龐永磊,王鳳新,黃澤軍,李 斌,胡芳東,夏英三
適宜施氮鉀水平提高滴灌秋茶的產(chǎn)量及品質(zhì)
龐永磊1,4,王鳳新1※,黃澤軍1,李 斌2,胡芳東3,夏英三3
(1. 中國農(nóng)業(yè)大學(xué)中國農(nóng)業(yè)水問題研究中心,北京 100083;2. 山東省日照市嵐山區(qū)農(nóng)業(yè)農(nóng)村局,日照 276800;3. 山東萬平農(nóng)業(yè)開發(fā)有限公司,日照 276800;4. 山東興水水利科技產(chǎn)業(yè)有限公司,濟南 250000)
2018年5月至10月在山東省日照市開展田間試驗,研究滴灌條件下不同施氮(純N)水平(0 kg/hm2,N0;45 kg/hm2,N1;75 kg/hm2,N2;105 kg/hm2,N3)和施鉀(K2O)水平(0 kg/hm2,K0;27 kg/hm2,K1;54 kg/hm2,K2;81 kg/hm2,K3)對秋季茶葉產(chǎn)量及品質(zhì)的影響。結(jié)果表明:在不同氮水平的對比中,施氮量為75 kg/hm2(N2K2)時取得最高鮮葉產(chǎn)量及茶多酚、兒茶素、水浸出物含量;施氮量105 kg/hm2(N3K2)時氨基酸、咖啡堿含量高于其他處理,且酚氨比最小。在不同鉀水平的對比中,施鉀量81 kg/hm2(N2K3)時取得最高鮮葉產(chǎn)量且葉綠素、咖啡堿含量最高;施鉀量54 kg/hm2(N2K2)時氨基酸、茶多酚、兒茶素、水浸出物含量最高;施鉀量為27 kg/hm2(N2K1)時酚氨比最小。綜合分析所有施肥處理的產(chǎn)量與品質(zhì),施氮量105 kg/hm2、施鉀量54 kg/hm2(N3K2)時表現(xiàn)最優(yōu)。
滴灌;秋茶;氮肥;鉀肥;產(chǎn)量;品質(zhì)
中國是世界上茶葉種植面積和總產(chǎn)量最高的國家,但單產(chǎn)較低,優(yōu)質(zhì)茶葉生產(chǎn)規(guī)模發(fā)展緩慢[1]。秋茶產(chǎn)量占全年茶葉總產(chǎn)量的25%以上,經(jīng)過春夏兩季的采摘茶樹內(nèi)營養(yǎng)成分含量降低,使秋茶產(chǎn)量和品質(zhì)受到較大影響,肥料施用不合理是制約秋茶增產(chǎn)提質(zhì)的關(guān)鍵因素之一[2-3]。滴灌技術(shù)不僅可以實現(xiàn)精準(zhǔn)灌溉,還可以將肥料隨水滴直接施于作物根部,實現(xiàn)水肥一體化,提高肥料的利用效率,保證茶葉增產(chǎn)提質(zhì),在茶園中的應(yīng)用越來越廣泛[4-5]。
許多學(xué)者對傳統(tǒng)開溝模式下茶園合理施肥量進行了大量的研究。結(jié)果表明,一定范圍內(nèi)茶葉產(chǎn)量和品質(zhì)會隨著施肥量的增加而提高,而過量施肥會產(chǎn)生肥害,一般情況下秋季施氮量50~120 kg/hm2(年施氮量的20%~30%)且氮鉀配比為2∶1左右時得到較優(yōu)的茶葉產(chǎn)量和品質(zhì)[6-7][9]。由此可見,合理施肥對茶葉的增產(chǎn)提質(zhì)有關(guān)鍵性作用,但是目前鮮有針對滴灌條件下茶園合理施肥量的研究。因此,本研究通過田間試驗研究滴灌施肥模式下不同氮鉀水平對秋茶產(chǎn)量和品質(zhì)的影響,以便選擇對茶葉生長有利的氮鉀肥施用量,為茶園滴灌水肥一體化技術(shù)的推廣提供科學(xué)依據(jù)和技術(shù)指導(dǎo),從而實現(xiàn)茶葉的增產(chǎn)提質(zhì)。
田間試驗于2018年5月至10月在山東省日照市中國農(nóng)業(yè)大學(xué)研究生實踐基地(35°27′N,119°25′E)進行。該地區(qū)海拔35 m,屬暖溫帶季風(fēng)氣候,四季分明。多年平均氣溫13.2 ℃,降水量897 mm,日照時數(shù)2 533 h。試驗地塊0~60 cm深度平均容重1.37 g/cm3,田間持水量24.26%,pH值4.96,有機質(zhì)20.21 g/kg,全氮1.20 g/kg,全鉀9.21 g/kg,全磷0.69 g/kg,速效鉀72.94 mg/kg,堿解氮82.34 mg/kg和速效磷11.77 mg/kg。
