侯軼群,鄒 璇,姜 偉,陳 亮,朱佳志
?
自然水體中超聲波標記魚游動軌跡精密確定算法
侯軼群1,2,鄒 璇1,3,姜 偉1※,陳 亮4,朱佳志1
(1. 三峽工程魚類資源保護湖北省重點實驗室,中國三峽集團中華鱘研究所,宜昌 443100; 2. 水利部中國科學院水工程生態(tài)研究所,武漢 430079; 3. 武漢大學衛(wèi)星導航定位技術(shù)研究中心,武漢 430079;4. 千尋位置網(wǎng)絡(luò)有限公司,上海 200438)
針對魚類關(guān)鍵生境位置確定的應(yīng)用需求,該文提出了一套適用于自然水體的超聲波標記魚定位算法,解決了標記魚定位以及存在粗差觀測值,即水聽器記錄的超聲波信號接收時間存在錯誤情況下算法的抗干擾性。宜昌黃柏河的實測結(jié)果表明,基于現(xiàn)有1 ms級精度的水聽器,可在自然水體中獲得2.15 m精度的信號標記魚三維游動軌跡。如因氣泡、遮擋等因素對水聽器觀測數(shù)據(jù)引入粗差,當粗差量級在10 m以上,該方法可接近100%探測出是否存在粗差。當粗差觀測值在3個以內(nèi)時,該方法的探測成功率可達84.3%以上,3個以上時粗差探測成功率明顯下降,5個及以上,即粗差觀測值個數(shù)占觀測值總數(shù)的比例大于31.25%時,基本只能探測出觀測數(shù)據(jù)中存在粗差而無法有效確定粗差。該研究可為漁業(yè)增殖、魚類棲息地保護、魚類洄游通道等研究提供參考。
位置確定;超聲波;算法;魚;自然水體;距離交匯;游動軌跡;粗差探測
在漁業(yè)增殖及魚類保護領(lǐng)域,行為分析是各項研究的基礎(chǔ)[1-2],魚類位置確定是行為分析的必備手段[3]。隨著科技發(fā)展,魚類定位精度不斷提升。如用機器視覺和圖像處理技術(shù)可在實驗室條件下有效獲取魚游位置[4],但在自然水體中的魚類定位仍較為困難。一方面自然水體渾濁、光波衰減嚴重[5],光學攝像在水下可視范圍小、視覺影像模糊[6];另一方面自然水體流速快、氣泡多、雜質(zhì)多,魚體形態(tài)和游動方向隨時發(fā)生變化,魚探儀等聲學探測儀器也難以有效跟蹤到魚體的游動軌跡[7]。因此,肉眼、視頻拍攝及聲學探測等方法均難以在自然水體中定量魚體的實時動態(tài)位置,制約了魚類生態(tài)行為學的發(fā)展。如:產(chǎn)卵場主要通過對早期發(fā)育魚卵進行捕撈的方式推求。對于卵苗可在江底直接撈取的中華鱘,據(jù)報道產(chǎn)卵范圍在葛洲壩大江電廠以下約300 m的江段內(nèi)[8];對于產(chǎn)漂流性卵的四大家魚(青魚、草魚、鰱、鳙),其估算出來的產(chǎn)卵場位置精度達km級[9],產(chǎn)卵場的準確位置及具體范圍仍未得到有效確定。綜上所述,自然水體中的魚類生態(tài)行為(如關(guān)鍵生活史等)研究需要魚類定位,但直接觀測難度較大,間接方法推求又有精度較差、準確度不高等諸多問題。提高魚類定位精度、尤其是在自然水體中進行魚類定位研究具有重要的應(yīng)用價值[10-12]。
超聲波具有方向性好,穿透能力強,能量易于集中,在水中傳播距離較遠等特點[13]。由于常用的電磁波信號在水中的衰減嚴重,超聲波成為目前水下信號傳播的主要載體[14]。20世紀50年代開始,超聲波技術(shù)應(yīng)用于魚類探測,典型技術(shù)有魚探儀、聲吶成像儀等[15]。與此同時,采用抽樣研究的方式在測試魚體安裝超聲波信號標記,利用水聽器進行魚類遙測的技術(shù)也開始得到應(yīng)用[16-18]。近年來,Espinoza等學者在水下布設(shè)水聽器陣列接收標記發(fā)出的超聲波信號,通過定位算法實現(xiàn)魚類的m級精度位置捕獲[19-21],但出于技術(shù)保護原因,相關(guān)算法成果未見報道。為此,本文以目前常用的超聲波水聽器設(shè)備作為基礎(chǔ)硬件,將魚類游動時所處水深、持續(xù)游速等作為先驗信息,提出了一套較為完整且適用于自然水體的超聲波標記魚m級定位算法。
