi),將土樣按其結(jié)構(gòu)紋理剝離成直徑10 mm左右的土塊,在此過(guò)程中要防止土塊的外力形變,去除肉眼可見(jiàn)的有機(jī)殘?bào)w后在通風(fēng)陰涼處自然風(fēng)干。

        表1 試驗(yàn)處理方式

        1.3.2 測(cè)定方法

        采用濕篩測(cè)定方法[20]測(cè)定供試土樣的各粒級(jí)團(tuán)聚體(>2、0.25~2、0.053~0.25和<0.053 mm)含量,一般認(rèn)為>0.25 mm為大團(tuán)聚體[21]。利用傳統(tǒng)測(cè)定方法[22]測(cè)定各粒級(jí)團(tuán)聚體及土層中的有機(jī)碳、全氮含量。

        1.4 結(jié)果計(jì)算

        1)不同粒級(jí)團(tuán)聚體質(zhì)量百分比[23]

        式中A為某粒級(jí)團(tuán)聚體的質(zhì)量分?jǐn)?shù)(%);G為該粒級(jí)團(tuán)聚體的風(fēng)干質(zhì)量(g);T為團(tuán)聚體總質(zhì)量(g)。

        2)平均重量直徑(MWD)和幾何平均直徑(GMD)是表征土壤團(tuán)聚體穩(wěn)定性的重要指標(biāo),其值的大小在一定程度可以體現(xiàn)團(tuán)聚體結(jié)構(gòu)的團(tuán)聚程度,MWD和GMD值越大,土壤團(tuán)聚體的穩(wěn)定性越高[23]。平均重量直徑(MWD)[24],幾何平均重量(GMD)[25]計(jì)算公式如下

        式中MWD為平均重量直徑(mm);GMD為幾何平均直徑(mm);W為各粒級(jí)團(tuán)聚體的重量百分比(%);X為各粒級(jí)的平均直徑(mm)。

        3)不同粒級(jí)團(tuán)聚體對(duì)土壤C、N的貢獻(xiàn)率

        不同粒級(jí)團(tuán)聚體中C、N對(duì)土壤C、N的貢獻(xiàn)率計(jì)算公式[26],如(4)所示

        式中R為貢獻(xiàn)率(%);AC表示某粒級(jí)團(tuán)聚體C、N含量(g/kg);W為該粒級(jí)團(tuán)聚體所占百分比(%);TC代表該層土壤C、N的含量(g/kg)。

        1.5 數(shù)據(jù)處理分析

        采用Excel 2010對(duì)數(shù)據(jù)進(jìn)行初步處理,DPS 7.05數(shù)據(jù)分析系統(tǒng)進(jìn)行數(shù)據(jù)統(tǒng)計(jì)分析,SigmaPlot 12.0進(jìn)行圖表制作。方差分析采用新復(fù)極差法。

        2 結(jié)果與分析

        2.1 耕作方式對(duì)土層碳氮含量及團(tuán)聚體構(gòu)成的影響

        不同處理的土壤SOC與TN含量均呈現(xiàn)隨土層加深而降低的總體趨勢(shì)(圖2)。NTS處理的SOC與TN含量表現(xiàn)出明顯的表層富集,在0~5 cm土層顯著高于其他處理,其順序?yàn)镹TS>RTS>CTS>CT(<0.05),而在5~30 cm土層NTS的碳氮含量更低。RTS處理的SOC和TN含量分別在10~30 cm和5~30 cm土層顯著高于NTS、CTS與CT。

        注:同一土層不同字母代表處理間差異達(dá)到顯著性水平(P<0.05)。下同。

        由表2可以看出,稻田在不同耕作方式下,團(tuán)聚體組分的百分含量呈現(xiàn)出隨粒徑的減小而降低的趨勢(shì)。在0~30 cm土層,不同處理團(tuán)聚體均以>2 mm粒徑為主,約占35.02%~64.44%,其次為0.25~2 mm粒徑(23.39%~39.86%),均屬于大團(tuán)聚體(約占66.90%~87.82%),而<0.053 mm及0.053~0.25 mm團(tuán)聚體含量較小(總體約占12.18%~33.10%)。