設(shè)4個秋季施氮(純N)水平:0,45,75,105 kg/hm2;在施氮量75 kg/hm2水平下設(shè)4個施鉀(K2O)水平:0,27,54,81 kg/hm2(表1)。秋季施肥量占全年施肥的30%,試驗地塊春、夏季未施肥。每個小區(qū)采用寬窄行方式種植10行茶樹,寬行1.2 m,窄行0.3 m,小區(qū)長5.5 m,寬7.5 m,面積41.25 m2。試驗共7個處理,每個處理重復(fù)3次,21個小區(qū),按照隨機區(qū)組布置。
為控制灌水量和均勻度,滿足滴灌帶操作壓力,每個小區(qū)配備1套閘閥、水表和壓力表。滴灌帶采用上海華維公司生產(chǎn)的內(nèi)鑲式滴灌帶,滴頭流量為2.0 L/h,滴頭間距30 cm,鋪設(shè)于茶行兩側(cè)。每個處理的3個重復(fù)中隨機挑選2個小區(qū)埋設(shè)負(fù)壓計(WST-2B,北京奧特斯達科技有限公司),用來控制灌水下限,負(fù)壓計陶土頭的埋設(shè)深度為20 cm,每天早8時讀取它們讀數(shù)(惡劣天氣下增加負(fù)壓計讀數(shù)次數(shù)),當(dāng)兩個小區(qū)的負(fù)壓計讀數(shù)平均值達到或超過-25 kPa,即進行灌水,灌水定額為20 mm。
表1 試驗處理設(shè)計
氮肥采用尿素(含純N 46%),鉀肥采用硫酸鉀(含K2O 51%),所有處理的氮肥和鉀肥都以追肥的形式將肥料和水按1∶5的比例混合,完全溶解后通過文丘里施肥器隨滴灌系統(tǒng)施入田間。所有肥料平均分3次施完,施肥時間分別為7月31日、8月11日和8月22日。
試驗選擇的茶樹品種為黃山群體種(),樹齡8 a,雙行條值,大行距1.2 m,小行距0.3 m,東西向種植,長勢齊整。每小區(qū)選擇茶樹10行,長5.5 m,面積41.25 m2。
1.5.1 氣象數(shù)據(jù)觀測
在試驗田中央安裝自動氣象站(Uni-WS,北京聯(lián)創(chuàng)思源測控技術(shù)有限公司),自動觀測并記錄氣溫、降雨、風(fēng)速、風(fēng)向、空氣溫濕度和太陽輻射等氣象要素。并計算有效積溫、有效降雨和無霜期等。
1.5.2 土壤理化指標(biāo)測定
在試驗開始前用“五點法”在田間采集0~10、>10~20、>20~40和>40~60 cm深度處的土樣,經(jīng)風(fēng)干磨碎過篩后送至北京農(nóng)業(yè)質(zhì)量標(biāo)準(zhǔn)與檢測技術(shù)研究中心測定各深度土壤pH、有機質(zhì)、全氮、全磷、全鉀、堿解氮、速效鉀和速效磷含量。
1.5.3 茶葉產(chǎn)量測定
分別及時采摘各小區(qū)內(nèi)所有的1芽2葉芽頭,稱取茶葉鮮質(zhì)量,統(tǒng)計整個秋季的鮮葉產(chǎn)量并換算單位為kg/hm2,同時統(tǒng)計芽頭密度及百芽質(zhì)量。整個秋季分為3輪采茶,截止時間分別為8月26日、9月8日和9月29日。
1.5.4 茶葉葉片含水率測定
在每個小區(qū)選取兩行茶樹采摘所有1芽2葉芽頭進行含水率測定。將鮮葉稱質(zhì)量,置于105 ℃烘箱中殺青,然后溫度調(diào)至80 ℃,恒溫烘干至恒質(zhì)量,稱量葉片干質(zhì)量,計算獲得葉片含水率。
1.5.5 茶葉理化指標(biāo)測定
將各小區(qū)采摘的鮮葉進行烘干磨碎處理,送至農(nóng)業(yè)部茶葉質(zhì)量監(jiān)督檢驗測試中心檢測茶葉內(nèi)游離氨基酸、茶多酚、兒茶素、水浸出物、咖啡堿及葉綠素含量[10]。測定標(biāo)準(zhǔn)分別為GB/T 8314—2013、GB/T 8313—2008、GB/T 8313—2008、GB/T 8305—2013、GB/T 8312—2013和FB/LH011—2010。
1.5.6 數(shù)據(jù)分析
用Microsoft Excel 2016進行數(shù)據(jù)的計算處理和制圖,用SPSS 20統(tǒng)計軟件進行數(shù)據(jù)分析,用LSD法分析處理間顯著性差異。
由表2可以看出,在施鉀量為54 kg/hm2的基礎(chǔ)上,秋茶芽頭密度和百芽質(zhì)量均隨施氮量的增加先增加后降低,在施氮量75 kg/hm2(N2K2)時達到最高,各施氮處理均顯著高于對照(N0K2),但施氮量的影響不顯著。各施氮處理間葉片含水率差異不大。各輪鮮葉產(chǎn)量及總產(chǎn)量與芽頭密度和百芽質(zhì)量保持一致的增長趨勢,施氮處理較對照(N0K2)增產(chǎn)15.6%~34.8%。在施氮量75~105 kg/hm2(N2K2和N3K2)時取得較優(yōu)鮮葉產(chǎn)量,且沒有顯著性差異。