在魚體安裝超聲波信號標記,該標記每隔一段時間會播發(fā)一組超聲波信號,水聽器接收到信號后記錄接收時刻,并以此作為本文超聲波標記魚定位算法的觀測數(shù)據(jù)。魚類定位時需布設(shè)由水聽器陣列組成的監(jiān)測網(wǎng),網(wǎng)內(nèi)水聽器間距離不宜超過其信號接收范圍。當信號標記魚進入監(jiān)測網(wǎng)并被網(wǎng)內(nèi)(≥3)個水聽器同時監(jiān)測時,通過記錄標記魚的超聲波到達每個水聽器的時間TOA(time of arrival)或到達2個水聽器的時間差TDOA(time difference of arrival),測算信號標記魚同水聽器的距離/距離差。通過多個TOA/TDOA測量值構(gòu)建關(guān)于信號標記魚位置的雙曲線方程組,同時顧及標記魚所處水深、持續(xù)游速等先驗近似信息,求解方程組得到信號標記魚的位置信息[22-24]。
在自然水體中,由于氣泡、雜質(zhì)、水流、遮擋等原因可能對水聽器接收標記信號造成影響,并通常體現(xiàn)為如下2種情況:1)水聽器對該組超聲波信號無法有效鎖定,導致觀測數(shù)據(jù)缺失;2)記錄的信號觀測時刻與理論上的真實觀測時刻間存在偏差。前者可通過提升硬件性能、嚴格試驗步驟來控制。對于第2種情況,本文在算法中進一步采用抗差最小二乘法探測并剔除粗差觀測值,即水聽器記錄的超聲波信號接收時間存在錯誤的這類觀測值,得到最優(yōu)的定位結(jié)果[25-26]。
設(shè)()為信號標記的待估三維位置,(x,y,h)為第個水聽器的已知位置,第個水聽器與該信號標記間的距離為D,m。
令為超聲波標記的信號發(fā)射時刻,則第個水聽器對該信號的記錄時刻O存在以下關(guān)系
式中為水中聲速,m。
令D1表示該信號標記與第個水聽器和第1個水聽器的距離差觀測值,則有
求解非線性式(3)需進行線性化處理,因
式(4)展開:
式中K=x2+y2+h2,x,1=x-1,y,1=y-1,h,1=h-1。
假設(shè)1已知,水聽器距離差觀測值D1的精度為,m,信號標記魚所處水深的可能范圍為,m,則觀測方程組:
其中:
對應(yīng)的觀測值權(quán)矩陣,即用來表示每一組觀測值在數(shù)據(jù)處理時所設(shè)置權(quán)重關(guān)系的矩陣為
其中為單位矩陣。
則信號標記位置(,,)可由式(6)和式(7)按最小二乘估計得到:
將式(8)代入式(1),令=1,則得到一個關(guān)于1的二次方程,將其正根代回式(8),就得到信號標記魚的估計位置(0,0,0),信號發(fā)射時刻的估值0可根據(jù)式(2)計算得到。在某些情況可能有2個正根,這種模糊性可通過以下先驗信息進行選擇:
1)1小于該水聽器的最大可觀測距離;
2)估值應(yīng)在的水深范圍內(nèi);
3)魚類在多數(shù)情況下是以低于1 m/s的持續(xù)游泳速度在水中游動[27],當前時刻位置估值與前一有效觀測時刻的位置間,其最大距離應(yīng)小于持續(xù)游速與2次位置結(jié)果對應(yīng)時間差的乘積。實際應(yīng)用過程中對魚持續(xù)游泳速度的設(shè)置范圍并不做限制,該參數(shù)只會影響本條先驗信息約束的嚴格程度。
將式(2)在信號標記魚初始位置(0,0,0)及信號發(fā)射時刻初值0處進行Taylor展開[28],忽略二階以上分量,同時顧及標記魚所處水深范圍等先驗信息,則有如下觀測方程組
式中為觀測誤差矩陣。其中,
對應(yīng)的觀測值初始權(quán)矩陣與式(7)相同。
式(9)所示觀測方程組按照式(10)進行最小二乘估計,可得信號標記魚的坐標和信號發(fā)射時刻修正量。通過多次迭代更新初始坐標()、信號發(fā)射時刻直至小于指定閾值,即可得到信號標記魚的初步定位結(jié)果式(11)。
當同一組超聲波信號被多于3個水聽器記錄時,對于式(10)的最小二乘估計結(jié)果,其觀測值殘差和觀測值之間的內(nèi)符合一致性指標,即驗后單位權(quán)中誤差,定義如下
如較水聽器距離差觀測值的精度顯著增大,則觀測值中存在粗差,此時采用抗差最小二乘確定存在粗差的觀測值。
觀測值殘差的協(xié)因數(shù)矩陣為
此時,對等價權(quán)函數(shù)的選取如下
基于上述定位算法,本文針對現(xiàn)有魚類超聲波標記1 ms級水聽器(等效距離精度1.5 m)開發(fā)了一套數(shù)據(jù)處理軟件,并在自然水體中開展試驗分析論證本文算法的有效性。
2.1.1 測試環(huán)境