        在>2 mm粒級(jí)中,NTS在5~30 cm土層均顯著大于RTS(< 0.05),分別高12.90%(5~10 cm)、15.15%(10~20 cm)及20.47%(20~30 cm);CTS在5~20 cm顯著低于NTS(< 0.05),NTS、RTS、CTS之間在0~5 cm不顯著;CTS只在0~10 cm土層顯著大于CT(< 0.05),綜合來(lái)看,持續(xù)的秸稈還田能夠顯著增加0~10 cm土層的>2 mm團(tuán)聚體比例,弱化不同耕法對(duì)土壤表層大團(tuán)聚體的差異化影響,這可能與有機(jī)物長(zhǎng)期輸入促進(jìn)土壤大團(tuán)聚體形成,土壤碳固持量大有關(guān)。粒級(jí)0.25~2 mm范圍,CTS在5~20 cm土層顯著高于NTS和RTS(< 0.05);CTS在0~10 cm顯著低于CT,低27.56%和12.01%,但在10~30 cm無(wú)顯著差異。粒級(jí)0.053~0.25 mm中,RTS在0~5和10~30 cm土層中顯著高于CTS,分別高43.67%(0~5 cm)、25.21%(10~20 cm)和22.81%(20~30 cm)。當(dāng)粒徑<0.053 mm時(shí),NTS和CTS在20~30 cm土層顯著低于RTS;CTS在5~10 cm土層顯著低于CT,而在0~5及10~30 cm土層無(wú)顯著性差異。綜合來(lái)看,粒徑<0.25 mm的團(tuán)聚體,NTS在0~10 cm顯著低于CT。因此,保護(hù)性耕作(免耕)+秸稈還田為土壤微團(tuán)聚體向大團(tuán)聚體轉(zhuǎn)化提供了良好條件,尤其有利于提高土壤表層大團(tuán)聚體占比。

        表2 耕作方式對(duì)稻田土壤團(tuán)聚體構(gòu)成的影響

        注:同土層同列不同小寫(xiě)字母分別表示差異顯著(< 0.05),下同。

        Note: Different lowercase letters in the same column of the same layer indicate significant difference at 0.05 level. The same below.

        2.2 耕作方式對(duì)土壤團(tuán)聚體穩(wěn)定性的影響

        如圖3,MWD與GMD表征的土壤團(tuán)聚體穩(wěn)定性具有一致性。在0~10 cm土層,秸稈還田處理(NTS、CTS、RTS)的團(tuán)聚體穩(wěn)定性均顯著大于秸稈不還田處理(CT)(< 0.05),直觀地反應(yīng)出長(zhǎng)期秸稈還田措施能夠顯著提高土壤表層(0~10 cm)團(tuán)聚體的穩(wěn)定性。而NTS在10~30 cm土層團(tuán)聚體穩(wěn)定性顯著優(yōu)于RTS (< 0.05),在5~20 cm土層顯著優(yōu)于CTS(< 0.05),而在0~5 cm,NTS、RTS、CTS之間的差異不顯著,這可能與長(zhǎng)期秸稈還田有關(guān)。綜合來(lái)看,長(zhǎng)期秸稈還田+保護(hù)性耕作(免耕)在改善耕層(至少0~20 cm)土壤團(tuán)聚體穩(wěn)定性方面具有顯著的效果。值得注意的是,RTS在較深土層(尤其在20~30 cm)表現(xiàn)出顯著較低的團(tuán)聚體穩(wěn)定性,這可能與不同耕作措施的土壤操作面深度差異有關(guān)。

        2.3 耕作方式對(duì)團(tuán)聚體碳氮分布的影響

        團(tuán)聚體碳含量表現(xiàn)出表層高,深層低,且同一土層碳向大團(tuán)聚體集中的總體趨勢(shì)。與此同時(shí),不同耕作方式也表現(xiàn)出對(duì)碳分布的差異性影響。如圖4,翻耕處理(尤其CT)在同一土層不同粒級(jí)之間以及同一粒級(jí)不同土層之間的團(tuán)聚體碳分布差異相比其他處理更小。而NTS的團(tuán)聚體碳分布差異較大,主要表現(xiàn)在NTS的碳向表層及大團(tuán)聚體中相對(duì)集中。

        團(tuán)聚體氮含量的分布也呈現(xiàn)出與碳含量分布一致的趨勢(shì)(圖5),表層及粒級(jí)越大的團(tuán)聚體中氮含量越高。CTS在0~20 cm土層各粒級(jí)團(tuán)聚體N含量顯著高于CT;在秸稈還田條件下,NTS在0~5 cm土層的各粒徑團(tuán)聚體氮含量均顯著高于RTS和CTS(< 0.05),但CTS在5~20 cm土層要顯著高于NTS和RTS(<0.05)。

