王 巍,唐 滔,盧盛鵬,焦建雄,張慶典,王曉放
?
水翼吸力面布置凹槽抑制空化研究
王 巍,唐 滔,盧盛鵬,焦建雄,張慶典,王曉放
(大連理工大學海洋能源利用與節(jié)能教育部重點實驗室,大連 116024)
空化引起不同程度振動、沖擊和噪聲,加劇物體表面空蝕,使結構提早發(fā)生疲勞。為有效抑制和延緩空化發(fā)生和空泡脫落,該文提出了在水翼吸力面布置凹槽的方法,旨在通過水翼表面結構的改變來實現空化流動的調節(jié)。在數值模擬研究中,采用Realizable湍流模型和Schnerr-Sauer空化模型,圍繞8°攻角下NACA66 (MOD)水翼,開展不同空化數、凹槽尺度和凹槽位置對二維水翼空化流場的動力學特性研究,并進一步分析了水翼表面特殊結構抑制空化的機理。結果表明:當片空化發(fā)生時,凹槽布置在距水翼前緣0.32弦長位置時,能降低空泡振蕩頻率,提高水翼水動力性能;當云空化發(fā)生時,適當的凹槽表面構型能夠使水翼吸力面邊界層變薄,邊界層分離點滯后,水翼尾緣回流區(qū)減薄,吸力面低壓區(qū)減小,證明了凹槽表面構型對空化抑制的適用性。然而,在水翼吸力面布置凹槽,雖然可以降低水翼表面邊界層的厚度,增強抗逆壓能力,但卻觸發(fā)了凹槽附近區(qū)域回射流的加速。因此,只有當抗逆壓梯度能力大于回射流沖擊時,才可以實現對空化流動的抑制。該研究成果擴大了空化流動的被動控制方法研究范圍,為水力機械空化抑制技術提供了參考。
空化;計算機仿真;模型;水翼;吸力面凹槽;空化抑制;水動力性能
局部空化和脫落的非穩(wěn)態(tài)特征在高可靠性的核主泵、水力透平葉片和船用螺旋槳中受到極大關注。特別是伴隨大尺度空泡脫落的云空化的發(fā)生,嚴重影響著水力性能,引起水力機械不同程度的振動、沖擊和噪聲,空泡流的低頻振蕩和大規(guī)模的空泡云脫落會加劇物體表面的空蝕,使結構提早發(fā)生疲勞破壞,對于高速運動物體會影響其控制穩(wěn)定性,甚至導致災難性的顫振和動力學失穩(wěn)[1-3]。
延緩空泡的發(fā)生和抑制空泡的脫落一直以來是水力機械研究的重點和難點課題。國內外眾多學者從空化發(fā)展和空化導致非穩(wěn)態(tài)機理方面做了大量的科學研究,認為反向壓力梯度形成的回射流是造成片空化脫落、云空化產生的主要原因[4-10]。王巍等[11]研究還發(fā)現回射流及其強度是空化體形態(tài)改變的重要因素,并定義了描述回射流強度的特征數,用其來判斷空泡體的類型。因此,控制回射流在一定程度上可以實現對云空化的控制。
按照有無外界能量的輸入,把控制空化流動的方法分為主動控制與被動控制[12-14]。對于主動控制技術, Mikhail等[15]通過試驗研究壁面切向噴射對空化的影響,發(fā)現低速噴射可以有效減輕空化效應,而高速噴射可以減少能量損失,提高流動的水動力學品質,其試驗研究還證明實施流量控制在某些條件下能夠很好的調節(jié)空化流場。Wang等[16-17]研究發(fā)現在水翼表面射流可以有效阻擋回射流從水翼尾部向水翼頭部的運動,使得空泡發(fā)展和脫落現象明顯減弱,有效抑制了片空化發(fā)展、片空化向云空化的轉變以及云空化的發(fā)展。對于被動控制技術,其通過無外部能量注入的裝置來改變流體的壓力和速度分布以控制流動。Zhang等[18]研究了平板水翼布置障礙物對于云空化的影響。Kadivar等[19]提出在水翼表面布置汽泡發(fā)生器,能夠顯著減小吸力面低壓區(qū)面,有效抑制空化的發(fā)展。鄔偉等[20]通過在水翼吸力面上設置微小方形凸起,并提出設置拱弧的新方案來抑制空化。