表2 不同氮處理產(chǎn)量及構(gòu)成因子比較
注:不同小寫字母表示有顯著性差異(<0.05),NS表示處理間無顯著差異(>0.05),下同。
Note: Different lowercase letters showed significant differences (<0.05), and NS indicated no significant difference (>0.05), the same below.
由表3,在施鉀量為54 kg/hm2的基礎(chǔ)上,各施氮處理均能顯著提高秋茶葉綠素a含量,施氮處理較對照(N0K2)高12.5%~31.3%。葉綠素b含量各處理間差異不顯著。葉綠素總量的變化趨勢與葉綠素a含量的變化趨勢一致,施氮處理較對照(N0K2)高8.7%~26.1%。葉綠素a/b的值表明本試驗秋茶葉綠素的整體組成比例上相對穩(wěn)定。因此,氮肥的施用有利于提高芽稍葉綠素含量。
表3 不同氮處理葉綠素含量比較
在施鉀量為54 kg/hm2的基礎(chǔ)上,不同氮水平下秋茶主要品質(zhì)成分的測定表明(表4),施氮處理的游離氨基酸及咖啡堿含量較對照(N0K2)有顯著提升,在施氮量105 kg/hm2(N3K2)時達到最高且顯著高于其他處理;茶多酚、兒茶素含量均隨施氮量的增加先增加后下降,在施氮量75 kg/hm2(N2K2)時取得最大值,且施氮對茶多酚、兒茶素含量有顯著影響;水浸出物含量變化不大,未達到顯著水平。酚氨比隨著施氮量的增加而降低(圖 1),施氮量為105 kg/hm2(N3K2)時顯著低于其他處理,且比最高的N0K2處理低12.1%,說明提高施氮量能相應(yīng)地降低酚氨比。
表4 不同氮處理品質(zhì)成分比較
圖1 酚氨比隨氮水平變化
由表5,在施氮量為75 kg/hm2的基礎(chǔ)上,芽頭密度隨施鉀量的增加呈上升趨勢,在施鉀量81 kg/hm2(N2K3)時最高,且各處理間沒有顯著性差異。施鉀對秋茶百芽重有顯著影響,施鉀量在54~81 kg/hm2(N2K3、N2K2)時較對照(N2K0)高11.8%~12.1%。施鉀對葉片含水率的影響不顯著。經(jīng)統(tǒng)計分析,施鉀對各輪茶葉產(chǎn)量及總產(chǎn)量有顯著影響,較對照(N2K0)增產(chǎn)15.8%~23.6%,在施鉀量81 kg/hm2(N2K3)時達到最高產(chǎn)量,但各施鉀處理之間產(chǎn)量差異不顯著。
表5 不同鉀處理產(chǎn)量及構(gòu)成因子比較
由表6可知,在施氮量為75 kg/hm2的基礎(chǔ)上,葉綠素a含量隨施鉀量的增加而增加,施鉀量81 kg/hm2時(N2K3)顯著高于其他處理,且比對照(N2K0)高29.4%。同樣施鉀量81 kg/hm2時(N2K3)的葉綠素b含量顯著高于其他處理。鉀對葉綠素總量的影響趨勢同葉綠素a含量一致,施鉀量81 kg/hm2時(N2K3)顯著高于其他處理,且比對照(N2K0)高34.8%,其他施鉀處理對葉綠素總量影響不顯著。而各處理之間的葉綠素a/b均沒有顯著性差異。
表6 不同鉀處理葉綠素含量比較
由表7,在施氮量為75 kg/hm2的基礎(chǔ)上,游離氨基酸含量隨著施鉀量的增加先增加后趨于穩(wěn)定,在施鉀量54~81 kg/hm2(N2K2和N2K3)范圍內(nèi)變化不大,各施鉀處理顯著高于對照且增加7.3%~9.9%;茶多酚含量隨著施鉀量的增加先增加后降低,各處理之間均無顯著性差異;咖啡堿及含量隨施鉀量的增加而增加,其中施鉀量81 kg/hm2(N2K3)時顯著高于其他處理,較對照(N2K0)增加8.7 %;兒茶素含量隨施鉀量的增加先增加后降低,在施鉀量54 kg/hm2(N2K2)時顯著高于其他處理,較對照增加15.7%;水浸出物含量隨施鉀量的增加先增加后降低,各處理之間無顯著性差異;酚氨比并沒有隨著施鉀量的增加表現(xiàn)出一致的變化趨勢,在施鉀量27 kg/hm2時取得最小值,但各處理間差異不顯著(圖2)。
圖2 酚氨比隨鉀水平變化
表7 不同鉀處理品質(zhì)成分比較