        圖3 耕作方式對(duì)稻田土壤團(tuán)聚體MWD與GMD的影響

        2.4 團(tuán)聚體對(duì)土壤碳氮的貢獻(xiàn)率

        由表3可以看出,長(zhǎng)期采取秸稈還田措施下稻田各粒級(jí)團(tuán)聚體對(duì)土壤總碳的貢獻(xiàn)率大小依次為:>2 mm(44.56%~64.61%)> 0.25~2 mm(24.91%~39.20%)> 0.053~0.25 mm(5.32%~11.47%)≈<0.053 mm(4.05%~11.95%),而秸稈不還田處理下各粒級(jí)團(tuán)聚體對(duì)土壤總碳的貢獻(xiàn)率大小依次為:>2 mm(38.95%~53.83%)> 0.25~2 mm(30.69%~43.34%)> 0.053~0.25 mm(7.55%~10.24%)> < 0.053 mm(7.47%~7.95%),秸稈還田使>2 mm團(tuán)聚體對(duì)土壤碳的貢獻(xiàn)增加,相比于秸稈不還田,>2 mm團(tuán)聚體貢獻(xiàn)率平均增加8.20個(gè)百分點(diǎn),而0.25~2 mm及0.053~0.25 mm團(tuán)聚體的貢獻(xiàn)率則平均分別降低4.96和0.49個(gè)百分點(diǎn)。在秸稈還田處理中,NTS在0~20 cm的>2 mm團(tuán)聚體對(duì)土壤碳的貢獻(xiàn)率顯著大于其他處理(<0.05),其他粒級(jí)團(tuán)聚體的貢獻(xiàn)率相對(duì)其他處理較低;在20~30 cm,NTS土壤碳含量較低,且>2 mm團(tuán)聚體貢獻(xiàn)率也低于其他處理。

        a. >2 mmb. 0.25~2 mmc. 0.053~0.25 mmd. <0.053 mm

        a. >2 mmb. 0.25~2 mmc. 0.053~0.25 mmd. <0.053 mm

        各粒級(jí)團(tuán)聚體對(duì)土壤N的貢獻(xiàn)與土壤C的規(guī)律類(lèi)似,>2 mm團(tuán)聚體的貢獻(xiàn)率隨土層的加深有降低的趨勢(shì)。秸稈還田使>2 mm團(tuán)聚體對(duì)土壤N的貢獻(xiàn)率增加,相比于秸稈不還田,>2 mm團(tuán)聚體貢獻(xiàn)率平均增加7.35個(gè)百分點(diǎn),而0.25~2 mm團(tuán)聚體的貢獻(xiàn)率則平均降低4.84個(gè)百分點(diǎn)。

        總體來(lái)看,不同耕作方式下稻田土壤中大團(tuán)聚體對(duì)土壤C、N的貢獻(xiàn)率更高(分別為76.58%~90.62%、72.28%~89.76%)。秸稈還田能夠顯著增加>2 mm團(tuán)聚體的比重,從而增加大團(tuán)聚體對(duì)土壤養(yǎng)分的貢獻(xiàn),但是這種增加是以降低0.25~2 mm團(tuán)聚體貢獻(xiàn)率為基礎(chǔ)的。同樣,免耕相對(duì)其他耕作措施,也起到了在0~20 cm土層增加大團(tuán)聚體貢獻(xiàn)率的作用??偟膩?lái)看,小團(tuán)聚體(<0.25 mm)對(duì)于土壤C、N的貢獻(xiàn)影響不大,且相對(duì)來(lái)看貢獻(xiàn)率波動(dòng)較小。

        進(jìn)一步分析土壤C、N與團(tuán)聚體穩(wěn)定性的關(guān)系,發(fā)現(xiàn)SOC與GMD(2=0.31,< 0.05),TN與GMD(2=0.33,<0.05)均成顯著的正相關(guān)關(guān)系(圖6)。因此,為了改善土壤團(tuán)聚體穩(wěn)定性就要通過(guò)提高稻田土壤C、N含量,穩(wěn)定和增加土壤大團(tuán)聚體的比例,進(jìn)而提高稻田土壤團(tuán)聚體對(duì)C、N的固持和保護(hù)能力。

        表3 不同耕作方式下團(tuán)聚體對(duì)土壤C、N的貢獻(xiàn)率

        a. 土壤SOC與GMD的回歸分析b. 土壤TN與GMD的回歸分析 a. Regression analysis between SOC and GMDb. Regression analysis between TN and GMD

        圖6 土壤SOC、TN與GMD的回歸分析

        Fig.6 Regression analysis between SOC, TN and GMD (geometric mean diameter)

