亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        滴灌和微生物有機(jī)肥對(duì)設(shè)施土壤呼吸的耦合作用及機(jī)制

        2019-03-05 04:00:18侯毛毛陳競(jìng)楠林志遠(yuǎn)王晉偉李浩波陳錦濤翁郡靈呂祎文鐘鳳林

        侯毛毛,陳競(jìng)楠,林志遠(yuǎn),王晉偉,李浩波,陳錦濤,翁郡靈,呂祎文,金 秋,鐘鳳林

        滴灌和微生物有機(jī)肥對(duì)設(shè)施土壤呼吸的耦合作用及機(jī)制

        侯毛毛1,2,陳競(jìng)楠3,林志遠(yuǎn)1,王晉偉1,李浩波1,陳錦濤1,翁郡靈1,呂祎文1,金 秋4,鐘鳳林1※

        (1. 福建農(nóng)林大學(xué)園藝學(xué)院,福州 350002;2. 現(xiàn)代設(shè)施農(nóng)業(yè)福建省高校工程研究中心,福清 350300;3. 福建農(nóng)業(yè)職業(yè)技術(shù)學(xué)院園藝園林學(xué)院,福州 350119;4. 南京水利科學(xué)研究院,南京 210029)

        為研究滴灌水分和微生物有機(jī)肥對(duì)設(shè)施土壤呼吸的影響及耦合作用機(jī)制,設(shè)計(jì)不同灌溉定額(15、18、21 mm)和不同微生物有機(jī)肥施用量(2 800、3 600、4 400 kg/hm2)處理,以傳統(tǒng)化肥處理為對(duì)照,觀測(cè)滴灌和微生物有機(jī)肥協(xié)同作用下土壤呼吸速率、累計(jì)碳排放量等指標(biāo),分析土壤呼吸與土壤溫度、濕度、有機(jī)質(zhì)含量、酶(脫氫酶、脲酶和過氧化氫酶)活性及根系生物量之間的互動(dòng)響應(yīng)關(guān)系。結(jié)果表明:滴灌-微生物有機(jī)肥處理有利于提高土壤有機(jī)質(zhì)含量和酶活性,土壤脫氫酶、脲酶和過氧化氫酶活性分別提升11.6%~27.6%、8.0%~27.7%和1.8%~11.2%,其中滴灌和微生物有機(jī)肥相結(jié)合對(duì)脲酶活性的影響達(dá)到顯著(<0.05)水平;土壤呼吸速率與根系生物量、土壤溫度和有機(jī)質(zhì)含量呈極顯著(<0.01)正相關(guān),與土壤酶活性呈顯著(<0.05)正相關(guān)。該研究證明了滴灌和微生物有機(jī)肥對(duì)土壤碳排放有顯著的耦合效應(yīng),滴灌和微生物有機(jī)肥耦合主要通過改變土壤有機(jī)質(zhì)含量和根系生物量,對(duì)土壤呼吸產(chǎn)生影響。

        滴灌;有機(jī)肥;土壤;土壤呼吸;耦合作用;機(jī)制

        0 引 言

        土壤呼吸是土壤中的微生物、植物根系和食碎屑動(dòng)物等由于新陳代謝消耗有機(jī)物的同時(shí)產(chǎn)生CO2的過程,主要包括土壤微生物和動(dòng)物的異養(yǎng)呼吸和植物根系的自養(yǎng)呼吸,它是土壤和大氣碳庫相互交換的重要途徑[1]。據(jù)統(tǒng)計(jì),土壤呼吸每年向大氣中輸出碳83×109~108×109t,超過化石燃料排放的10倍[2]。土壤呼吸變化勢(shì)必對(duì)大氣碳濃度造成影響,加劇全球氣候變暖,進(jìn)而危及人類生存環(huán)境和未來發(fā)展[3]。

        近年來,設(shè)施栽培技術(shù)在世界各國發(fā)展迅速,在美國、日本、荷蘭、以色列等國的應(yīng)用尤為廣泛[4]。中國的設(shè)施栽培技術(shù)也進(jìn)入了蓬勃發(fā)展時(shí)期,設(shè)施栽培面積占整個(gè)栽培面積的11.6%[5],而避雨保溫設(shè)施和集約化的栽培模式也產(chǎn)生了具備獨(dú)特性質(zhì)的土壤—設(shè)施土壤。目前,針對(duì)設(shè)施土壤的研究主要集中在土壤板結(jié)、鹽漬化、養(yǎng)分遷移與供給等方面[6-9],對(duì)設(shè)施土壤呼吸的研究和報(bào)道尚不多見,關(guān)于設(shè)施土壤呼吸變化與人為干預(yù)下土壤環(huán)境因子的關(guān)聯(lián)分析研究則更為匱乏。

        水和肥對(duì)作物生長(zhǎng)發(fā)育和產(chǎn)量品質(zhì)形成有重要影響,兩者之間存在耦合效應(yīng)[10-12]。水肥管理措施必然會(huì)改變土壤含水率、孔隙度、微生物群落、水溶性有機(jī)C和N等[13-14],進(jìn)而對(duì)土壤呼吸產(chǎn)生影響。研究表明,土壤水分虧缺減少了植物根系和微生物生命活動(dòng)需要的生存原料,降低了CO2排放;土壤水分過高,孔隙度降低,異養(yǎng)呼吸所需O2的進(jìn)入減少,亦會(huì)限制CO2排放[15]。微生物有機(jī)肥施用影響了土壤微生物區(qū)系、作物根系生物量、有機(jī)質(zhì)含量和C/N比,這些指標(biāo)與土壤呼吸速度密切相關(guān)[16]。當(dāng)土壤中易分解的有機(jī)質(zhì)含量、微生物活性和根系生物量增加時(shí),土壤呼吸速度就會(huì)明顯增加。目前,已有研究報(bào)道了土壤呼吸對(duì)不同灌溉或施肥措施的響應(yīng)及機(jī)理,但少有研究涉及水肥耦合對(duì)土壤呼吸的影響。本研究以設(shè)施番茄為植物試材,研究不同灌溉定額和微生物有機(jī)肥施用量下土壤呼吸速率的差異及變化,分析土壤呼吸與水肥耦合下土壤環(huán)境因子的互動(dòng)響應(yīng)關(guān)系,揭示水肥協(xié)同影響土壤呼吸的作用及機(jī)理,以期為明確設(shè)施農(nóng)田碳排放規(guī)律、制定土壤CO2減排的水肥管理措施提供理論和實(shí)踐依據(jù)。