施氮對茶葉芽頭密度、百芽重及鮮葉產(chǎn)量的提高有顯著地促進作用,但隨著施氮量的繼續(xù)增加茶葉產(chǎn)量基本不再增加甚至?xí)陆礫11-12]。出現(xiàn)這種現(xiàn)象的原因可能是過量施氮使茶樹產(chǎn)生肥害,制約了芽葉的生長,使芽葉形成能力不變甚至下降[13]。本研究表明滴灌條件下秋季施氮量75~105 kg/hm2時取得較高產(chǎn)量。這一結(jié)果略低于普通開溝施肥模式下的施氮量,與唐顥等[3]得到的滴灌條件下最佳施氮量基本一致,并且滴灌施肥較傳統(tǒng)開溝施肥增產(chǎn)3.4%~9.3%,達到了節(jié)肥增產(chǎn)的效果。
本研究結(jié)果表明施氮可以提高葉綠素a含量,對葉綠素b含量沒有顯著影響,滴灌條件下施氮量為105 kg/hm2時葉綠素總量最高。這一結(jié)果與蘇有健等[14]得到的結(jié)果相似,氮水平對茶葉葉綠素a的影響程度高于葉綠素b且葉綠素a含量會隨施氮量的增加不斷增加。氮肥的施用有利于提高芽稍葉綠素含量,進而促進茶樹的光合作用和營養(yǎng)物質(zhì)的積累,提高茶葉的產(chǎn)量與品質(zhì)。
合理的施氮量會對茶葉品質(zhì)產(chǎn)生積極影響,顯著提高茶葉氨基酸、咖啡堿、兒茶素及水浸出物含量,但施氮量超過一定范圍會對茶葉品質(zhì)產(chǎn)生消極影響[12]。而針對茶多酚含量隨施氮量的變化關(guān)系至今仍有很大爭議,有學(xué)者[15]認(rèn)為施氮促進茶多酚含量的增加,也有部分學(xué)者[16-17]認(rèn)為施氮會減少茶葉中茶多酚的含量。造成這種結(jié)果的原因主要是施氮導(dǎo)致生長加快而造成的稀釋效應(yīng),如果考慮到生長效應(yīng),在施氮量增加時,茶多酚含量仍然增加[18]。普遍認(rèn)為合理施氮可以降低茶葉酚氨比,提高茶葉品質(zhì)。唐顥等[3]試驗結(jié)果表明秋季施氮量為135 kg/hm2時茶多酚、氨基酸含量取得最大值,咖啡堿、水浸出物含量在施氮量90 kg/hm2時取得最大值。本研究發(fā)現(xiàn)滴灌條件下在施鉀量為54 kg/hm2的基礎(chǔ)上,秋季施氮量為105 kg/hm2時游離氨基酸、咖啡堿含量最高,酚氨比最小;施氮量為75 kg/hm2時茶多酚、水浸出物含量最高。結(jié)果表明,茶葉品質(zhì)不僅受施氮量的影響,但合理施氮可以顯著提高茶葉品質(zhì)。
鉀可以參與茶葉的各種生化過程,不僅能夠加強光合作用,累積營養(yǎng);還能調(diào)節(jié)根部吸水,提高抗旱能力;鉀還是茶葉中多種酶的活化劑,提高茶葉抗逆性,保護茶葉健康,提高茶葉產(chǎn)量[19]。本試驗在滴灌施氮量75 kg/hm2的基礎(chǔ)上,鮮葉產(chǎn)量隨秋季施鉀量的增加而增加,在施鉀量為81 kg/hm2時達到最大產(chǎn)量1 711.37 kg/hm2,比不施鉀處理增產(chǎn)23.58%,這一結(jié)果略高于其他學(xué)者得到的實驗結(jié)果[20]。究其原因:一方面與土壤速效鉀含量低有關(guān),試驗地土壤速效鉀含量為72.94 mg/kg,依據(jù)有關(guān)茶葉生產(chǎn)土壤肥力標(biāo)準(zhǔn),該地塊速效鉀含量為III級(較差),遠達不到優(yōu)質(zhì)高產(chǎn)茶園速效鉀肥力標(biāo)準(zhǔn)[21-22]。另一方面,本試驗地塊土壤pH值為4.96,有研究表明,鉀肥的施用效果受土壤pH值影響,隨著pH值的降低而降低,如pH值為5.5時的茶葉產(chǎn)量為100%,則施同樣的鉀肥pH值為5.2時產(chǎn)量降至80%,pH值為5.2、4.8和4.5時分別為70%、60%和50 %[22]。
鉀能提高葉綠素含量,保持葉綠體的片層結(jié)構(gòu),促進茶葉對光能的吸收以及光合磷酸化作用和光合作用中CO2的固定過程[23]。呂梅等[24]通過試驗得出氮:鉀為1.5∶1時茶葉葉綠素含量最高。本研究表明,滴灌條件下在施氮量為75 kg/hm2的基礎(chǔ)上,葉綠素a、葉綠素b及葉綠素總量均隨施鉀量的增加而增加,在秋季施鉀量為81 kg/hm2時最高,該結(jié)論與前人的研究結(jié)果基本一致,低鉀脅迫會降低茶葉葉綠素含量,影響光合作用進程。