        3 討 論

        土壤團(tuán)聚體穩(wěn)定性的高低直接反應(yīng)了土壤是否退化[27]以及養(yǎng)分持續(xù)供給能力的強(qiáng)弱。本文認(rèn)為更多的大團(tuán)聚體(尤其>2 mm)可以提高土壤結(jié)構(gòu)的穩(wěn)定性。對(duì)于大團(tuán)聚體的形成和穩(wěn)定,土壤粘合劑(如有機(jī)碳、微生物和土壤蛋白等)起著重要作用。研究表明有機(jī)質(zhì)的投入為微生物生產(chǎn)土壤粘合劑提供了碳源,有助于土壤大團(tuán)聚體的形成[28],這與本研究的結(jié)果一致,連續(xù)的秸稈還田顯著增加0~10 cm土層的>2 mm團(tuán)聚體比例,并且GMD與MWD均顯著高于秸稈不還田處理。本研究證實(shí)團(tuán)聚體C、N之間存在極顯著的正相關(guān)關(guān)系(2=0.99,<0.000 1),這說(shuō)明土壤團(tuán)聚體TN的變化趨勢(shì)與團(tuán)聚體SOC類(lèi)似,土壤團(tuán)聚體碳氮的固存存在協(xié)同作用[29]。有研究表明TN主要存在于土壤細(xì)黏?;蝠ちI?,對(duì)土壤團(tuán)聚體的形成具有較大影響[30],并且土壤中95%的TN均以有機(jī)態(tài)存在,較高的碳氮含量依靠有機(jī)?無(wú)機(jī)膠結(jié)作用促進(jìn)了土壤團(tuán)聚體的穩(wěn)定性[31]。此外,影響團(tuán)聚體大小分布和穩(wěn)定性的另一個(gè)因素是耕作措施。不同粒級(jí)團(tuán)聚體的形成和周轉(zhuǎn)對(duì)農(nóng)藝措施和土壤深度有不同的響應(yīng)[32],已有研究認(rèn)為耕作能夠破化土壤大團(tuán)聚體內(nèi)部結(jié)構(gòu),釋放被團(tuán)聚體固持的碳,從而降低了土壤結(jié)構(gòu)的穩(wěn)定性[33]。在0~5 cm土層,秸稈還田處理(NTS、RTS及CTS)的團(tuán)聚體穩(wěn)定性顯著高于秸稈不還田(CT)(<0.05),而在秸稈還田處理之間并沒(méi)有因?yàn)椴煌母鞔胧┒a(chǎn)生顯著差異。這說(shuō)明秸稈還田是影響土壤結(jié)構(gòu)穩(wěn)定性的主要因素。在5~30 cm土層,秸稈還田處理之間的團(tuán)聚體穩(wěn)定性出現(xiàn)顯著不同,則是由于耕作對(duì)團(tuán)聚體穩(wěn)定性破壞程度的差異,相比于翻耕、旋耕,免耕一方面有助于土壤表層碳的積累,另一方面相對(duì)不受擾動(dòng)的土體環(huán)境更有利于穩(wěn)定的大團(tuán)聚體形成[34]。因此,NTS在改善耕層(至少0~20 cm)土壤團(tuán)聚體穩(wěn)定性上具有顯著的效果。

        土壤團(tuán)聚體C、N含量的增加主要是由于團(tuán)聚體對(duì)C、N的固持速率大于團(tuán)聚體C、N的礦化損失。有研究認(rèn)為土壤團(tuán)聚體的SOC含量和碳礦化能力隨團(tuán)聚體粒徑的不同而不同[35]. 秸稈分解產(chǎn)生的碳源導(dǎo)致大團(tuán)聚體結(jié)構(gòu)中碳含量高于小團(tuán)聚體[36-37]。N也有類(lèi)似的規(guī)律。這與本文的結(jié)論一致,即不同耕作方式下稻田土壤中大團(tuán)聚體對(duì)土壤C、N的貢獻(xiàn)率更高(分別為76.58%~90.62%、72.28%~89.76%),其中>2 mm的團(tuán)聚體的貢獻(xiàn)率平均達(dá)C(52.12%),N(52.16%)。NTS引起的表層土壤C、N積累主要被大團(tuán)聚體所固持,并且C、N在大團(tuán)聚體中對(duì)外界化學(xué)、物理和生物條件造成的分解不那么敏感[38],而秸稈的投入提供了持續(xù)的C、N源也進(jìn)一步促進(jìn)了大團(tuán)聚體的形成和穩(wěn)定[39]。結(jié)果中各處理的<0.25 mm團(tuán)聚體中的C、N含量較低,對(duì)土壤C、N貢獻(xiàn)較小,這可能與小團(tuán)聚體對(duì)C、N的固持和保護(hù)作用較差有關(guān)。

        有研究表明耕作秸稈還田措施會(huì)產(chǎn)生交互效應(yīng),且在0~30cm土層均達(dá)到顯著水平[15]。耕作和秸稈還田的交互效應(yīng)普遍被認(rèn)為是土壤在耕作措施下與秸稈混合后,土壤微生物作用而產(chǎn)生的一種綜合生態(tài)效應(yīng)[40]。未來(lái)的研究應(yīng)更多地關(guān)注團(tuán)聚體養(yǎng)分固持和穩(wěn)定的微生物參與策略。土壤環(huán)境對(duì)微生物會(huì)產(chǎn)生不同的影響,因此,進(jìn)一步研究耕作與秸稈還田措施下雙季稻田土壤團(tuán)聚體穩(wěn)定性差異,還需要監(jiān)測(cè)更多影響團(tuán)聚體穩(wěn)定的物理、化學(xué)以及生物指標(biāo)的響應(yīng)和變化過(guò)程,進(jìn)而更全面、準(zhǔn)確地揭示耕作管理下稻田土壤團(tuán)聚體結(jié)構(gòu)特征、變化規(guī)律及影響機(jī)制。