        1 材料與方法

        1.1 試驗(yàn)地概況

        試驗(yàn)于2016年5―10月在福建省漳州市云霄縣老區(qū)果場(chǎng)科技示范基地(23°57′38″ N,117°20′5″ E)進(jìn)行。全縣屬南亞熱帶海洋性季風(fēng)氣候。試驗(yàn)地年平均氣溫21.3 ℃。最低和最高溫分別出現(xiàn)在1月和7月,1月平均氣溫13.4 ℃,7月平均氣溫28.2 ℃。年降水量1 730.6 mm,無霜期347 d。供試土壤0~20 cm土層理化性質(zhì)(5月2日測(cè)定)為:鹽分質(zhì)量分?jǐn)?shù)2.72 g/kg,有機(jī)質(zhì)2.1%,總氮0.96 g/kg,速效磷14.2 mg/kg,速效鉀110.6 mg/kg,容重1.39 g/cm3,田間持水量22.9%。

        1.2 試驗(yàn)設(shè)計(jì)

        試驗(yàn)在設(shè)施大棚中進(jìn)行,大棚跨度8 m,長(zhǎng)30 m,整個(gè)試驗(yàn)區(qū)共75 m2。采用起壟種植的方法,土壟寬0.6 m、長(zhǎng)3 m、高 0.05 m,相鄰壟間距0.2 m。每條壟種植2行番茄,行距0.3 m,株距0.4 m。每條壟的兩行共16株番茄為一個(gè)處理。不同處理之間采用60 cm深的塑料防滲膜隔開,防止水、肥、鹽的側(cè)滲。選擇番茄品種“西蘭牌大紅寶”為植物試材,于5月18日移栽。常規(guī)打藥、除草等田間管理依照當(dāng)?shù)亓?xí)慣進(jìn)行。

        試驗(yàn)設(shè)3種滴灌定額(I1:150 m3/hm2或15 mm、I2:180 m3/hm2或18 mm、I3:210 m3/hm2或21 mm),3種有效微生物(EM,effective microorganism)有機(jī)肥施肥水平(F1:2 800 kg/hm2、F2:3 600 kg/hm2、F3:4 400 kg/hm2),以當(dāng)?shù)貍鹘y(tǒng)水肥管理模式即化肥(N 180 kg/hm2,P2O590 kg/hm2,K2O 54 kg/hm2)和滴灌(18 mm)為對(duì)照,共3×3+1=10個(gè)處理,每個(gè)處理重復(fù)3次,各處理隨機(jī)排列。滴灌管為內(nèi)鑲式圓柱滴頭滴灌管,內(nèi)徑8 mm,滴頭間距30 cm,滴頭流量2 L/h,滴灌工作壓力0.3 MPa。每6天灌溉1次,生育期約130 d,共灌溉21次,第一次灌溉于5月21日進(jìn)行。EM有機(jī)肥(由南京蔬菜花卉研究所提供),由EM發(fā)酵液、秸稈、豆粉和糞便等發(fā)酵而成,含N 5%、P2O52.5%、K2O 1.5%?;瘜W(xué)肥料采用尿素(含N 46%)、過磷酸鈣(含P2O516%)和硫酸鉀(含K2O 50%)??偸┓柿烤凑栈剩旱谝凰牍旱诙牍?=1∶1∶1分配。生物有機(jī)肥用作基肥施用時(shí),與表層土壤混合均勻。具體水肥設(shè)計(jì)如表1所示。

        1.3 測(cè)定項(xiàng)目與方法

        1)土壤呼吸速率:采用自制不透明塑料板靜態(tài)箱和便攜式紅外CO2分析儀(廣州盈翔嘉儀器儀表有限公司)測(cè)定。靜態(tài)箱尺寸為60 cm×60 cm×60 cm,底部馬鞍型,可橫跨番茄壟體,上方裝有直徑12 cm的風(fēng)扇。箱體縫隙用硅膠填充。移栽后12 d(6月1日)開始測(cè)定土壤呼吸速率,兩次測(cè)定間隔時(shí)間為12 d。測(cè)定前24 h,每個(gè)處理隨機(jī)選擇1株具有代表性的番茄植株,去除其周圍土壤表面的雜草雜物,以植株為中心開挖60 cm×60 cm,深度10 cm的凹槽。24 h后開始測(cè)定土壤呼吸參數(shù),測(cè)定時(shí)間為早上10:00,每次測(cè)定重復(fù)3次。測(cè)定前首先沿壟面將番茄植株剪至莖基部,將箱體插入凹槽,和土壤接觸縫隙處用土填實(shí)。箱體就緒后開啟風(fēng)扇,使氣體混合均勻,再連接紅外儀,在0~5 min內(nèi)每1 min測(cè)定一次CO2濃度[17]。

        表1 灌溉施肥處理

        注:施肥種類為有效微生物(EM,effective microorganism)有機(jī)肥,由EM發(fā)酵液、秸稈、豆粉和糞便等發(fā)酵而成,含N 5%、P2O52.5%、K2O 1.5%。

        Note: The fertilizer type is effective microorganism organic matter produced by EM fermentation solution, straw, soybean flour and feces, containing N of 5%, P2O5of2.5% and K2O of 1.5%.

        2)土壤溫度和濕度:土壤呼吸參數(shù)測(cè)定結(jié)束后,取下靜態(tài)箱,用Delta-T Wet土壤三參數(shù)速測(cè)儀(英國Delta-t公司)測(cè)定土壤溫度和濕度。測(cè)定位置為以植株為中心10 cm處土壤,測(cè)定重復(fù)3次。

        3)土壤有機(jī)質(zhì):溫濕度測(cè)定完成后用土鉆和五點(diǎn)取樣法采集耕層土壤(0~15 cm)樣品,每次采集重復(fù)3 次。所取土樣分為兩部分,其中一份在室內(nèi)風(fēng)干,去雜,研磨,過0.15 mm孔徑篩后,用重鉻酸鉀-硫酸氧化外加熱法測(cè)定土壤有機(jī)質(zhì)含量[7]。

        4)土壤酶活性:另一份土樣用于測(cè)定土壤酶活性。脫氫酶活性用氯化三苯基四氮唑(TTC,2,3,5-三苯基氯化四氮唑)比色法測(cè)定,用TPF的濃度g/(g·d)表示;土壤脲酶活性采用苯酚鈉比色法測(cè)定,用NH3-N 的濃度mg/(g·d)表示;過氧化氫酶活性用KMnO4容量法測(cè)定,用0.1 mol KMnO4mL/(g·h)表示[18]。