鉀對茶葉品質(zhì)的影響表現(xiàn)在提升茶葉的生理功能上,能夠協(xié)同氮起到促進蛋白質(zhì)、氨基酸合成的作用,同時還有利于碳水化合物的合成和運輸,促進單糖的轉(zhuǎn)化和運移。研究表明,鉀對茶葉中氨基酸水浸出物含量的提高有促進作用[25]。鐘秋生等[26]研究表明咖啡堿含量隨施鉀量的增加而增加,而茶多酚含量和酚氨比隨施鉀量的增加而降低。Ruan等[27]認(rèn)為黑茶游離氨基酸、咖啡堿茶多酚含量隨施鉀量的增加而增加。田甜等[15]認(rèn)為氮:鉀為2.67∶1時茶葉品質(zhì)最優(yōu)。本研究表明,滴灌條件下在施氮量為75 kg/hm2的基礎(chǔ)上,秋季施鉀量54 kg/hm2時游離氨基酸總量、茶多酚、水浸出物含量最高,施鉀量為81 kg/hm2時咖啡堿含量最高,施鉀量為90 kg/hm2時酚氨比最小。
施肥對茶葉產(chǎn)量和品質(zhì)的影響是復(fù)雜的,綜合性的。本文僅從不同氮鉀肥施用量的角度出發(fā),探究其對茶葉產(chǎn)量及品質(zhì)的影響。單一元素不能滿足茶葉增產(chǎn)提質(zhì)的需求,合理的肥料配施對茶葉產(chǎn)量與品質(zhì)的提升有更積極地促進作用。另外茶葉品種[13]、樹齡[28]、地域[29]等因素也會對肥料施用量產(chǎn)生影響。
綜合所有施肥處理,滴灌條件下在施氮量75~105 kg/hm2,施鉀量54~81 kg/hm2時取得最高秋茶產(chǎn)量(N2K2、N3K2和N2K3)、最高葉綠素總量(N3K2和N2K3)和最高兒茶素含量(N2K2);在施氮量105 kg/hm2,施鉀量54 kg/hm2(N3K2)時取得最高咖啡堿含量和最小酚氨比;各處理對秋茶水浸出物含量均無顯著影響。因此,本試驗中施氮量105 kg/hm2、施鉀量54 kg/hm2(N3K2)對秋茶增產(chǎn)提質(zhì)的促進作用最顯著。
[1] 李文壘,岳保然,韓茜. 優(yōu)質(zhì)茶葉資源分布的地理環(huán)境分析[J]. 福建茶葉,2016,38(1):1-2. Li Wenlei, Yue Baoran, Han Qian. Analysis of geographical environment distribution of high-quality tea resources[J]. Tea in Fujian, 2016, 38(1): 1-2. (in Chinese with English abstract)
[2] 吳丹. 黑毛茶新工藝研究及對夏秋茶品質(zhì)形成的作用[D]. 長沙:湖南農(nóng)業(yè)大學(xué),2017. Wu Dan. Study on the New Technology of Dark Tea and Its Effect on the Quality of Summer and Autumn Tea[D]. Changsha: Hunan Agricultural University, 2017. (in Chinese with English abstract)
[3] 唐顥,吳家堯,黎健龍,等. 茶園滴灌施肥的增產(chǎn)提質(zhì)及土壤養(yǎng)分效應(yīng)研究[J]. 茶葉科學(xué),2013,33(1):85-90. Tang Hao, Wu Jiayao, Li Jianlong, et al. Study on the influence of drip irrigated fertilization on tea yields, quality and soil nutrient effect[J]. Journal of Tea Science, 2013, 33(1): 85-90. (in Chinese with English abstract)
[4] Jia Xuetao, Huang Ying, Wang Yanhua, et al. Research on water and fertilizer irrigation system of tea plantation[J]. International Journal of Distributed Sensor Networks, 2019, 15(3): 12-18.