在延緩和抑制云空化的研究中,無論采用主動控制還是被動控制,在一定程度上都起到了抑制空化的目的。然而,當表面射流水翼或葉片處于旋轉狀態(tài)時,由于空心葉片內部流體的復雜流動,空心葉片強度的下降等原因,會給整個轉子系統的穩(wěn)定運行帶來不確定性因素。而采用水翼表面布置障礙物,抑制空化的效果并不能隨著空化條件的變化而進行相應的調控,且在無空化時,障礙物的增加又改變了水翼的動力學特性。為此,本文提出水翼表面凹槽的設計結構,旨在保持水動力性能的同時,研究水翼表面特殊構型抑制空化的機理,提出抑制空化新方法。
針對弦長=70 mm的二維NACA66 (MOD)水翼開展水翼表面開槽對空化流動的研究。來流速度為7.832 m/s,入流角為8°,流場溫度為300 K,飽和蒸汽壓3 540 Pa,動力黏度=8.53×10-4kg/(m·s),計算空化數為1.23和0.81的工況。
凹槽形狀分別為矩形,三角形和半圓形,2種不同開槽位置,即凹槽中心距水翼前緣距離分別為0.20和0.32。為了方便后續(xù)分析,對特殊構型水翼進行命名規(guī)則的制定:
凹槽形狀 凹槽深度 - 凹槽中心距前緣距離
例:TR1 - 0.20中TR代表凹槽為三角形,1代表凹槽深度為水翼弦長的1%,0.20代表凹槽中心距水翼前緣為0.20。除此之外,OR代表矩形凹槽,RO代表圓形凹槽。
計算區(qū)域劃分如圖1a,進口距水翼前緣為5,出口距水翼尾緣為10,上下邊界距水翼前緣點為6。水翼表面進行加密處理,近壁網格如圖1b所示,最終網格數約為73 000。
注:c為弦長,mm。
普遍認為非穩(wěn)態(tài)RANS方程足以模擬簡單的水翼空化流動[21]。以下給出非穩(wěn)態(tài)情況下,在笛卡爾坐標中的流體控制方程,為了簡化方程,在氣/液兩相混合物模型中,假設多相流體組分具有相同的速度和壓力。值得注意的是,這里所表述的控制方程是沒有考慮體積力和傳熱現象的牛頓流體質量輸運方程式(1)~(5)[21]所示。
使用表示水翼吸力側汽相體積分數積分,該值可以定性的表示空泡長度的相對大小,有如下關系式
式中為二維水翼吸力側曲線長度,m;v1為汽相體積分數。
使用Fluent16.0數值求解,計算區(qū)域入口為速度入口邊界條件,出口為壓力出口邊界條件,上下壁面和水翼壁面為無滑移邊界條件[22]。使用基于壓力的求解器搭配SIMPLEC算法進行求解,湍流模型[23-25]為Realizable模型,空化模型為Schnerr-Sauer 空化模型[26]。動量對流項采用二階迎風格式,其他對流項采用一階迎風格式,壓力項采用PRESTO格式[27]。瞬態(tài)求解格式為一階隱式,據CFL穩(wěn)定條件取時間步長為0.000 5 s。
基于所建立的物理和數學模型,分析了NACA66 (MOD)原始水翼在空化數為0.81時,水翼吸力面的空泡形態(tài)及流動特性,圖2a給出了繞水翼空化流動過程中汽相體積分數的分布。為了驗證數值模型的準確性,針對相同的NACA66 (MOD)原始水翼,在如圖3所示的空化水洞中開展了全流場的流動測試[28-29],水翼吸力面空泡形態(tài)如圖2b所示。對比水翼空化流動的數值分析和試驗結果,發(fā)現在空泡形態(tài)上預測結果與試驗吻合較好,說明所選用的模型能夠較好的預測此工況下的空化流動。
圖2 水翼吸力側空化形態(tài)數值計算與試驗結果的對比
圖3 空化水洞示意圖
對無空化流進行研究,發(fā)現表面開槽造成水翼升阻比下降,水動力性能下降。但由于空泡和回射流的存在,凹槽對水翼性能的影響可能與無空化流場有較大的區(qū)別[30]。本節(jié)將對特殊構型水翼抑制空化的性能進行研究。
在所選用的模型下,2種不同的空化數,求解出的空化形態(tài)有較大的區(qū)別??栈瘮禐?.23和0.81時,分別呈現為典型的片空化和云空化。