        5)根系生物量:用10 cm直徑的KHT-016(金壇市康華電子儀器制造廠)取樣,取樣方法為5孔法,采集深度為0~20、>20~40、>40~60和>60~80 cm土層。根土分離采用淘洗法,樣品經(jīng)過浸泡攪動(dòng)后反復(fù)過0.5 mm土壤篩,分離后用鑷子取出根系,烘干稱質(zhì)量[19]。

        1.4 數(shù)據(jù)處理

        土壤呼吸速率按如下公式計(jì)算[20]

        式中為土壤呼吸速率,mg/m?h;為標(biāo)準(zhǔn)狀態(tài)下CO2密度,即1.963 g/L;為箱體有效高度,m;0為標(biāo)準(zhǔn)狀態(tài)下的大氣壓,1.01×105Pa;和為測(cè)定時(shí)箱內(nèi)的實(shí)際氣壓和氣溫,Pa、℃;d/d為單位時(shí)間靜態(tài)箱內(nèi)部的CO2濃度變化量,L/L?h。

        土壤呼吸累計(jì)碳排放量按照以下公式計(jì)算[21]

        式中為土壤累積呼吸量,g/m2;為土壤呼吸速率,mg/m2?h;為測(cè)定次數(shù);為采樣時(shí)間,即移栽后天數(shù),d。

        顯著性分析和方差分析采用SPSS 17.0軟件。

        2 結(jié)果與分析

        2.1 滴灌-微生物有機(jī)肥耦合下設(shè)施土壤呼吸速率動(dòng)態(tài)變化

        設(shè)施土壤呼吸速率總體上隨移栽后天數(shù)呈波動(dòng)性變化規(guī)律(圖1)。番茄生長(zhǎng)前期,即移栽后12~48 d,呼吸速率增長(zhǎng)相對(duì)緩慢;移栽48 d后迅速增長(zhǎng),至移栽后72 d達(dá)到峰值;72~84 d出現(xiàn)小幅下降,這與該時(shí)間段土溫下降有關(guān),這也導(dǎo)致了本研究土壤呼吸速率出現(xiàn)雙峰現(xiàn)象,但值得注意的是,該現(xiàn)象主要基于試驗(yàn)過程中的自然條件變化,不具有普適性;84d后呼吸速率繼續(xù)增加,至移栽后96 d再次達(dá)到峰值;移栽96 d后土壤呼吸速率逐漸下降。水肥耦合對(duì)呼吸速率有不同程度的影響。相同灌溉量條件下,增加施肥量均明顯提高了土壤呼吸速率,不同處理以I2F3呼吸速率最高,移栽72和96 d分別達(dá)到165.1和230.1 mg/(m2?h)。對(duì)照處理CK土壤呼吸速率總體上低于滴灌-微生物有機(jī)肥處理,移栽60 d(坐果期前期)后尤為顯著。

        圖1 滴灌-微生物有機(jī)肥耦合下設(shè)施土壤呼吸速率隨移栽后天數(shù)的變化

        2.2 滴灌-微生物有機(jī)肥施用對(duì)設(shè)施土壤累計(jì)碳排放量的影響

        圖2所示為滴灌-微生物有機(jī)肥施用對(duì)設(shè)施土壤呼吸CO2總排放量的影響。圖2中可看出,施肥對(duì)土壤累計(jì)碳排放量有極顯著(<0.01)影響,但灌溉對(duì)累計(jì)碳排放的影響并不顯著,灌溉和施肥結(jié)合對(duì)累計(jì)碳排放量影響顯著(<0.05),說明滴灌-微生物有機(jī)肥對(duì)土壤累計(jì)碳排放存在耦合效應(yīng)。相同灌溉定額下,增加微生物有機(jī)肥施肥量明顯提高了土壤累計(jì)碳排放量。其中,在I1和I2條件下,施肥量從3 600 kg/hm2增加到4 400 kg/hm2時(shí)對(duì)應(yīng)的碳排放增加達(dá)到顯著(<0.05)水平。不同處理以I2F3土壤累計(jì)碳排放量最大,達(dá)到415.2 g/m2,顯著(<0.05)高于其他處理;CK土壤累計(jì)碳排放量最小,為255.3 g/m2。

        2.3 滴灌-微生物有機(jī)肥耦合對(duì)土壤溫濕度、有機(jī)質(zhì)、酶活性和植株根系生物量的影響

        2.3.1 土壤溫度和含水率

        土壤溫度在移栽后12~36 d快速增加,這與氣候變化關(guān)系密切,移栽36 d為6月末,此時(shí)逐漸進(jìn)入穩(wěn)定的高溫時(shí)期;移栽72 d達(dá)到峰值后土壤溫度出現(xiàn)小幅下降,至移栽后96 d再次達(dá)到峰值,隨后呈快速下降趨勢(shì)(圖 3a)。不難看出,土壤溫度峰值與土壤呼吸速率峰值明顯對(duì)應(yīng)。土壤含水率的變化總體上較為平穩(wěn)(圖3b),移栽后60~96 d出現(xiàn)一定波動(dòng),該時(shí)期為番茄坐果期,水分需求量旺盛,對(duì)土壤水分變化有一定影響。番茄整個(gè)生育階段,土壤含水率為19.2%~24.7%。

        注:**表示極顯著效應(yīng)(p<0.01);*表示顯著效應(yīng)(p<0.05);ns表示不相關(guān)。不同字母表示在p<0.05水平差異顯著。

        圖3 不同滴灌-微生物有機(jī)肥處理下土壤溫度和含水率變化

        2.3.2 土壤有機(jī)質(zhì)

        圖4所示為滴灌-微生物有機(jī)肥耦合下設(shè)施土壤有機(jī)質(zhì)隨移栽后天數(shù)的變化。圖4中可看出,微生物有機(jī)肥的施加提升了土壤有機(jī)質(zhì)含量,滴灌-微生物有機(jī)肥處理整個(gè)生育階段的土壤有機(jī)質(zhì)含量為2.40%~2.71%,無論是隨移栽時(shí)間的波動(dòng)變化和各處理間的差異均不大。對(duì)照處理CK有機(jī)質(zhì)含量在各移栽時(shí)間均低于滴灌-微生物有機(jī)肥處理,為2.15%~2.31%。相同滴灌定額下,提高有機(jī)肥施用量均對(duì)土壤有機(jī)質(zhì)含量提升起到一定的促進(jìn)作用,但本研究的施肥量梯度下促進(jìn)效果并不明顯。