        4 結(jié) 論

        通過(guò)分析長(zhǎng)期保護(hù)性耕作定位試驗(yàn)結(jié)果,評(píng)價(jià)了耕作方式對(duì)南方雙季稻田土壤團(tuán)聚體粒徑分布、穩(wěn)定性及相關(guān)碳氮含量影響的長(zhǎng)期效應(yīng)。主要研究結(jié)論如下:

        1)不同耕作方式下,團(tuán)聚體組分的百分含量隨粒徑的減小而降低。稻田土壤團(tuán)聚體以>2 mm粒徑為主(占35.02%~64.44%),<0.25 mm團(tuán)聚體只占12.18%~33.10%。持續(xù)的秸稈還田能夠顯著增加0~10 cm土層的大團(tuán)聚體比重。隨著耕作強(qiáng)度的減弱,大團(tuán)聚體含量有所提高。

        2)不同耕作方式下,稻田土壤大團(tuán)聚體對(duì)土壤C、N的貢獻(xiàn)率高達(dá)76.58%~90.62%和72.28%~89.76%,其中>2 mm團(tuán)聚體貢獻(xiàn)率平均達(dá)C(52.12%)與N(52.16%)。NTS在0~20 cm的>2 mm團(tuán)聚體對(duì)土壤C的貢獻(xiàn)率顯著大于其他處理。土壤團(tuán)聚體N的變化與C類(lèi)似,團(tuán)聚體碳氮的固存存在協(xié)同關(guān)系。

        3)長(zhǎng)期采取免耕+秸稈還田顯著提高了土壤表層C、N含量,并且土壤擾動(dòng)少的特點(diǎn)促進(jìn)了大團(tuán)聚體的形成和穩(wěn)定,對(duì)改善稻田耕層(尤其0~20 cm)土壤團(tuán)聚體穩(wěn)定性具有顯著的效果。保護(hù)性耕作措施可能是實(shí)現(xiàn)南方雙季稻田生態(tài)可持續(xù)發(fā)展的有效途徑。

        [1]Carter Martin R. Soil quality for sustainable land management: Organic matter and aggregation interactions that maintain soil functions[J]. Agronomy Journal, 2002, 94(1): 38-47.

        [2]Bronick C J, Lal R. Soil structure and management: A review[J]. Geoderma, 2005, 124(1/2): 3-22.

        [3]Verhulst N, Govaerts B, Verachtert E, et al. Conservation agriculture, improving soil quality for sustainable production systems?[M]// Advances in Soil Science: Food Security and Soil Quality, CRC Press, 2010, 137-208.

        [4]Haydu-Houdeshell Carrie-Ann, Graham Robert C, Hendrix Paul F, et al. Soil aggregate stability under chaparral species in Southern California[J]. Geoderma, 2018, 310: 201-208.

        [5]Du Zhangliu, Ren Tusheng, Hu Chunsheng, et al. Soil aggregate stability and aggregate-associated carbon under different tillage systems in the North China Plain[J]. Journal of Integrative Agriculture, 2013, 12(11): 2114-2123.

        [6]張迪,姜佰文,梁世鵬,等. 草甸黑土團(tuán)聚體穩(wěn)定性對(duì)耕作與炭基肥施用的響應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(14):125-132. Zhang Di, Jiang Baiwen, Liang Shipeng, et al. Responsive of aggregate stability of meadow black soil to different tillage practices and carbon-based fertilizers[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 125-132. (in Chinese with English abstract)

        [7]竇森. 土壤團(tuán)聚體中有機(jī)質(zhì)研究進(jìn)展[J]. 土壤學(xué)報(bào),2011,48(2):412-418. Dou Sen. A review on organic matter in soil aggregates[J]. Acta Pedologica Sinica, 2011, 48(2): 412-418. (in Chinese with English abstract)

        [8]張曼夏,季猛,李偉,等. 土地利用方式對(duì)土壤團(tuán)聚體穩(wěn)定性及其結(jié)合有機(jī)碳的影響[J]. 應(yīng)用與環(huán)境生物學(xué)報(bào),2013,19(4):598-604. Zhang Manxia, Ji Meng, Li Wei, et al. Effect of land use patterns on soil aggregate stability and aggregate-associated organic carbon[J]. Chinese Journal of Applied and Environmental Biology, 2013, 19(4): 598-604. (in Chinese with English abstract)

        [9]Liu Yanyan, Gong Yanming, Wang Xin, et al. Volume fractal dimension of soil particles and relationships with soil physical-chemical properties and plant species diversity in an alpine grassland under different disturbance degrees[J]. Journal of Arid Land, 2013, 5(4): 480-487.

        [10]Pirmoradian N, Sepaskhah A R, Hajabbasi M A. Application of fractal theory to quantify soil aggregate stability as influenced by tillage treatments[J]. Biosystems Engineering, 2005, 90(2): 227-234.

        [11]Bossuyt Heleen, Six Johan, Hendrix Paul F. Protection of soil carbon by microaggregates within earthworm casts[J]. Soil Biology and Biochemistry, 2005, 37(2): 251-258.