[5] Moller M, Weatherhead E. Evaluating drip irrigation in commercial tea production in Tanzania[J]. Irrigation and Drainage Systems, 2007, 21(1): 17-34.
[6] Chen Poan, Lin Shuyen, Liu Chioufang, et al. Correlation between nitrogen application to tea flushes and quality of green and black teas[J]. Scientia Horticulturae, 2015, 181(3): 102-107.
[7] Tennakoon P, Rajapaksha R, Hettiarachchi L. Tea yield maintained in PGPR inoculated field plants despite significant reduction in fertilizer application[J]. Rhizosphere, 2019, 10(3): 10-18.
[8] Liu Meiya, Burgos A, Ma Lifang, et al. Lipidomics analysis unravels the effect of nitrogen fertilization on lipid metabolism in tea plant ()[J]. BMC Plant Biology, 2017, 17(1): 165.
[9] Bagyalakshmi B, Ponmurugan P, Balamurugan A. Potassium solubilization, plant growth promoting substances by potassium solubilizing bacteria (KSB) from southern Indian Tea plantation soil[J]. Biocatalysis and Agricultural Biotechnology, 2017, 12(5): 116-124.
[10] 汪興平,周志,莫開菊,等. 茶葉有效成分復(fù)合分離提取技術(shù)研究[J]. 農(nóng)業(yè)工程學(xué)報,2002,18(6):131-136. Wang Xingping, Zhou Zhi, Mo Kaiju, et al. Comprehensive extraction technologies of active constituents of tea[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 18(6): 131-136. (in Chinese with English abstract)
[11] Pethiyagoda U, Krishnapillai S. Studies on the mineral nutrition of tea-4 ammonium and nitrate as forms of nitrogen for tea plants in sand culture[J]. Ceylon Tea Res Inst Tea Quart, 1971, 31(24): 273-298.
[12] Qiao Chunlian, Xu Burenbayin, Han Yanting, et al. Synthetic nitrogen fertilizers alter the soil chemistry, production and quality of tea. A meta-analysis[J]. Agronomy for Sustainable Development, 2018, 38(1): 10.
[13] Wang Xiajou, Kato T, Tokuda S. Environmental Problems Caused by Heavy Application of Nitrogen Fertilizers in Japanese Tea Fields[M]. Land Degradation. Springer Netherlands, 2001: 42.
[14] 蘇有健,廖萬有,丁勇,等. 不同氮營養(yǎng)水平對茶葉產(chǎn)量和品質(zhì)的影響[J]. 植物營養(yǎng)與肥料學(xué)報,2011,17(6):1430-1436. Su Youjian, Liao Wanyou, Ding Yong, et al. Effects of nitrogen fertilization on yield and quality of tea[J]. Plant Nutrition and Fertilizer Science, 2011, 17(6): 1430-1436. (in Chinese with English abstract)
[15] 田甜,趙德恩,梁登雲(yún),等. 氮磷鉀配施對茶葉產(chǎn)量及品質(zhì)的影響[J]. 江蘇農(nóng)業(yè)科學(xué),2018, 46(14):131-136. Tian Tian, Zhao De’en, Liang Dengyun, et al. Effects of combined application of nitrogen, phosphorus and potassium on tea yield and quality[J]. Jiangsu Agricultural Sciences, 2018, 46(14): 131-136. (in Chinese with English abstract)
[16] 馬立鋒. 茶樹氮素吸收利用與氮肥施用技術(shù)研究[D]. 北京:中國農(nóng)業(yè)科學(xué)院,2015. Ma Lifeng. Reasearch on Tea Plant to Nitrogen Up-Utilization and Fertilization Technique in Tea Garden[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. (in Chinese with English abstract)
[17] 張瑜. 不同施肥結(jié)構(gòu)對茶葉產(chǎn)量品質(zhì)和茶園土壤養(yǎng)分的影響[D]. 南京:南京農(nóng)業(yè)大學(xué),2012. Zhang Yu. Influences on Tea Yield-Quality and Soil Nutrient with Different Fertilization Structure[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese with English abstract)
[18] 浙江農(nóng)業(yè)大學(xué). 茶樹栽培學(xué)[M]. 北京:農(nóng)業(yè)出版社,1979:51.