對不同構型模擬得到的數據進行統計分析,結果如表1所示,max表示在流場計算穩(wěn)定后,多個周期內的最大值。片空化時,凹槽對于水動力性能沒有很大的影響,這符合片空化的特征。在片空化發(fā)生后容易有一片穩(wěn)定的空化體附著在水翼表面上,只有水翼尾部的空化體不穩(wěn)定容易脫落,所以,片空化的時候空泡閉合區(qū)始終包裹凹槽或者輕輕掠過凹槽,使得升阻比與正常翼型并沒有很大的區(qū)別。
如圖4所示,在凹槽距水翼前緣為0.32的流動中,空泡尾緣距凹槽位置非常接近,凹槽的存在使得回射流速度方向受到干擾,并且凹槽處有嚴重動能的耗散,導致回射流順利進入空化體內受阻,故此時的空化體脫落頻率下降。
表1 凹槽對水翼動力特性及空化特性的影響
圖4 凹槽周圍流體汽相分布與速度矢量圖(空化數σ=1.23)
對OR2-0.32、OR2-0.20和原始水翼的片空泡形態(tài)進行對比,分析結果與表1所統計的結果相符。如圖5所示,OR2-0.32水翼因凹槽布置在空泡尾部之后,在凹槽處造成局部低壓區(qū),使得空泡發(fā)展的尺度更長。與原始水翼對比,OR2-0.20水翼不僅空泡長度有一定的縮短,即將脫落的空泡也較原始水翼的更小。
綜上分析可以說明,凹槽布置在空泡尾部之后時,片空泡的震蕩頻率下降,但是片空泡的尺度和脫落的空泡都增大,不能達到抑制空化的效果。而凹槽布置在片空泡的內部時,空泡的震蕩頻率上升,空泡長度也一般不能縮短,但OR2-0.20水翼空泡長度較原始水翼縮短了近3%。片空化時,在水翼上布置凹槽對水翼的升阻比幾乎沒有影響。
云空化時,當凹槽布置在距前緣0.20處,水翼的升阻比提高。凹槽后移時,升阻比也進一步上升,但此時空泡脫落頻率也同時提高,導致水翼的振動加劇。凹槽布置在距前緣0.20處,水翼的空泡脫落頻率有了一定程度上的減弱,此時從最大空泡長度可以看出,空化抑制效果與凹槽的尺度成正相關。綜上,凹槽對于空化的抑制具有不確定性,綜合考慮TR2-0.20和OR2-0.202種水翼既抑制了空化,又提升其水動力性能。
圖5 片空化時的空泡形態(tài)(空化數σ=1.23)
本文中有(),即空化數是壓力和速度的函數。文中首先分析了同一入口速度、不同流體壓力的工況,目的在于避免不同速度導致雷諾數變化對結果造成的復雜影響。表2為相同空化數下,不同雷諾數對于水翼水動力特性的影響。
從結果來看,針對現有的凹槽結構,雷諾數對于水翼升阻比影響的規(guī)律性不強,但空泡脫落頻率的增加顯示出雷諾數對于空化流動的影響較大。由于雷諾數和凹槽結構的改變同時影響著空化流動,使得流場更加復雜,研究需要更加深入。因此,這部分工作成果將在后續(xù)的文章中體現。
為了進一步探索凹槽對水翼空化的影響,改變凹槽深度和將凹槽位置滯后,新設計出OR5-0.32和OR2-0.55水翼。對它們進行空化流動的瞬態(tài)分析,并和原始水翼進行對比,圖6顯示其壓力分布與空泡輪廓,白色線條即為汽相體積分數為10%的等值線,用它來代表空泡的輪廓。
表2 不同雷諾數下凹槽對空化特性的影響(空化數σ=0.81)
注:白色線條為汽相體積分數為10%的等值線,代表空泡的輪廓。T為空泡發(fā)展階段。
凹槽在空泡的發(fā)展階段影響不大,由圖6可知,出在空泡達到最大長度之后,即在5/8之后,凹槽明顯有抑制空化的作用,為空泡發(fā)展階段。特構水翼脫落空泡的尺度明顯小于原始水翼,尾緣的低壓分布也明顯小于原始水翼,這也使得特構水翼的尾緣渦空泡得以抑制。為進一步分析凹槽対水翼的水動力學參數的,分析特構水翼和原始水翼的區(qū)別,升阻力系數如圖7a所示,升力系數始終大于阻力系數,并對升力系數進行了頻譜分析,如圖7b所示。由圖7可知,凹槽的存在對于水動力學性能的影響不是很明顯。圖7b的第一特征頻率與云空泡脫落的頻率相同,第二特征頻率與渦流的生成和脫落的頻率相同[31]。原始水翼、OR5-0.32水翼和OR2-0.55水翼的主頻率振幅分別為72.97、68.76和71.77,即凹槽存在使云空泡脫落所引起的水翼振動減弱。