        2.3.3 土壤酶活性

        微生物有機(jī)肥施用對(duì)脫氫酶、脲酶和過氧化氫酶均有極顯著(<0.01)影響,滴灌對(duì)脲酶和過氧化氫酶分別有極顯著(<0.01)和顯著(<0.05)影響,滴灌和微生物有機(jī)肥耦合僅對(duì)脲酶有顯著(<0.05)影響(表 2)。相同灌溉定額下,設(shè)施土壤酶活性總體上與施肥量呈正相關(guān),但相同施肥量下酶活性與灌溉定額的關(guān)系并不明顯。不同處理以I3F3土壤脫氫酶活性最高,達(dá)到42.1g/(g·d);I2F3土壤脲酶和過氧化氫酶活性最高,分別達(dá)到3.77和4.66 mg/(g·d)。與CK相比,滴灌和微生物有機(jī)肥施用下土壤脫氫酶、脲酶和過氧化氫酶分別提高了11.6%~27.6%,8.0%~27.7%和1.8%~11.2%。

        表2 不同水肥處理下設(shè)施土壤酶活性

        注:同一列不同字母表示在<0.05水平差異顯著。**表示極顯著效應(yīng)(<0.01);*表示顯著效應(yīng)(<0.05);ns表示不相關(guān)。

        Note: Data with different letters in the same column are different significantly at 0.05 level. **represent much significant effect (<0.01), *represent significant effect (<0.05) and ns represent non-effect.

        圖4 滴灌-微生物有機(jī)肥耦合下設(shè)施土壤有機(jī)質(zhì)隨移栽后天數(shù)的變化

        2.3.4 根系生物量

        根系生物量隨移栽后時(shí)間呈“緩慢增長(zhǎng)、快速增長(zhǎng)、再緩慢增長(zhǎng)”3個(gè)階段。移栽后12~36 d,番茄植株從苗期進(jìn)入花期前期,根系生物量呈緩慢增加趨勢(shì),各處理增加幅度較為一致;移栽后36~84 d為番茄花期和坐果期前期,植株養(yǎng)分需求量旺盛,根系生長(zhǎng)發(fā)育較快;移栽84 d后,根系生物量有小幅增長(zhǎng),但變化不大(圖5)。相同滴灌量條件下增加施肥量明顯提高了根系生物量,而在相同施肥量下,I2處理對(duì)根系生物量增加的促進(jìn)效果最為明顯。不同處理以I2F3根系生物量最高,移栽后120 d達(dá)到394 g/m2。與CK相比,不同滴灌-微生物有機(jī)肥處理根系生物量增加了25.9%~43.4%。

        圖5 滴灌-微生物有機(jī)肥耦合下根系生物量隨移栽后天數(shù)的變化

        Fig 5 Variation of root biomass with days after transplant under drip irrigation and microbial organic fertilization

        2.4 設(shè)施土壤呼吸速率與各影響因子間的相關(guān)分析

        表3所示為土壤呼吸速率與主要土壤環(huán)境因子和根系生物量的相關(guān)分析。表3中可看出,土壤呼吸速率與根系生物量、土壤溫度和有機(jī)質(zhì)含量呈極顯著(<0.01)正相關(guān),相關(guān)系數(shù)分別為0.83、0.75和0.50;與土壤脫氫酶、脲酶和過氧化氫酶活性呈顯著(<0.05)正相關(guān),相關(guān)系數(shù)分別為0.21、0.24和0.25。相關(guān)分析結(jié)果表明,滴灌和微生物有機(jī)肥影響下根系生物量和土壤有機(jī)質(zhì)含量的改變是土壤呼吸速率最為關(guān)鍵的影響因素。

        表3 設(shè)施土壤呼吸速率與各影響因子的相關(guān)分析

        注:*表示在0.05水平上顯著相關(guān),**表示在0.01水平上顯著相關(guān)。

        Note:* represent significant correlation at 0.05 level, and **represent much significant correlation at 0.01 level.

        3 討 論

        土壤呼吸速率與環(huán)境因子和土壤中的生命活動(dòng)密切相關(guān)[16]。本研究中,番茄生長(zhǎng)前期(移栽后12~48 d)土壤呼吸速率增長(zhǎng)緩慢但在移栽48 d后出現(xiàn)一波快速增長(zhǎng),這與移栽48 d后高土溫促進(jìn)下的微生物活動(dòng)及花期的根系生長(zhǎng)(圖5)有關(guān)。滴灌-微生物有機(jī)肥處理土壤呼吸速率總體大于對(duì)照處理CK,原因一方面是有機(jī)肥帶入了更多的有機(jī)質(zhì)和碳源,供給微生物呼吸的底物,促進(jìn)微生物生命活動(dòng);另一方面可能由于有機(jī)肥改良了土壤理化性質(zhì),為土壤微生物和植物根系創(chuàng)造了更適宜的生長(zhǎng)環(huán)境[22-23]。本試驗(yàn)的前期研究結(jié)果表明,在設(shè)施栽培環(huán)境下,有利于降低耕層鹽分[24](降幅8.2%~34.7%),從而可能通過緩解微生物和植物根系的鹽分脅迫,對(duì)土壤呼吸產(chǎn)生一定的促進(jìn)作用。

        前人研究表明,水肥耦合對(duì)土壤速效養(yǎng)分、作物生長(zhǎng)發(fā)育和產(chǎn)量形成等均存在耦合效應(yīng),本研究中,土壤呼吸速率也受到滴灌和微生物有機(jī)肥耦合的顯著影響,這印證了楊碩歡等[25]和鄭恩楠等[26]的研究結(jié)果。水肥耦合的機(jī)理如下:1)施肥后土壤水分常數(shù)發(fā)生變化,土壤有效水分、飽和含水量和田間持水量隨施肥量提高而提高,但凋萎濕度未發(fā)生改變[27],且施肥可活化較為深層的土壤水分,促進(jìn)不易被吸收的土壤水轉(zhuǎn)化為有效水[28];2)施肥提高了植物逆境脅迫下的生理穩(wěn)定性(如水分脅迫時(shí)葉片的滲透調(diào)節(jié)能力),維持植物根系活力[29];3)水分能夠促進(jìn)肥料中營養(yǎng)元素的礦化,同時(shí)促使礦質(zhì)養(yǎng)分通過質(zhì)流和擴(kuò)散而運(yùn)輸,提高植物根系吸收的養(yǎng)分強(qiáng)度[30]。綜上,滴灌水分和微生物有機(jī)肥通過以肥調(diào)水、以水促肥的相互協(xié)作方式,產(chǎn)生了對(duì)土壤累計(jì)碳排放量影響最大的水肥耦合模式。