2017年9月4日在宜昌黃柏河120 m×120 m范圍內(nèi)開展測試,該水域水溫25.5 ℃,最大水深為4.0 m,水聽器處平均水壓0.3 Pa,鹽度0.0(淡水),根據(jù)Chen- Millero-Li公式計算得到超聲波在水中的傳播速度為1 498.06 m/s[31-32]。
2.1.2 測試設(shè)備
如圖1和圖2所示,在水下3 m處均勻布設(shè)由16臺Vemco VR2W和VR2C型水聽器組成的觀測網(wǎng),2種型號水聽器的觀測值精度均為1 ms,在本文測試過程中等效。靜態(tài)測試用于模擬魚休息時的狀態(tài),由于魚類超聲波信號標記需固定在水下已知坐標的位置,為便于安裝,本次試驗中2個長約4 cm質(zhì)量約5 g的Vemco V9型魚類超聲波信號發(fā)射標記分別同網(wǎng)內(nèi)2個水聽器固定在一起。動態(tài)測試用于模擬魚游動時的狀態(tài),船只在觀測網(wǎng)內(nèi)以0.2~1 m/s的速度航行,船底綁定2個V9型魚類超聲波標記,船上固定PD318型北斗/GNSS接收機設(shè)備進行cm級精度的RTK定位,以同時得到利用本文算法計算的魚類超聲波標記水下定位結(jié)果和船只的衛(wèi)星定位結(jié)果。
圖1 測試現(xiàn)場
注:5、10、15、20、25、30 m為對指定水聽器觀測值人為設(shè)定的粗差。
2.1.3 測試過程
測試船由水聽器觀測網(wǎng)外的右上角出發(fā),迂回航行至左下角,隨后返回右上角(圖2)。測試船航行過程中,利用水聽器觀測網(wǎng)記錄本次定位測試中4個魚類超聲波標記的信號,以便模擬4條測試魚并評估對其的定位精度,即定位結(jié)果的有效性。
測試完畢后,導出水聽器設(shè)備記錄的各組超聲波信號接收時刻數(shù)據(jù)并利用本文算法計算4個信號標記的定位結(jié)果,同cm級精度的北斗/GNSS RTK定位結(jié)果比較,驗證算法的有效性。此外,如圖2所示,還人為在水聽器記錄的超聲波信號接收時刻(觀測數(shù)據(jù))中加入大小不同、數(shù)量不同的粗差,以分析不同情況下的粗差探測成功率。
2.1.4 測試算例
Vemco魚類超聲波標記其信號頻率為69 kHz。不同標記發(fā)射的信號如在同一時刻被同一個水聽器接收,由于信號之間會存在相互干擾導致水聽器無法有效識別并鎖定觀測信號,這一現(xiàn)象稱之為“多用戶干擾”。因此超聲波標記的采樣間隔被設(shè)置為在指定數(shù)值區(qū)間內(nèi)變化,以保證信號間不會出現(xiàn)長期、連續(xù)的“多用戶干擾”現(xiàn)象。4個魚類信號標記的發(fā)射間隔從13至300 s不盡相同且存在不定期變化,同時因河面上船只經(jīng)過導致水流擾動、氣泡含量增加,部分超聲波信號衰減嚴重等緣故,對4個信號標記合計開展了115組定位測試,靜1測試數(shù)為8,靜2測試數(shù)為8,動1測試數(shù)為89,動2測試數(shù)為10。
采用本文提出的超聲波標記魚定位算法計算4個標記于各測試算例的位置信息。由式(13)計算各組有效測試算例的驗后單位權(quán)中誤差,即水聽器觀測數(shù)據(jù)的內(nèi)符合一致性指標均在2.2 m左右。以cm級精度的北斗/GNSS RTK定位結(jié)果為真值進行評估,平均的三維定位精度為2.15 m,同驗后單位權(quán)中誤差以及水聽器設(shè)備的觀測值等效精度1.5 m在一個量級。論證了基于現(xiàn)有1 ms級精度的水聽器設(shè)備,本文算法可在自然水體中獲得1倍中誤差為2.15 m精度的信號標記魚三維游動軌跡。
圖3 魚類信號標記的三維定位誤差
2.2.1 存在不同大小粗差時的探測有效性
本次測試時水聽器觀測數(shù)據(jù)受環(huán)境誤差的影響相對較小,為分析更加復雜的自然水體中本文算法對粗差觀測值的抗干擾特性,人為在觀測數(shù)據(jù)中加入大小不等的粗差(圖2)。如圖4所示,當對指定水聽器觀測數(shù)據(jù)分別加入1個5、10、20 m大小的粗差后發(fā)現(xiàn),1個5 m的粗差對單位權(quán)中誤差的影響較為有限;當粗差≥10 m時,可通過單位權(quán)中誤差判定水聽器觀測值中是否存在粗差,且該探測效果會隨著粗差的增大而顯著提升。
圖4 實測數(shù)據(jù)的單位權(quán)中誤差(人為加入1個粗差)
2.2.2 存在不同數(shù)量粗差時的探測有效性