由表1的最大空泡長度統計可知,OR2-0.20水翼和TR2-0.32水翼在云空化時,有很好的抑制空化的作用。在圖8中給出空化數為0.81時,OR2-0.20水翼、TR2-0.32水翼和原始水翼的邊界層內的時均速度分布。
圖7 表面不同構型水翼的水動力性能分析(空化數σ=0.81)
注:Vin為來流速度,m·s-1;V為監(jiān)測點速度,m·s-1;yn為監(jiān)測點距水翼距離,m。
由圖8可以看出凹槽的存在使邊界層的厚度明顯減薄,即近壁處的的速度梯度增大,液體的動能增大,抗逆壓梯度能力更強。但是在=0.4處也可以看出由于凹槽的存在使得此處的邊界層厚度增大,但沒有超過原始水翼最大邊界層厚度,所以并沒有導致整體流場的惡化。然而,此處回射流速度大于原始水翼,引起流動不穩(wěn)定,=0.5處,凹槽結構造成水翼的回射流達到最大速度,而原始水翼的回射流最大速度發(fā)生在=0.6處。在水翼的尾緣部分,回射流速度較為穩(wěn)定,且在原始水翼回射流速度的30%~46%之間變化。圖9水翼尾緣流場壓力分布情況也說明帶有凹槽結構的水翼尾緣處逆向壓力梯度的減小降低了回射流速度,以及水翼吸力面的時均回射流厚度。而OR2-0.20水翼、TR2-0.32水翼的邊界層分布只在=0.3處略有不同,但差別不大,主要是凹槽深度不大,并沒有引起流場的劇烈變化。由此可見,凹槽雖然可以降低水翼表面邊界層的厚度,增強抗逆壓能力,但卻觸發(fā)了凹槽附近區(qū)域回射流的加速。因此,只有當抗逆壓梯度能力大于回射流沖擊時,才可以對空化進行抑制。
圖9 水翼尾緣壓力分布與回射流速度分布(空化數σ=0.81)
利用二維定常邊界層分離的判據,即普朗特分離判據,對水翼吸力面邊界層分離點作近似的計算。吸力面上(d/d)=0=0的點即為邊界層分離點,數值計算統計結果見表3。
由表3可以看出,水翼吸力面布置的這2種凹槽使得邊界層分離的位置較原始水翼有所滯后,即水翼吸力面邊界層的黏性底層更長,前緣流動更加有序。
表3 水翼吸力側邊界層時均分離點(空化數σ=0.81)
上述分析表明,在水翼特定的位置布置凹槽可以使水翼吸力面壓力提高,使流動的邊界層分離滯后,邊界層的厚度減小。此外,水翼升阻比的提高對于水翼性能的提高十分有利。
本文對水翼吸力面進行凹槽設計以求達到抑制空化的目的,采用Realizable模型和 Schnerr-Sauer空化模型,開展了特殊構型對水翼空化流場的抑制和水動力學特性的研究,結果顯示:
1)凹槽降低了水翼表面邊界層的厚度,增強了抗逆壓能力,但卻觸發(fā)了凹槽附近區(qū)域回射流的加速。只有當抗逆壓梯度能力大于回射流沖擊時,才可以對空化進行抑制。2)在云空化發(fā)生時,適當的表面構型能夠使水翼吸力面邊界層變薄,邊界層分離點滯后,水翼尾緣回流區(qū)減薄,吸力面低壓區(qū)減小,證明了表面構型對空化抑制的適用性。
致謝:衷心感謝遼寧重大裝備制造協同創(chuàng)新中心對文中研究工作的支持!
[1] 司喬瑞,袁壽其,李曉俊,等. 空化條件下離心泵泵腔內不穩(wěn)定流動數值分析[J]. 農業(yè)機械學報,2014,45(5):84-90.
Si Qiaorui, Yuan Shouqi, Li Xiaojun, et al. Numerical simulation of unsteady cavitation flow in the casing of a centrifugal pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(5): 84-90. (in Chinese with English abstract).