        土壤溫度和土壤呼吸速率關(guān)系密切,體現(xiàn)在土壤溫度峰值和呼吸峰值的高度對(duì)應(yīng)性,這與Liu等[31]的研究結(jié)論一致,Liu等認(rèn)為溫度變化可以解釋土壤呼吸日變化和季節(jié)性變化的大部分變異。土壤濕度也是土壤呼吸的主要控制因子,土壤過旱或過澇都會(huì)使土壤呼吸驟減,適宜的土壤水分可增加土壤微生物種群數(shù)量,增強(qiáng)其分解活動(dòng),同時(shí)促進(jìn)根系呼吸。但本研究并未發(fā)現(xiàn)土壤濕度和呼吸速率間的明顯關(guān)系,這可能由于本研究中灌溉水量設(shè)計(jì)梯度不大,且灌后土壤均處于適宜的水分范圍內(nèi)。土壤酶對(duì)土壤呼吸有一定的促進(jìn)作用,其中脲酶能夠直接催化尿素水解產(chǎn)生氨、CO2和水;過氧化氫酶能促使分解由生物呼吸和有機(jī)物生物化學(xué)氧化反應(yīng)產(chǎn)生的過氧化氫,緩解土壤生物和植物的過氧化氫毒害,從而間接增加土壤呼吸[18,32-33]。本研究滴灌和微生物有機(jī)肥對(duì)土壤酶活性影響顯著(表2),而土壤酶活性又與土壤呼吸速率呈顯著正相關(guān)(表3),說明滴灌和微生物有機(jī)肥處理下土壤酶活性的改變是影響土壤呼吸的重要途徑之一。

        根系呼吸在土壤呼吸中占較大比例,部分生態(tài)系統(tǒng)中根系呼吸占總土壤呼吸比例達(dá)50%以上[34]。研究發(fā)現(xiàn),根系還可通過根系分泌物影響土壤有機(jī)質(zhì)含量,影響土壤理化性質(zhì),從而間接影響土壤呼吸[35-36]。本研究中施肥量對(duì)增加根系生物量有明顯促進(jìn)效應(yīng)(圖5),根系生物量的增加對(duì)土壤呼吸速率產(chǎn)生極顯著正效應(yīng)(表3),這與前人研究結(jié)論一致[37-38]。但本試驗(yàn)未追蹤根系分泌物對(duì)土壤呼吸速率的貢獻(xiàn)及根系衍生物產(chǎn)生的呼吸作用,相關(guān)的深入研究尚有待開展。

        本研究所有影響因素中,根系生物量、土壤溫度和有機(jī)質(zhì)含量是影響土壤呼吸速率最關(guān)鍵的3個(gè)因子(表 3)。盡管滴灌水分對(duì)局部土壤溫度有一定影響,但從番茄整個(gè)生育階段來看,土壤溫度的變化主要還是與移栽后天數(shù)對(duì)應(yīng)的氣溫變化有關(guān),與水肥處理關(guān)系不大。因此,可認(rèn)為根系生物量和土壤有機(jī)質(zhì)是滴灌和微生物有機(jī)肥作用下土壤呼吸速率最重要的影響因子。本研究系統(tǒng)分析了滴灌-微生物有機(jī)肥耦合對(duì)設(shè)施土壤呼吸速率和累計(jì)碳排放的影響,并通過土壤呼吸速率與關(guān)聯(lián)因子間的相關(guān)分析,揭示了滴灌和微生物有機(jī)肥對(duì)設(shè)施土壤呼吸耦合作用的機(jī)理,進(jìn)一步研究應(yīng)當(dāng)考慮滴灌和微生物有機(jī)肥施用下土壤微生物區(qū)系的改變,以及水肥耦合帶入土壤或間接導(dǎo)致的易被微生物分解的有機(jī)質(zhì)類型的數(shù)量變化。

        4 結(jié) 論

        1)滴灌和微生物有機(jī)肥對(duì)土壤累計(jì)碳排放量有顯著(<0.05)的耦合效應(yīng)。

        2)土壤呼吸速率與根系生物量、土壤溫度和有機(jī)質(zhì)含量呈極顯著(<0.01)正相關(guān),與土壤酶活性呈顯著(<0.05)正相關(guān)。

        3)滴灌-微生物有機(jī)肥處理有利于提高土壤有機(jī)質(zhì)含量,同時(shí)提升土壤脫氫酶、脲酶和過氧化氫酶活性,其中滴灌和微生物有機(jī)肥對(duì)脲酶的耦合效應(yīng)達(dá)到顯著(p<0.05)水平;土壤脫氫酶、脲酶和過氧化氫酶活性分別提升11.6%~27.6%,8.0%~27.7%和1.8%~11.2%。

        [1]賀美,王立剛,王迎春,等. 長(zhǎng)期定位施肥下黑土呼吸的變化特征及其影響因素[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(4):151-161. He Mei, Wang Ligang, Wang Yingchun, et al. Characteristic of black soil respiration and its influencing factors under long-term fertilization regimes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(4): 151-161. (in Chinese with English abstract)

        [2]張東秋,石培禮,張憲洲. 土壤呼吸主要影響因素的研究進(jìn)展[J]. 地球科學(xué)進(jìn)展,2005,20(7):778-785. Zhang Dongqiu, Shi Peili, Zhang Xianzhou. Some advance in the main factors controlling soil respiration[J]. Advances in Earth Science, 2005, 20(7): 778-785. (in Chinese with English abstract)

        [3]賈洪雷,李森森,王剛,等. 玉米立茬與粉碎秸稈覆蓋對(duì)生長(zhǎng)季土壤呼吸的影響(英文)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(8):146-155. Jia Honglei, Li Sensen, Wang Gang, et al. Effect of standing and shattered stalk residue mulching on soil respiration during growing-season of maize (Zea mays L. )[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(8): 146-155. (in English with Chinese abstract)

        [4]Hou Maomao, Jin Qiu, Lu Xinyu, et al. Growth, water use, and nitrate-N-15 nptake of greenhouse tomato as influenced by different irrigation patterns, N-15 labeled depths, and transplant times[J]. Frontiers in Plant Science, 2017, 8: 666. doi: 10. 3389/fpls. 2017. 00666

        [5]Hou Maomao, Shao Xiaohou, Zhai Yaming. Effects of different regulatory methods on improvement of greenhouse saline soils, tomato quality, and yield[J]. Scientific World Journal, 2014, 2014: 953675. doi: http: //dx. doi. org/10. 1155/2014/953675

        [6]Hou Maomao, Zhong Fenglin, Jin Qiu, et al. Fate of nitrogen-15 in the subsequent growing season of greenhouse tomato plants (Lycopersicon esculentum Mill) as influenced by alternate partial root-zone irrigation[J]. Rsc Advances, 2017, 7(55): 34392-34400.