        [12]Sheehy Jatta, Regina Kristiina, Alakukku Laura, et al. Impact of no-till and reduced tillage on aggregation and aggregate-associated carbon in Northern European agroecosystems[J]. Soil and Tillage Research, 2015, 150: 107-113.

        [13]Kasper M, Buchan G D, Mentler A, et al. Influence of soil tillage systems on aggregate stability and the distribution of C and N in different aggregate fractions[J]. Soil and Tillage Research, 2009, 105(2): 192-199.

        [14]Kabiri Vida, Raiesi Fayez, Ghazavi Mohammad Ali. Six years of different tillage systems affected aggregate-associated SOM in a semi-arid loam soil from Central Iran[J]. Soil and Tillage Research, 2015, 154: 114-125.

        [15]田慎重,王瑜,李娜,等. 耕作方式和秸稈還田對(duì)華北地區(qū)農(nóng)田土壤水穩(wěn)性團(tuán)聚體分布及穩(wěn)定性的影響[J]. 生態(tài)學(xué)報(bào),2013,33(22):7116-7124. Tian Shenzhong, Wang Yu, Li Na, et al. Effects of different tillage and straw systems on soil water-stable aggregate distribution and stability in the North China Plain[J]. Acta Ecologica Sinica, 2013, 33(22): 7116-7124. (in Chinese with English abstract)

        [16]Chen Zhongdu, Ti Jinsong, Chen Fu. Soil aggregates response to tillage and residue management in a double paddy rice soil of the Southern China[J]. Nutrient Cycling in Agroecosystems, 2017, 109(2): 103-114.

        [17]王麗,李軍,李娟,等. 輪耕與施肥對(duì)渭北旱作玉米田土壤團(tuán)聚體和有機(jī)碳含量的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2014,25(3):759-768. Wang Li, Li Jun, Li Juan, et al. Effects of tillage rotation and fertilization on soil aggregates and organic carbon content in corn field in Weibei Highland[J]. Chinese Journal of Applied Ecology, 2014, 25(3): 759-768. (in Chinese with English abstract)

        [18]薛建福. 耕作措施對(duì)南方雙季稻田碳、氮效應(yīng)的影響[D]. 北京:中國(guó)農(nóng)業(yè)大學(xué),2015. Xue Jianfu. Effects of Tillage on Soil Carbon and Nitrogen in Double Paddy Cropping System of Southern China[D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract)

        [19]Das Bappa, Chakraborty Debashis, Singh R, et al. Effect of integrated nutrient management practice on soil aggregate properties, its stability and aggregate-associated carbon content in an intensive rice-wheat system[J]. Soil and Tillage Research, 2014, 136: 9-18.

        [20]Kemper W D, Rosenau R C. Aggregate stability and size distribution. In: Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods[M]// Agronomy Monograph no. 9. Society of Agronomy/Soil Science Society of America, 1986: 425-442.

        [21]Andruschkewitsch Rouven, Geisseler Daniel, Koch Heinz-Josef, et al. Effects of tillage on contents of organic carbon, nitrogen, water-stable aggregates and light fraction for four different long-term trials[J]. Geoderma, 2013, 192(1): 368-377.

        [22]鮑士旦. 土壤農(nóng)化分析(3版)[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2000.

        [23]周虎,呂貽忠,楊志臣,等. 保護(hù)性耕作對(duì)華北平原土壤團(tuán)聚體特征的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),2007,40(9):1973-1979. Zhou Hu, Lv Yizhong, Yang Zhichen, et al. Effects of conservation tillage on soil aggregates in Huabei Plain, China[J]. Scientia Agricultura Sinica, 2007, 40(9): 1973-1979. (in Chinese with English abstract)

        [24]王小紅,楊智杰,劉小飛,等. 中亞熱帶山區(qū)土壤不同形態(tài)鐵鋁氧化物對(duì)團(tuán)聚體穩(wěn)定性的影響[J]. 生態(tài)學(xué)報(bào),2016,36(9):2588-2596. Wang Xiaohong, Yang Zhijie, Liu Xiaofei, et al. Effects of different forms of Fe and Al oxides on soil aggregate stability in mid-subtropical mountainous area of Southern China[J]. Acta Ecologica Sinica, 2016, 36(9): 2588-2596. (in Chinese with English abstract)

        [25]Barreto Renata C, Madari Beata E, Maddock John E L, et al. The impact of soil management on aggregation, carbon stabilization and carbon loss as CO2in the surface layer of a Rhodic Ferralsol in Southern Brazil[J]. Agriculture Ecosystems and Environment, 2009, 132(3/4): 243-251.