在自然水體中,可能存在粗差觀測值個數(shù)、粗差大小不盡相同等工況。為此如圖2所示,對4個信號標記的每一組有效觀測算例人為加入了1~5個粗差,5個粗差對應(yīng)的大小依次為10、15、20、25、30 m,以驗證本文方法在不同粗差觀測條件下的抗干擾性。根據(jù)式(15)中0、1的設(shè)置范圍及其實測有效性分析,采用0=1.0,1=2.4進行粗差探測。如圖5的統(tǒng)計結(jié)果所示,4個信號標記的粗差探測成功率分布情況基本一致,粗差探測成功率隨著粗差個數(shù)增加而下降。當僅存在1個粗差觀測值時,對于總計115個測試算例,其粗差準確探測的成功率高達100.0%;存在3個粗差觀測值時,粗差準確探測的成功率仍高達84.3%;3個以上粗差時成功率明顯下降,當粗差個數(shù)大于5個,即粗差觀測值個數(shù)占觀測值總數(shù)的比例大于31.25%時,本文算法能探測出觀測數(shù)據(jù)中存在粗差,但無法有效確定粗差觀測值。
圖5 不同超聲波標記魚在含有不同比例粗差觀測值情況下其粗差探測成功率
本文提出了一套適用于自然水體的超聲波標記魚定位算法并在宜昌黃柏河進行了實測分析。基于常用的1 ms級觀測精度(等效距離精度為1.5 m)的水聽器布設(shè)觀測網(wǎng),本算法可得到魚類超聲波標記優(yōu)于2.15 m精度的水下三維位置。除此之外,測試還人為引入了自然水體可能產(chǎn)生的不同粗差量級及個數(shù),探討了本文算法在各類粗差工況下的探測成功率和抗干擾性:量級方面,本算法可接近100%探測出大于10 m量級的粗差觀測值;3個以內(nèi)(即粗差觀測值個數(shù)占觀測值總數(shù)的比例小于18.75%)的粗差觀測值探測成功率較高(可達84.3%以上),3個以上時粗差探測成功率明顯下降,5個及以上,即粗差觀測值占比大于31.25%時,則基本只能探測出觀測數(shù)據(jù)中存在粗差而無法有效確定粗差值。
本文提出的超聲波標記魚定位算法,為自然水體中確定魚體精確游動軌跡提供了一種有效的解決方案,并充分考慮自然水體的復雜性,測試了算法粗差探測有效性和抗干擾性,為算法的實際應(yīng)用提供定量指導。在今后實踐過程中,隨著水聽器設(shè)備觀測精度的提升,設(shè)備在水中的位置穩(wěn)定性等試驗條件的嚴格控制,以及采用信號標記中壓力傳感器對水深數(shù)據(jù)的精化,按照本文算法預計能得到更加精確可靠的標記魚三維位置。此外,通過完善數(shù)據(jù)通訊接口,本文提出的相關(guān)算法可有效應(yīng)用于不同廠家的魚類超聲波標記定位設(shè)備。本文的研究成果現(xiàn)已有效應(yīng)用于南海海上人工魚礁投礁效果評估以及高要江段鯉魚繁殖期運動行為研究,未來對漁業(yè)增殖、魚類棲息地保護、魚類洄游通道等研究均具有一定的推動作用。
[1] 何大仁. 魚類行為學[M]. 廈門:廈門大學出版社,1998.
[2] 吳常文,徐梅英,胡春春. 幾種深水網(wǎng)箱養(yǎng)殖魚類行為習性的觀察[J]. 水產(chǎn)學報,2006,30(4):481-488. Wu Changwen, Xu Meiying, Hu Chunchun. Study on the behavioral characteristics of fishes in the deep water sea cage [J]. Journal of fisheries of China, 2006, 30(4): 481-488. (in Chinese with English abstract)
[3] 田超,黃志勇,熊彪,等. 運用多視圖幾何原理重建魚類游泳三維軌跡[J]. 水產(chǎn)學報,2017,41(10):1631-1637. Tian Chao, Huang Zhiyong, Xiong Biao, et al. Fish swimming 3D trajectory reconstruction based on multi-view geometry[J]. Journal of fisheries of China, 2017, 41(10): 1631-1637. (in Chinese with English abstract)