        [7]侯毛毛,陳競(jìng)楠,楊祁,等. 暗管排水和有機(jī)肥施用下濱海設(shè)施土壤氮素行為特征[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(11):259-266. Hou Maomao, Chen Jingnan, Yang Qi, et al. Behavior of coastal greenhouse soil nitrogen as influenced by subsurface drainage and organic fertilize[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(11), 259-266.

        [8]胡萍,嚴(yán)秀琴,虞冠軍,等. 設(shè)施土壤次生鹽漬化客土修復(fù)技術(shù)初探[J]. 上海交通大學(xué)學(xué)報(bào)(農(nóng)業(yè)科學(xué)版),2005,23(1),46-51. Hu Ping, Yan Xiuqin, Yu Guanjun, et al. An approach to remediation of secondary salinization of the soils in the protected watermelon cultivation with special reference to the mixing of alien earth[J]. Journal of Shanghai Jiaotong University(Agricultural Science), 2005, 23(1): 46-51. (in Chinese with English abstract)

        [9]鄭子成,李廷軒,何淑勤,等. 保護(hù)地土壤生態(tài)問題及其防治措施的研究[J]. 水土保持研究,2006,13(1):18-20,53. Zheng Zicheng, Li Tingxuan, He Shuqin, et al. Research of ecological problems and countermeasures on the soil of greenhouse[J]. Research of Soil and Water Conservation, 2006, 13(1): 18-20,53. (in Chinese with English abstract)

        [10]侯裕生,王振華,李文昊,等. 水肥耦合對(duì)極端干旱區(qū)滴灌葡萄耗水規(guī)律及作物系數(shù)影響[J]. 水土保持學(xué)報(bào),2019,33(2):279-286,330. Hou Yusheng, Wang Zhenhua, Li Wenhao, et al. Effects of water and fertilizer coupling on water consumption and crop coefficient of drip irrigated grape in extreme arid area[J]. Journal of Soil and Water Conservation, 2019, 33(2): 279-286, 330. (in Chinese with English abstract)

        [11]王海鵬,孫振榮,薛蓮,等. 水肥耦合一體化對(duì)溫室茄子的影響初報(bào)[J]. 甘肅農(nóng)業(yè)科技,2019(3):55-57. Wang Haipeng, Sun Zhenrong, Xue Lian, et al. A preliminary report on the effect of water and fertilizer coupling integration on Greenhouse Eggplant[J]. Gansu Agricultural Science and Technology, 2019(3): 55-57. (in Chinese with English abstract)

        [12]侯毛毛,邵孝侯,翟亞明,等. 基于15N示蹤技術(shù)的煙田肥料氮素再利用分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(增刊1):118-123. Hou Maomao, Shao Xiaohou, Zhai Yaming, et al. Analysis on reutilization characters of fertilizer N in tobacco field with15N tracing technique[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(Supp.1): 118-123. (in Chinese with English abstract)

        [13]梁運(yùn)江,依艷麗,許廣波,等. 水肥耦合效應(yīng)的研究進(jìn)展與展望[J]. 湖北農(nóng)業(yè)科學(xué),2006,45(3):385-388. Liang Yunjiang, Yi Yanli, Xu Guangbo, et al. Research progress and prospect of coupling effect of water and fertilizer[J]. Hubei Agricultural Sciences, 2006, 45(3): 385-388. (in Chinese with English abstract)

        [14]于亞軍,李軍,賈志寬,等. 旱作農(nóng)田水肥耦合研究進(jìn)展[J]. 干旱地區(qū)農(nóng)業(yè)研究,2005,23(3):220-224. Yu Yajun, Li Jun, Jia Zhikuan, et al. Research progress of water and fertilizer coupling on dry land[J]. Agricultural Research in the Arid Areas, 2005, 25(3): 220-224. (in Chinese with English abstract)

        [15]EriC A Davidson, Elizabeth Belk, Richard D Boone. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest[J]. Global Change Biology, 1998, 4(2): 217-227.

        [16]馬秀梅,朱波,韓廣軒,等. 土壤呼吸研究進(jìn)展[J]. 地球科學(xué)進(jìn)展,2004,19(增刊1):491-495. Ma Xiumei, Zhu Bo, Han Guangxuan, et al. The advance in research of soil respirotion[J]. Advances in Earth Science, 2004, 19(Supp. 1): 491-495. (in Chinese with English abstract)

        [17]戴衍晨,王瑞,申國明,等. 不同施肥條件下烤煙生長(zhǎng)期土壤呼吸變化及其影響因素[J]. 煙草科技,2016,49(1):8-13,30. Dai Yanchen, Wang Rui, Shen Guoming, et al. Variations and factors influencing soil respiration in flue-cured tobacco fields under different fertilization treatments[J]. Tobacco Science & Technology, 2016, 49(1): 8-13, 30. (in Chinese with English abstract)

        [18]曾路生,崔德杰,李俊良,等. 壽光大棚菜地土壤呼吸強(qiáng)度、酶活性、pH與EC的變化研究[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2009,15(4):865-870. Zeng Lusheng, Cui Dejie, Li Junliang, et al. Changes of respiration, enzyme activities, pH and EC in greenhouse vegetable soils in Shouguang[J]. Journal of Plant Nutrition and Fertilizer, 2009, 15(4): 865-870. (in Chinese with English abstract)

        [19]劉鳳山,周智彬,胡順軍,等. 根鉆不同取樣法對(duì)估算根系分布特征的影響[J]. 草業(yè)學(xué)報(bào),2012,21(2):294-299. Liu Fengshan, Zhou Zhibin, Hu Shunjun, et al. Influence of different soil coring methods on esrimation of distribution characteristics[J]. Pratacultural Science, 2012, 21(2): 294-299. (in Chinese with English abstract)

        [20]喬云發(fā),苗淑杰,王樹起,等. 不同施肥處理對(duì)黑土土壤呼吸的影響[J]. 土壤學(xué)報(bào),2007,44(6):1028-1035. Qiao Yunfa, Miao Shujie, Wang Shuqi, et al. Soil respiration affected by fertilization in black soil[J]. Acta Pedologica Sinica, 2007, 44(6): 1028-1035. (in Chinese with English abstract)

        [21]梁堯,韓曉增,喬云發(fā),等. 小麥-玉米-大豆輪作下黑土農(nóng)田土壤呼吸與碳平衡[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào),2012,20(4):395-401. Liang Yao, Han Xiaozeng, Qiao Yunfa, et al. Soil respiration and carbon budget in black soils of wheat-maize-soybean rotation system[J]. Chinese Journal of Eco-Agriculture, 2012, 20(4): 395-401. (in Chinese with English abstract)

        [22]Jennifer L Soong, Sara Mara?on-Jimenez, M Francesca Cotrufo, et al. Soil microbial CNP and respiration responses to organic matter and nutrient additions: Evidence from a tropicsal oil incubation[J]. Soil Biology and Biochemistry, 2018, 122: 141-149.