        [26]王艷玲,蔣發(fā)輝,徐江兵,等. 長(zhǎng)期配施有機(jī)肥對(duì)旱地紅壤微團(tuán)聚體中有機(jī)碳含量的影響[J]. 土壤通報(bào),2018,49(2):377-384. Wang Yanling, Jiang Fahui, Xu Jiangbing, et al. Micro-aggregate associated organic carbon in red soil as affected by long-term application of combined organic-inorganic fertilizers[J]. Chinese Journal of Soil Science, 2018, 49(2): 377-384. (in Chinese with English abstract)

        [27]Barthès Bernard, Roose Eric. Aggregate stability as an indicator of soil susceptibility to runoff and erosion; validation at several levels[J]. Catena, 2002, 47(2): 133-149.

        [28]Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000, 32(14): 2099-2103.

        [29]謝鈞宇,楊文靜,強(qiáng)久次仁,等. 長(zhǎng)期不同施肥下塿土有機(jī)碳和全氮在團(tuán)聚體中的分布[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2015,21(6):1413-1422. Xie Junyu, Yang Wenjing, Qiang Jiuciren, et al. Distribution of soil organic carbon and nitrogen in water-stable aggregates of manurial loess soils under long-term various fertilization regimes[J]. Plant Nutrition and Fertilizer Science, 2015, 21(6): 1413-1422. (in Chinese with English abstract)

        [30]魏朝富,謝德體,李保國(guó). 土壤有機(jī)無(wú)機(jī)復(fù)合體的研究進(jìn)展[J].地球科學(xué)進(jìn)展,2003,18(2):221-227. Wei Chaofu, Xie Deti, Li Baoguo. Progress in research on soil organo-mineral complexes[J]. Advance in Earth Sciences, 2003, 18(2): 221-227. (in Chinese with English abstract)

        [31]武均,蔡立群,齊鵬,等. 不同耕作措施下旱作農(nóng)田土壤團(tuán)聚體中有機(jī)碳和全氮分布特征[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2015,23(3):276-284. Wu Jun, Cai Liqun, Qi Peng, et al. Distribution characteristics of organic carbon and total nitrogen in dry farmland soil aggregates under different tillage methods in the Loess Plateau of central Gansu province[J]. Chinese Journal of Eco-Agriculture, 2015, 23(3): 276-284. (in Chinese with English abstract)

        [32]Six J, Paustian K, Elliott E T, et al. Soil structure and organic matter: I. Distribution of aggregate-size classes and aggregate-associated carbon[J]. Soil Science Society of America Journal, 2000, 64(2): 681-689.

        [33]Ashagrie Y, Zech W, Guggenberger G, et al. Soil aggregation, and total and particulate organic matter following conversion of native forests to continuous cultivation in Ethiopia[J]. Soil and Tillage Research, 2007, 94(1): 101-108.

        [34]Gale W J, Cambardella C A, Bailey T B. Root-derived carbon and the formation and stabilization of aggregates[J]. Soil Science Society of America Journal, 2000, 64(1): 201-207.

        [35]Huang Xiaolei, Jiang Hong, Li Yong, et al. The role of poorly crystalline iron oxides in the stability of soil aggregate-associated organic carbon in a rice-wheat cropping system[J]. Geoderma, 2016, 279: 1-10.

        [36]Mikha Maysoon M, Rice Charles W. Tillage and manure effects on soil and aggregate-associated carbon and nitrogen[J]. Soil Science Society of America Journal, 2004, 68(3): 809-816.

        [37]Messiga Aimé J, Ziadi Noura, Angers Denis A, et al. Tillage practices of a clay loam soil affect soil aggregation and associated C and P concentrations[J]. Geoderma, 2011, 164(3): 225-231.

        [38]O'Brien Sarah L, Jastrow Julie D. Physical and chemical protection in hierarchical soil aggregates regulates soil carbon and nitrogen recovery in restored perennial grasslands[J]. Soil Biology and Biochemistry, 2013, 61(6): 1-13.

        [39]Zou C, Pearce R C, Grove J H, et al. No-tillage culture and nitrogen fertilizer management for burley tobacco production[J]. Journal of Agricultural Science, 2016, 155(4): 599-612.

        [40]Freebairn D M, Loch R J, Silburn D M, et al. Soil erosion and soil conservation for Vertisols[J]. Developments in Soil Science, 1996, 24: 303-362.

        Effects of long-term conservation tillage on soil aggregate stability and carbon and nitrogen in paddy field

        Wang Xing, Qi Jianying, Jing Zhenhuan, Li Chao, Zhang Hailin※

        (,,,,100193,)