[4] 范良忠,劉鷹,余心杰,等. 基于計算機視覺技術(shù)的運動魚檢測算法[J]. 農(nóng)業(yè)工程學報,2011,27(7):226-230. Fan Liangzhong, Liu Ying, Yu Xinjie, et al. Fish motion detecting algorithms based on computer vision technologies[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(7): 226-230. (in Chinese with English abstract)
[5] 王毅凡,周密,宋志慧. 水下無線通信技術(shù)發(fā)展研究[J]. 通信技術(shù),2014(6):589-594. Wang Yifan, Zhou Mi, Song Zhihui. Development of underwater wireless communication technology[J]. Communications Technology, 2014(6): 589-594. (in Chinese with English abstract)
[6] 張勝茂,張衡,唐峰華,等. 計算機視覺技術(shù)在監(jiān)測魚類游泳行為中的研究進展[J]. 大連海洋大學學報,2017,32(4):493-500. Zhang Shengmao, Zhang Heng, Tang Fenghua, et al. Research progress on fish swimming behavior monitoring by computer vision technology[J]. Journal of Dalian Ocean University, 2017, 32(4): 493-500. (in Chinese with English abstract)
[7] 孫志偉,袁琳,葉丹,等. 水生態(tài)監(jiān)測技術(shù)研究進展及其在長江流域的應(yīng)用[J]. 人民長江,2016,47(17):6-11. Sun Zhiwei, Yuan Lin, Ye Dan, et al. Progress of water ecological monitoring technology and its application in Yangtze River Basin[J]. Yangtze River, 2016, 47(17): 6-11. (in Chinese with English abstract)
[8] 吳金明,王成友,張書環(huán),等. 從連續(xù)到偶發(fā):中華鱘在葛洲壩下發(fā)生小規(guī)模自然繁殖[J]. 中國水產(chǎn)科學,2017,24(3):425-431. Wu Jinming, Wang Chengyou, Zhang Shuhuan, et al. From continuous to occasional: Small-scale natural reproduction of Chinese sturgeon occured in the gezhouba spawning ground, Yichang, China[J]. Journal of Fishery Sciences of China, 2017, 24(3): 425-431. (in Chinese with English abstract)
[9] 劉明典,高雷,田輝伍,等. 長江中游宜昌江段魚類早期資源現(xiàn)狀[J]. 中國水產(chǎn)科學,2018(1):147-158. Liu Mingdian, Gao Lei, Tian Huiwu, et al. Status of fishes at the early life history stage in the Yichang section in the middle reaches of the Yangtze River [J]. Journal of Fishery Sciences of China, 2018(1): 147-158. (in Chinese with English abstract)