        [23]Thi Hoang Ha Truong, Petra Marschner. Respiration, available N and microbial biomass N in soil amended with mixes of organic materials differing in C/N ratio and decomposition stage[J]. Geoderma, 2018, 319: 167-174.

        [24]Zhong Fenglin, Hou Maomao, He Bizhu, et al. Assessment on the coupling effects of drip irrigation and organic fertilization based on entropy weight coefficient model[J]. PeerJ, 2017, 5: e3855. doi: 10. 7717/peerj. 3855.

        [25]楊碩歡,張保成,王麗,等. 水肥用量對(duì)玉米季土壤CO2排放的綜合影響[J]. 環(huán)境科學(xué),2016,37(12):4780-4788. Yang Shuohuan, Zhang Baocheng, Wang Li, et al. Comprehensive effects of the application of water and fertilizer amount on CO2emission from soils of summer-maize field[J]. Environmental Science, 2016, 37(12): 4780-4788. (in Chinese with English abstract)

        [26]鄭恩楠,張忠學(xué),楊樺,等. 節(jié)水灌溉下不同氮肥施加對(duì)稻米品質(zhì)變異性的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(3):271-278. Zheng Ennan, Zhang Zhongxue, Yang Hua, et al. Effect of nitrogen fertilizers application on variability of quality of paddy with water-saving irrigation[J]. Transactions of The Chinese Society of Agricultural Machinery, 2018, 49(3): 271-278. (in Chinese with English abstract)

        [27]汪德水,程憲國,張美榮,等. 旱地土壤中的肥水激勵(lì)機(jī)制[J]. 植物營養(yǎng)與肥料學(xué)報(bào),1995,1(1):64-70. Wang Deshui, Cheng Xianguo, Zhang Meirong, et al. The excitation mechanism between fertilizer and water under dryland condition[J]. Journal of Plant Nutrition and Fertilizer, 1995, 1(1): 64-70. (in Chinese with English abstract)

        [28]Asseng Senthold Moeller Carina, Berger Jens, Milroy Stephen P. Plant available soil water at sowing in Mediterranean environments: Is it a useful criterion to aid nitrogen fertiliser and sowing decisions?[J]. Field Crops Research, 2009, 114(1): 127-136.

        [29]關(guān)軍鋒,李廣敏. 干旱條件下施肥效應(yīng)及其作用機(jī)理[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào),2002,10(1):59-61. Guan Junfeng, Li Guangmin. Effects and mechanism of fertilization under drought[J]. Chinese Journal of Eco-Agriculture, 2002, 10(1): 59-61. (in Chinese with English abstract)

        [30]汪德水,程憲國,姚曉曄,等. 半干旱地區(qū)麥田水肥效應(yīng)研究[J]. 土壤肥料,1994 (2):1-4. Wang Deshui, Cheng Xianguo, Yao Xiaoye, et al. Study on water and fertilizer effect in wheat field in semi-arid area[J]. Soils and Fertilizers Sciences in China, 1994(2): 1-4. (in Chinese with English abstract)

        [31]Liu Xiaozhong, Wang Shiqiang, Su Bo, et al. Response of soil CO2efflux to water manipulation in a tallgrass prairie ecosystem[J]. Plant and Soil, 2002, 240(2): 213-223.

        [32]白銀萍,海江波,楊剛,等. 稻田土壤呼吸及酶活性對(duì)不同秸稈還田方式的響應(yīng)[J]. 應(yīng)用與環(huán)境生物學(xué)報(bào),2017,23(1):28-32. Bai Yinping, Hai Jiangbo, Yang Gang, et al. Effect of the straw returning pattern on soil respiration and enzyme activities[J]. Chinese Journal of Applied and Environmental Biology, 2017, 23(1): 28-32. (in Chinese with English abstract)

        [33]楊帆,楊萬勤,吳福忠,等. 萘對(duì)川西亞高山森林土壤呼吸、養(yǎng)分和酶活性的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2017,28(6):1779-1785. Yang Fan, Yang Wanqin, Wu Fuzhong, et al. Effects of naphthalene on soil respiration, nutrients and enzyme activities in the subalpine forest of western Sichuan, China[J]. Chinese Journal of Applied Ecology, 2017, 28(6): 1779-1785. (in Chinese with English abstract)

        [34]Wang Wei, Guo Jixun. The contribution of root respiration to soil CO2efflux in Puccinellia tenuiflora dominated community in a semi-arid meadow steppe[J]. Chinese Science Bulletin, 2006, 516: 697-703.

        [35]T Oikawa. Contribution of root and microbial respiration to soil CO2efflux and their environmental controls in a humid temperate grassland of Japan[J]. Pedosphere, 2009, 19(1): 31-39.

        [36]Liu Ying, Han Shijie, Zhou Yumei, et al. Soil and root respiration under llevated CO2concentrations during seedling growth of pinus sylvestris var. sylvestriformis[J]. Pedosphere, 2007, 17(5): 660-665.