[19] Wettasinghe D, Watson M. Effect of nitrogen, phosphorus, potassium and magnesium fertilizers on the leaf nutrient composition of low-grown tea in Sri Lanka[J]. Tea Quarterly, 1980, 1(1): 21-23.
[20] Xie Shaowen, Feng Hanxiao, Yang Feng, et al. Does dual reduction in chemical fertilizer and pesticides improve nutrient loss and tea yield and quality? A pilot study in a green tea garden in Shaoxing, Zhejiang Province, China[J]. Environmental Science and Pollution Research, 2019, 26(3): 2464-2476.
[21] 中華人民共和國農(nóng)業(yè)部. NY/T 391—2013,茶葉產(chǎn)地環(huán)境技術(shù)條件[S]. 北京:中國標(biāo)準(zhǔn)出版社,2013.
[22] 韓文炎,阮建云,林智,等. 茶園土壤主要營養(yǎng)障礙因子及系列茶樹專用肥的研制[J]. 茶葉科學(xué),2002,22(1):70-74. Han Wenyan, Ruan Jianyun, Lin Zhi, et al. The major nutritional limiting factors in tea soils and development of tea speciality fertilizer Series[J]. Journal of Tea Science, 2002, 22(1): 70-74. (in Chinese with English abstract)
[23] Hubber D M. Interaction of Potassium with Plant Disease. In Potassium in Agriculture[M]. A SA CSSA Madison Wisconsin, USA, 1985: 12.
[24] 呂梅,紀(jì)文娟,王潤賢,等. 配方施肥對烏牛早茶苗營養(yǎng)生長及茶葉品質(zhì)的影響[J]. 江蘇農(nóng)業(yè)科學(xué),2019,47(1):120-126. Lv Mei, Ji Wenjuan, Wang Runxian, et al. Effects of formula fertilization on vegetative growth and tea quality of Wuniu morning tea seedlings[J]. Jiangsu Agricultural Sciences, 2019, 47(1): 120-126. (in Chinese with English abstract)
[25] Sharma D, Sharma K. Effect of nitrogen and potash application on yield and quality of china hybrid tea () grown in Kanga valley of Himachal Pradesh[J]. Indian Journal of Agricultural Sciences (India), 1998, 68(6): 307-309.
[26] 鐘秋生,林鄭和,張輝,等. 不同供鉀水平對茶樹幼苗鮮葉主要生化成分的影響[J]. 茶葉科學(xué),2017,37(1):49-59. Zhong Qiusheng, Lin Zhenghe, Zhang Hui, et al. Effects of different potassium levels on main biochemical components of fresh leaves of tea seedlings[J]. Journal of Tea Science, 2017, 37(1): 49-59. (in Chinese with English abstract)
[27] Ruan Jianyun, H?rdter R. Productivity and quality response of tea to balanced nutrient management Examples from China tea gardens[J]. Developments in Plant and Soil Sciences, 2001, 92(1): 324-325.
[28] 尤雪琴,楊亞軍,阮建云. 田間條件下不同園齡茶樹氮、磷、鉀養(yǎng)分需求規(guī)律的研究[J]. 茶葉科學(xué),2008,28(3):13-15. You Xueqin, Yang Yajun, Ruan Jianyun. Requirement on nitrogen, phosphorus and potassium by tea plants with different ages under field conditions[J]. Journal of Tea Science, 2008, 28(3): 13-15. (in Chinese with English abstract)
[29] Salardini A. Yield response of tea () to fertilizer and irrigation in two locations of Iran[J]. Plant & Soil, 1978, 50(1): 113-123.
Improving yield and quality of autumn tea with drip irrigation under appropriate nitrogen and potassium fertilization
Pang Yonglei1,4, Wang Fengxin1※, Huang Zejun1, Li Bin2, Hu Fangdong3, Xia Yingsan3
(1.,,100083,; 2.,276800,; 3..,,276800,; 4..,,250000,.)