[10] 陳明千,脫友才,李嘉,等. 魚類產(chǎn)卵場水力生境指標體系初步研究[J]. 水利學報,2013,44(11):1303-1308. Chen Mingqian, Tuo Youcai, Li Jia, et al. Preliminary study on index system describing hydraulic characteristics of fish spawning ground[J]. Journal of Hydraulic Engineering, 2013, 44(11): 1303-1308. (in Chinese with English abstract)
[11] 顏文斌. 短須裂腹魚繁殖行為生態(tài)學研究[D]. 上海:上海海洋大學,2016. Yan Wenbin. Studies on Reproductive Behavioural Ecology of Schizothorax Wanchiachii[D]. Shanghai: Shanghai Ocean University, 2016. (in Chinese with English abstract)
[12] 馮憲斌,朱永久,李茜,等. 試驗條件下巖原鯉幼魚棲息地適宜性模型及最小棲息面積估算[J]. 應(yīng)用生態(tài)學報,2013,24(1):227-234. Feng Xianbin, Zhu Yongjiu, Li Xi, et al. Habitat suitability index model and minimum habitat area estimation of young Procypris rabaudi (Tchang): A simulation experiment in laboratory[J]. Chinese Journal of Applied Ecology, 2013, 24(1): 227-234. (in Chinese with English abstract)
[13] Muller L J, Franklin A, George Ii R W. Ultrasonic ranging system: US4701893[P]. 1987-10-20.
[14] 王慧. 超聲波水下通信編碼的研究[D]. 成都:成都理工大學,2012. Wang Hui. Research on Coding of Ultrasonic Underwater Communication[D]. Chengdu: Chengdu University of Technology, 2012. (in Chinese with English abstract)
[15] 王成友. 長江中華鱘生殖洄游和棲息地選擇[D]. 武漢:華中農(nóng)業(yè)大學,2012. Wang Chengyou. Migrations for Reproduction of Chinese Sturgeon (Acipenser sinensis) and its Habitat Selections in the Yangtze River[D]. Wuhan: Huazhong Agricultural University, 2012. (in Chinese with English abstract)
[16] 危起偉,楊德國,柯福恩. 長江中華鱘超聲波遙測技術(shù)[J]. 水產(chǎn)學報,1998,22(3):211-217. Wei Qiwei, Yang Deguo, Ke Fuen. Technique of ultrasonic telemetry for Chinese sturgeon, acipenser sinensis, in Yangtze River[J]. Journal of fisheries of China, 1998, 22(3): 211-217. (in Chinese with English abstract)
[17] Andrews K S, Tolimieri N, Williams G D, et al. Comparison of fine-scale acoustic monitoring systems using home range size of a demersal fish[J]. Marine Biology, 2011, 158(10): 2377-2387.