[2] 李根生,沈曉明,施立德,等. 空化和空蝕機理及其影響因素[J]. 石油大學學報,1997,21(1):97-102.
Li Gensheng, Shen Xiaoming, Shi Lide, et al. Review of studies on cavitation and cavitation erosion[J]. Journal of the University of Petroleum, 1997, 21(1): 97-102. (in Chinese with English abstract)
[3] 顧巍,何友聲. 空泡流非穩(wěn)態(tài)現象的流動控制[J]. 力學學報,2001,33(1):19-27.
Gu Wei, He Yousheng. Flow control on unstable cavitation phenomena[J]. Acta Mechanica Sinica, 2001, 33(1): 19-27. (in Chinese with English abstract)
[4] 王獻孚. 空化泡和超空化泡流動理論及應用[M]. 北京:國防工業(yè)出版社, 2009.
[5] Stanley C, Barber T, Rosengarten G. Re-entrant jet mechanism for periodic cavitation shedding in a cylindrical orifice[J]. International Journal of Heat and Fluid Flow, 2014, 50:169-176.
[6] Chen Weiqi. A theoretical study for three-dimensional cavity re-entrant jets[J]. Journal of Ship Mechanics, 2017, 21(9): 1055-1061.
[7] Wu Qin, Wang Yana, Wang Guoyu. Experimental investigation of cavitating flow-induced vibration of hydrofoils[J]. Ocean Engineering, 2017, 144: 50-60.
[8] 王一偉,黃晨光,方新,等. 水下回轉航行體的云狀空化回射流運動特征研究[J]. 水動力學研究與進展,2013,28(1):23-29.
Wang Yiwei, Huang Chenguang, Fang Xin, et al. Characteristics of the re-entry jet in the cloud cavitating flow over a submerged axisymmetric projectile[J].Chinese Journal of Hydrodynamics, 2013, 28(1): 23-29.
[9] Zhang Yuning, Qian Zhongdong, Ji Bin. A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 303-318.
[10] Ji B, Luo X W, Wu Y, et al. Numerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil[J]. International Journal of Multiphase Flow, 2013, 51: 33-43.
[11] 王巍,徐瑞鐸,羿琦,等. 回射流強度對水翼表面空化形態(tài)的影響[J]. 排灌機械工程學報,2016,34(11):921-926,940.
Wang Wei, Xu Ruiduo, Yi Qi, et al. Influence of re-entrant jet strength on cavitation characteristics of hydrofoil[J]. Journal of Drainage and Irrigation Machiney, 2016, 34(11): 921-926,940. (in Chinese with English abstract)
[12] 戴月進,張媛媛,黃典貴. 水翼表面粗糙帶對空化抑制效果的數值研究[J]. 工程熱物理學報,2012,33(5):770-773.
Dai Yuejin, Zhang Yuanyuan, Huang Diangui. Numerical study of the impact of hudrofoil surface roughness on cavitation suppression[J]. Journal of Engineering Thermophysics, 2012, 33(5): 770-773. (in Chinese with English abstract)
[13] 羿琦. 水翼表面微結構設計及其對空化流場影響研究[D]. 大連:大連理工大學,2017.
Yi Qi. Microstructure Design of Hydrofoil Surface and Its Influence on Cavitation Flow Field[D]. Dalian: Dalian University of Technology, 2017. (in Chinese with English abstract)
[14] 趙偉國. 水翼云空化及其控制機理研究[D]. 杭州:浙江大學,2012.
Zhao Weiguo. Research on the Cloud Cavitation of Hydrofoil and Control Mechanism[D].Hangzhou: Zhejiang University, 2012. (in Chinese with English abstract)
[15] Mikhail V T, Ivan I Z, Konstantin S P, et al. Manipulating cavitation by a wall jet: Experiments on a 2D hydrofoil[J]. International Journal of Multiphase Flow, 2018, 99: 312-328.
[16] Wang Wei, Yi Qi, Wang Yayun, et al. The adaptability research of hydrofoil surface water injection on cavitation suppression[J]. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35(6): 461-466.
[17] 王巍,羿琦,林茵,等. 水翼表面布置射流水孔抑制空化[J]. 排灌機械工程學報,2016,34(10):865-870.