        Soil structure stability, aggregate-associated C and N play an important role in soil conservation and nutrient supply. Tillage practices can affect the soil aggregate stability and C and N distribution, thus affecting the farmland ecological security. To estimate the effects of tillage practices on soil aggregate stability and its C and N distribution of double paddy field in Southern China, a long-term field experiment initiated from 2005 with four treatments (no-till with residue retention, NTS), rotary tillage with residue retention, RTS), plow tillage with residue retention, CTS), and plow tillage with residue removed, CT)) was conducted in a double rice cropping system in Ningxiang, Hunan. After 12-years of the experiment, the soil water-stable aggregates, stability, and C, N concentration were determined from four soil depths of 0-5, 5-10, 10-20, and 20-30 cm. The results showed that there were significant positive correlations between soil C, N and aggregate stability (<0.05). The percentage of soil aggregate decreased with the particle size decreases in paddy fields. It mainly composed of macro-aggregate (>0.25 mm), accounting for 66.90%-87.82%, of which >2 mm part accounted for 35.02%-64.44% in 0-30 cm soil layers under different tillage practices. For >2 mm soil aggregate, NTS was significantly higher than RTS (<0.05) in the 5-30 cm soil layers.NTS was significantly higher than CTS at 5-20 cm (< 0.05), but NTS, RTS and CTS were not significant in the 0-5 cm soil layer. The <0.25 mm soil aggregate accounted for 12.18%-33.10% in 0-30 cm soil layers under different tillage practices. In terms of aggregate stability, NTS was significantly higher than RTS (10-30 cm) and CTS (5-20 cm), but NTS, RTS, and CTS were not significant in the 0-5 cm soil layer. The contribution rate of macro-aggregate to soil C, N in paddy fields were 76.58%-90.62% and 72.28%-89.76%, respectively, and the contribution rates of >2 mm aggregates to C and N were52.12% and 52.16%, respectively. Compared with straw removal, the contribution rate of >2 mm aggregate treated with straw returning to the soil C, N increased by 8.20 percentage point and 7.35 percentage point, while the contribution of 0.25-2 mm aggregate decreased by 4.96 percentage point and 4.84 percentage point, respectively. Further analysis of the relationship between soil C and N and aggregate stability showed that SOC and GMD (geometric mean diameter), TN and GMD were significantly positively correlated. Thus, straw returning was conducive to the transformation of micro-aggregate to macro-aggregate. Compared with CTS and RTS, NTS significantly increased the C, N content in soil surface and promoted the stable macro-aggregate formation, which had significant effects on improving aggregate stability in paddy fields (especially 0-20 cm) (<0.05). Therefore, no-till with residue retention is an effective measure to maintain and improve soil performance of the paddy field in Southern China.

        soils; aggregate; tillage; straw-returning; soil carbon and nitrogen; double-cropping rice

        王 興,祁劍英,井震寰,李 超,張海林. 長(zhǎng)期保護(hù)性耕作對(duì)稻田土壤團(tuán)聚體穩(wěn)定性和碳氮含量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(24):121-128. doi:10.11975/j.issn.1002-6819.2019.24.015 http://www.tcsae.org

        Wang Xing, Qi Jianying, Jing Zhenhuan, Li Chao, Zhang Hailin. Effects of long-term conservation tillage on soil aggregate stability and carbon and nitrogen in paddy field [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 121-128. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.24.015 http://www.tcsae.org

        2019-05-26

        2019-09-19

        公益性行業(yè)(農(nóng)業(yè))科研專(zhuān)項(xiàng)(201503136)

        王 興,博士生,研究方向?yàn)檗r(nóng)田生態(tài)。Email:jiaxing0103@163.com

        張海林,博士,教授,博士生導(dǎo)師,研究方向?yàn)楸Wo(hù)性耕作與農(nóng)田生態(tài)。Email:hailin@cau.edu.cn

        10.11975/j.issn.1002-6819.2019.24.015

        S343.1;S343.2

        A

        1002-6819(2019)-24-0121-08

        久久精品国产热久久精品国产亚洲| 少妇愉情理伦片高潮日本| 少妇装睡让我滑了进去| 亚洲精品有码在线观看| 91青青草免费在线视频| 日韩精品人妻系列中文字幕| 波多野结衣久久精品99e| 免费无码av片在线观看| 国产高清天干天天视频| 杨幂一区二区系列在线| 国产精品久久成人网站| 亚洲av熟妇高潮30p| 男女上床视频免费网站| 男男亚洲av无一区二区三区久久 | 国产黄片一区视频在线观看| 亚洲毛片免费观看视频| 国产亚洲精品精品精品| 伊人影院综合在线| 一级做a爱视频在线播放| av在线播放男人天堂| 少妇无码av无码专区| 动漫在线无码一区| 亚洲av色香蕉一区二区三区软件| 亚洲国产精品无码aaa片| 精品人妻一区二区三区四区| www.日本一区| 国产高清人肉av在线一区二区| 国产无吗一区二区三区在线欢| 亚洲另类国产综合第一| 蜜桃视频中文字幕一区二区三区| 精品日韩一级免费视频| 精品人妻va出轨中文字幕| 91久久国产综合精品| 91l视频免费在线观看| 丰满多毛的大隂户毛茸茸| 亚洲AV无码精品蜜桃| av在线网站一区二区| 日本三级片在线观看| 亚洲日韩国产精品第一页一区| 国产成人久久精品流白浆| 女同同志熟女人妻二区|