        [37]寇太記,朱建國,謝祖彬,等. CO_2濃度增加和不同氮肥水平對(duì)冬小麥根系呼吸及生物量的影響[J]. 植物生態(tài)學(xué)報(bào),2008,32(4):922-931. Kou Taiji, Zhu Jianguo, Xie Zubin, et al. Effect of elevated atmospheric CO2concentration and level of nitrogen fertilizer on root respiration and biomass of winter wheat[J]. Chinese Journal of Plant Ecology, 2008, 32(4): 922-931. (in Chinese with English abstract)

        [38]張晶,沈應(yīng)柏,徐程揚(yáng). 樹木根系呼吸及其對(duì)環(huán)境的反應(yīng)研究進(jìn)展[J]. 東北林業(yè)大學(xué)學(xué)報(bào),2007,35(2):78-81. Zhang Jing, Shen Yingbai, Xu Chengyang. Reviews on root respiration and it responses to environment changes[J]. Journal of Northeast Forestry University, 2007, 35(2): 78-81. (in Chinese with English abstract)

        Coupling effect and mechanism of drip irrigation and microbial organic fertilization on soil respiration in greenhouse

        Hou Maomao1,2, Chen Jingnan3, Lin Zhiyuan1, Wang Jinwei1, Li Haobo1, Chen Jintao1, Weng Junling1, Lv Yiwen1, Jin Qiu4, Zhong Fenglin1※

        (1.,,350002,; 2.,350300,; 3.,,350119,; 4.,210029,)

        Soil respiration is mediated by microbial activities, temperature, humidity and other environmental factors in soil. The increase in use of microbial organic fertilizer and drip irrigation in greenhouse production could alter soil micro-environment, particularly the rhizosphere, thereby leading to a change in soil respiration. This paper investigated the response of soil respiration to different combinations of drip irrigation amounts and microbial organic fertilizer applications. We experimentally compared three irrigation amounts 15, 18 and 21 mm – associated with three microbial organic fertilizer applications 2800, 3600 and 4400 kg/hm2. The treatment with inorganic fertilizer application served as the control. In each treatment, we measured soil respiration rate and accumulated carbon emission, as well as other determinants. The soil temperature and humidity were measured following the soil respiration measurement using the delta-T sensor (delta-T company, UK); soil organic matter was measured using the potassium dichromate sulfuric acid oxidation external heating method; the activity of dehydrogenase was determined using the TTC colorimetry method; the activity of urease was determined by the phenol sodium colorimetry method; the activity of catalase was determined by the KMnO4volumetric method. We analyzed the responsive change in soil respiration tothese determinants and root biomass. The results showed that, compared tothe CK, drip irrigation and microbial organic fertilization improved soil organic matter and increased the activities of dehydrogenase, urease and catalase by 11.6%-27.6%, 8.0%-27.7% and 1.8%-11.2%, respectively; the increase in urease activities was at significant level (<0.05). The soil respiration rate was positively correlated to the root biomass, temperature and organic matter content at significant level of<0.01, and to the enzymatic activities at significant level of<0.05. Among all treatments, irrigating 18 mm of water and applying 4400 kg/hm2of microbial organic fertilizer produced the highest root biomass, reaching 394 g/m2120 days after the transplanting. Overall, combining drip irrigation and microbial organic fertilization increased root biomass by 25.9%-43.4%, compared to the CK. When irrigation amount was 15 and 18 mm, the carbon emission increased significantly (<0.05) when the fertilizer application increased from 3600 kg/hm2to 4400 kg/hm2. The cumulative carbon emission peaked at 415.2 g/m2when the irrigation amount was 18 mm and themicrobial fertilization was 4400 kg/hm2, significantly higher than that under other treatments (<0.05). The lowest cumulative carbon emission was from the CK, being 255.3 g/m2only. In summary, this study showed that drip irrigation and microbial organic fertilization combined to impact soil carbon emission by changing organic matter content and root biomass in the soil. Our results have important implications for improving ecological cultivation in greenhouse production.

        drip irrigation; organic fertilizer; soils; soil respiration; coupling; mechanism

        侯毛毛,陳競(jìng)楠,林志遠(yuǎn),王晉偉,李浩波,陳錦濤,翁郡靈,呂祎文,金 秋,鐘鳳林. 滴灌和微生物有機(jī)肥對(duì)設(shè)施土壤呼吸的耦合作用及機(jī)制[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(24):104-112. doi:10.11975/j.issn.1002-6819.2019.24.013 http://www.tcsae.org

        Hou Maomao, Chen Jingnan, Lin Zhiyuan, Wang Jinwei, Li Haobo, Chen Jintao, Weng Junling, Lv Yiwen, Jin Qiu, Zhong Fenglin. Coupling effect and mechanism of drip irrigation and microbial organic fertilization on soil respiration in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 104-112. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.24.013 http://www.tcsae.org

        2019-07-08

        2019-11-27

        國家自然科學(xué)基金(51409086);現(xiàn)代設(shè)施農(nóng)業(yè)福建省高校工程研究中心開放基金(G2-KF1808);中國博士后科研基金面上項(xiàng)目(2018M630723);福建省自然科學(xué)基金(2016J05069);南京水科院農(nóng)水所引進(jìn)人才科研啟動(dòng)經(jīng)費(fèi)項(xiàng)目資助(SKY201801)

        侯毛毛,副教授,博士,主要從事農(nóng)業(yè)水土工程方面的研究工作。Email:njhoumaomao@126.com

        鐘鳳林,教授,博士,主要從事設(shè)施植物栽培方面的研究工作。Email:zhong591@fafu.edu.cn

        10.11975/j.issn.1002-6819.2019.24.013

        S274.1;S144

        A

        1002-6819(2019)-24-0104-09

        国产欧美日韩在线观看 | 亚洲av男人的天堂在线观看| 真实国产乱视频国语| 激情五月婷婷六月俺也去| 国产av在线观看一区二区三区 | 亚洲综合色一区二区三区另类| 东京热加勒比日韩精品| 久久99热精品免费观看麻豆| 久久一区二区三区少妇人妻| 欧美日韩精品久久久久| 超薄肉色丝袜一区二区| 国产成人精品cao在线| av在线入口一区二区| 国产不卡视频一区二区三区| 精品爆乳一区二区三区无码av| 亚洲国产综合专区在线电影| 国产av剧情精品麻豆| 中文字幕乱码高清完整版| 亚洲综合一区无码精品| 超碰性爱| 国产av丝袜熟女丰满一区二区| 国产成人精品999视频| 国产a三级久久精品| 亚洲av激情久久精品人| 国产自拍成人免费视频| 亚洲精品国产av天美传媒| 中文字幕AⅤ人妻一区二区 | 国产男女做爰猛烈视频网站| av天堂手机免费在线| 国产亚洲欧美精品久久久| 成人xx免费无码| 亚洲少妇一区二区三区老| 浪货趴办公桌~h揉秘书电影| 丰满人妻无奈张开双腿av| 国产精品爽爽VA吃奶在线观看| 手机在线播放av网址| 国产中文字幕乱人伦在线观看| 一本久道久久综合五月丁香| 在线观看视频亚洲一区二区三区| a级国产乱理伦片| 18无码粉嫩小泬无套在线观看|