Wang Wei, Yi Qi, Lin Yin, et al. Impact of hydrofoil surface water injection on cavitation suppression[J]. Journal of Drainage and Irrigation Machiney, 2016, 34(10): 865-870. (in Chinese with English abstract)
[18] Zhang Lingxin, Chen Ming, Shao Xueming. Inhibition of cloud cavitation on a flat hydrofoil through the placement of an obstacle[J]. Ocean Engineering, 2018, 155: 1-9.
[19] Kadivar E, Moctar O E, Javadi K. Investigation of the effect of cavitation passive control on the dynamics of unsteady cloud cavitation[J]. Applied Mathematical Modelling, 2018, 64: 333-356.
[20] 鄔偉,熊鷹,齊萬江. 基于翼剖面改型的空化抑制[J]. 中國艦船研究,2012,7(3):36-40.
Wu Wei, Xiong Ying, Qi Wanjiang, et al. Cavitation control of a 2-D hydrofoil under section reshaping[J]. Chinese Journal of Ship Research, 2012, 7(3): 36-40. (in Chinese with English abstract)
[21] Capurso T, Lopez M, Lorusso M, et al. Numerical investigation of cavitation on a NACA0015 hydrofoil by means of OpenFOAM[J]. Energy Procedia, 2017, 126: 794-801.
[22] Ji Bin, Luo Xianwu, Arndt R E A, et al. Large Eddy Simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil[J]. International Journal of Multiphase Flow, 2015, 68: 121-134.
[23] 張德勝,吳蘇青,施衛(wèi)東,等. 不同湍流模型在軸流泵葉頂泄漏渦模擬中的應用與驗證[J]. 農業(yè)工程學報,2013,29(13):46-53.
Zhang Desheng, Wu Suqing, Shi Weidong, et al. Application and experiment of different turbulence models for simulating tip leakage vortex in axial flow pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(13):46-53. (in Chinese with English abstract)
[24] 叢國輝,王福軍. 湍流模型在泵站進水池漩渦模擬中的適用性研究[J]. 農業(yè)工程學報,2008,24(6):31-35.
Cong Guohui, Wang Fujun.Applicability of turbulence models in numerical simulation of vortex flow in pump sump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(6): 31-35. (in Chinese with English abstract)
[25] 張德勝,施衛(wèi)東,張華,等. 不同湍流模型在軸流泵性能預測中的應用[J]. 農業(yè)工程學報,2012,28(1):66-71.
Zhang Desheng, Shi Weidong, Zhang Hua, et al. Application of different turbulence models for predicting performance of axial flow pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(1): 66-71. (in Chinese with English abstract)
[26] 劉厚林,劉東喜,王勇,等. 三種空化模型在離心泵空化流計算中的應用評價[J]. 農業(yè)工程學報,2012,28(16):54-59.
Liu Houlin, Liu Dongxi, Wang Yong, et al. Applicative evaluation of three cavitation models on cavitation flow calculation in centrifugal pump[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(16): 54-59. (in Chinese with English abstract)
[27] 王智勇. 基于FLUENT 軟件的水力空化數值模擬[D]. 大連:大連理工大學,2006.
Wang Zhiyong. Numerical Simulation of Hydrodynamic Cavitation Based on FLUENT[D]. Dalian: Dalian University of Technology, 2006. (in Chinese with English abstract)
[28] 黃旭. 表面特性對繞水翼空化流動影響的研究[D]. 北京:北京理工大學,2015.
Huang Xu. The Study on Effect of Surface Characteristics on Cavitating Flow over Hydrofoils[D]. Beijing: Beijing Institute of Technology, 2015. (in Chinese with Englishabstract)
[29] Lu Shengpeng, Wang Wei, Hou Tengfei, et al. Experiment research on cavitation control by active injection[C]//Th10th International Symposium on Cavitation (CAV2018), Baltimore, Maryland, USA. 2018.
[30] Kawanami Y. Mechanism and control of cloud cavitation[J]. Journal of Fluids Engineering, 1997, 236(4): 788-794.
[31] Chen Y, Chen X, Gong Z, et al. Numerical investigation on the dynamic behavior of sheet/cloud cavitation regimes around hydrofoil[J]. Applied Mathematical Modelling, 2016, 40(11/12): 5835-5857.