China is a country with the highest tea production and planting area in the world, but the average yield per unit area is low and the production scale of high-quality tea develops very slowly. Unreasonable fertilization is one of the key factors restricting the improvement of yield and quality of tea. Field experiment was conducted to study the effect of different nitrogen (pure N) fertilization levels (0 kg/hm2, N0; 45 kg/hm2, N1; 75 kg/hm2, N2; 105 kg/hm2, N3) and potassium (K2O) fertilization levels (0 kg/hm2, K0; 27 kg/hm2, K1; 54 kg/hm2, K2; 81 kg/hm2, K3) on autumn tea yield and quality under drip irrigation in Rizhao, Shandong Province from May to October in 2018. The results showed that the yield of autumn tea increased with the increase of nitrogen fertilization in the range of 0-75 kg/hm2, then reached the maximum value in the range of 75-105 kg/hm2(N3K2 and N2K2). Nitrogen fertilization could significantly increase the content of chlorophyll a and total chlorophyll but had no significant effect on chlorophyll b, the chlorophyll content was the highest at a nitrogen fertilization rate of 105 kg/hm2(N3K2). The content of amino acid, caffeine and water extract of each nitrogen treatment increased with the increase of nitrogen fertilization rate, and the maximum value was obtained at the nitrogen fertilization rate of 105 kg/hm2(N3K2). The ratio of phenol to amino acid was applied to nitrogen reached a minimum value of 10.97 at the nitrogen fertilization of 105 kg/hm2(N3K2) which was significantly lower than other treatments. The maximum content of tea polyphenols was obtained at the nitrogen fertilization amount of 75 kg/hm2(N2K2). The yield of autumn tea increased with the increase of potassium fertilization and reached the maximum yield of 1 711.37 kg/hm2(N2K3) when the potassium fertilization amount was 81 kg/hm2, which was 23.58% higher than that the treatment without potassium fertilization. All the treatments with potassium fertilization had a significantly higher yield of autumn tea than the N2K0 treatment, however, there was no significant difference between the potassium fertilization treatments. Potassium fertilization promoted the content of chlorophyll a, chlorophyll b and total chlorophyll, and when potassium fertilization rate was 81 kg/hm2(N2K3), chlorophyll content was the highest. The content of caffeine reached the maximum at the potassium fertilization rate of 81 kg/hm2(N2K3). The content of amino acids, tea polyphenol, and water extracts respectively reached a maximum at the potassium fertilization amount of 54 kg/hm2(N2K2). The ratio of phenol to amino acid reached a minimum value kg/hm2of 11.49 when potassium was applied at 27 kg/hm2(N2K1). Comprehensively thinking of yield and quality of all fertilization treatments, the highest autumn tea yield (N2K2, N3K2 and N2K3) and chlorophyll content (N3K2 and N2K3) were obtained at the nitrogen fertilization rate of 75-105 kg/hm2and potassium fertilization rate of 54-81 kg/hm2, while the nitrogen fertilization rate of 105 kg/hm2and potassium fertilization rate of 54 kg/hm2(N3K2) obtained the maximum content of caffeine and minimum ratio of phenol to amino acid. All treatments had no significant effect on the content of autumn tea water extracts. Therefore, the nitrogen fertilization amount of 105 kg/hm2and potassium fertilization amount of 54 kg/hm2(N3K2) had the most significant promoting effect on the yield and quality of autumn tea and was recommended as an optimal combination for fertilization management.
drip irrigation; autumn tea; nitrogen fertilization; potassium fertilization; yield; quality
龐永磊,王鳳新,黃澤軍,李 斌,胡芳東,夏英三. 適宜施氮鉀水平提高滴灌秋茶的產(chǎn)量及品質(zhì)[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(24):98-103. doi:10.11975/j.issn.1002-6819.2019.24.012 http://www.tcsae.org
Pang Yonglei, Wang Fengxin, Huang Zejun, Li Bin, Hu Fangdong, Xia Yingsan. Improving yield and quality of autumn tea with drip irrigation under appropriate nitrogen and potassium fertilization[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 98-103. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.24.012 http://www.tcsae.org
2019-05-05
2019-10-10
水利部公益性行業(yè)科研專項基金項目(201501017)
龐永磊,主要從事灌溉排水理論與新技術(shù)方面研究。Email:ylei_pang@163.com
王鳳新,教授,博士,博士生導(dǎo)師,主要從事農(nóng)業(yè)水土工程方面的研究。Email:fxinwang@cau.edu.cn
10.11975/j.issn.1002-6819.2019.24.012
S275.6;S571.1
A
1002-6819(2019)-24-0098-06