Investigation of cavitation suppression by arranging pits on hydrofoil suction side
Wang Wei, Tang Tao, Lu Shengpeng, Jiao Jianxiong, Zhang Qingdian, Wang Xiaofang
(,,116024,)
The existence of cavitation will lead to different intensity of vibration, shocks as well as acoustic noise and worsen the cavitation erosions which results in structural fatigue failure. In order to suppress the evolution and detachment of bubbles efficiently,based on the existing experimental phenomena, a new idea is proposed to achieve cavitation flow control by setting pits on the suction side of the hydrofoil. To study the impact of this new structure on cavitation flow field, in this paper, the unsteady cavitation flow around the NACA66 (MOD) hydrofoil at 8° angle of attack was simulated by Realizableturbulence model combined with Schnerr-Sauer cavitation model for different cavitation numbers, pits size and pits location. The results indicate that the simulated cavity shapes around foil were well fitted with the experimental high speed images, and showed that the selected models can better predict the cavitation flow. The results also showed that for the study of the non-cavitation flow, the suction side pits led to the decrease of the hydrofoil lift-to-drag ratio and impair the hydrodynamic performance. However, this was very different from that in cavitation condition. In addition, the analysis of the dynamic characteristics of the 2D hydrofoil cavitation flow field and the effect of hydrofoil surface structure factors on cavitation suppression showed that the tail position of cavitation closure region was very close to that of the pits which located at 0.32 chord (0.32) distance from leading edge for the sheet cavitation (Cavitation number=1.23). The presence of the pits changed the direction of the re-entrant jet and caused the severe dissipation of the kinetic energy of the re-entrant jet. As a result, the re-entrant jet was blocked to enter the cavity body, and therefore, the cavitation shedding and vibration frequency decreased. However, the evolution of cavity had not been suppressed along with the increased cavity length because local low pressure region formed at the position of pits (0.32) celebrated the development of cavitation flow. But when the pits were placed at 0.2distance from leading edge, the maximum cavity length was shortened 3% compared with that for normal hydrofoil without any changes of lift-to-drag ratio. The structure of pits played a positive role in controlling cavitation flow when the sheet cavitation occurred. Moreover, for cloud cavitation (Cavitation number=0.81), when the pits were placed at 0.2, the lift-to-drag ratio increased and shedding frequency decreased which showed a good hydrodynamic performance. The effect analysis of pits structure size and position on cavitation flow revealed the pits had an obvious effect of suppressing cavitation after the cavity length reach maximum. The size of the detached vapor cloud and the low pressure distribution zone of the trailing edge were significantly smaller than that of the normal hydrofoil, therefore the vortex at the trailing edge were suppressed. Through the spectrum analysis of the lift coefficients of different hydrofoils, it is found that the presence of the pits weakened the hydrofoil vibration caused by the detachment of cloud cavity. That meant that with the proper design of pits, the hydrodynamic efficiency was increased and the unsteady behavior of the cavitation could be suppressed. Finally, the study of the boundary layer velocity and pressure distribution of the hydrofoil suction side revealed that arranging the pits on the suction side of the hydrofoil could reduce the thickness of the boundary layer of the hydrofoil surface and enhance the anti-reverse pressure capability, but it accelerated the re-entrant jet near the pits. Therefore, cavitation could be suppressed only when the anti-reverse pressure gradient capability was greater than the impact of the re-entrant jet. The conclusions obtained in the numerical calculations showed that the proper suction side pits can suppress cavitation, broaden the scope of passive control technology research, and also stimulate the subsequent research of cavitation suppression methods.
cavitation; computer simulation; models; hydrofoil; suction-side pit; cavitation suppression; hydrodynamic performance
10.11975/j.issn.1002-6819.2019.02.006
TV131.3+2
A
1002-6819(2019)-02-0040-08
2018-07-15
2018-12-15
國家自然科學基金(51876022);國家973計劃項目(2015CB057301)
王 巍,副教授,主要從事先進動力裝置及流體機械設計和優(yōu)化研究。Email:wangw@dlut.edu.cn
王 巍,唐 滔,盧盛鵬,焦建雄,張慶典,王曉放. 水翼吸力面布置凹槽抑制空化研究[J]. 農業(yè)工程學報,2019,35(2):40-47. doi:10.11975/j.issn.1002-6819.2019.02.006 http://www.tcsae.org
Wang Wei, Tang Tao, Lu Shengpeng, Jiao Jianxiong, Zhang Qingdian, Wang Xiaofang. Investigation of cavitation suppression by arranging pits on hydrofoil suction side[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(2): 40-47. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.02.006 http://www.tcsae.org