[18] Cooke S J, Midwood J D, Thiem J D, et al. Tracking animals in freshwater with electronic tags: Past, present and future[J]. Animal Biotelemetry, 2013, 1(5): 1-19.
[19] Espinoza M, Farrugia T J, Webber D M, et al. Testing a new acoustic telemetry technique to quantify long-term, fine-scale movements of aquatic animals[J]. Fisheries Research, 2011, 108(2): 364-371.
[20] Thorstad E B, Rikardsen A H, Alp A, et al. The use of electronic tags in fish research: An overview of fish telemetry methods[J]. Turkish Journal of Fisheries & Aquatic Sciences, 2013, 13(13): 881-896.
[21] Schultz A A, Afentoulis V B, Yip C J, et al. Efficacy of an acoustic tag with predation detection technology[J]. North American Journal of Fisheries Management, 2017, 37(3): 574-581.
[22] Smith J O, Abel J S. Close-form least-squares source location estimation from range-difference measurements[J]. IEEE Transactions on Acoustics Speech & Signal Processing, 1987, 35(12): 1661-1669.
[23] Chan Y T, Ho K C. A simple and efficient estimator for hyperbolic location[J]. IEEE Transactions on Signal Processing, 1994, 42(8): 1905-1915.
[24] Deng Ping. An NLOS error mitigation scheme based on TDOA reconstruction for cellular location services[J]. Chinese Journal of Radio Science, 2003, 18(3): 311-316.
[25] 周江文. 經(jīng)典誤差理論與抗差估計[J]. 測繪學報,1989(2):115-120. Zhou Jiangwen. Classical theory of errors and robust estimation[J]. Acta Geodaetica et Cartographica Sinica, 1989(2): 115-120. (in Chinese with English abstract)
[26] 張小紅,潘宇明,左翔,等. 一種改進的抗差Kalman濾波方法在精密單點定位中的應(yīng)用[J]. 武漢大學學報﹕信息科學版,2015,40(7):858-864. Zhang Xiaohong, Pan Yuming, Zou Xiang, et al. An improved Kalman filtering and its application in PPP[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7): 858-864. (in Chinese with English abstract)
[27] Katopodis C, Gervais R. Ecohydraulic analysis of fish fatigue data[J]. River Research & Applications, 2012, 28(4): 444-456.
[28] 崔希璋. 廣義測量平差[M]. 武漢:武漢大學出版社,2009.
[29] 鄒璇,李宗楠,陳亮,等. 一種歷元間差分單站單頻周跳探測與修復方法[J]. 武漢大學學報﹕信息科學版,2017,42(10):1406-1410. Zou Xuan, Li Zongnan, Chen Liang, et al. A new cycle slip detection and repair method based on epoch difference for a single-frequency GNSS receiver[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1406-1410. (in Chinese with English abstract)
[30] Yang Y, Xu J. GNSS receiver autonomous integrity monitoring (RAIM) algorithm based on robust estimation[J]. Geodesy and Geodynamics, 2016, 2(7): 117-123.
[31] Chen C, Millero F J. Speed of sound in seawater at high pressures[J]. Journal of the Acoustical Society of America, 1977, 62(5): 1129-1135.
[32] Millero F, Li X. Comments on ''On equations for the speed of sound in seawater''[J]. Acoustical Society of America Journal. 1994, 95. 2757-2759.
Accurate determination algorithm of swimming trajectory for ultrasonically-tagged fish in natural water
Hou Yiqun1,2, Zou Xuan1,3, Jiang Wei1※, Chen Liang4, Zhu Jiazhi1
(1.443100; 2.,430079,;3.430079,; 4.200438,)
An important goal of hydrobiology is the simulation, reconstruction and restoration of important fish habitats, in which fish species form aquatic ecosystems’ climax communities, enabling structural and functional restoration of river ecosystems. Traditional methods for identifying key fish habitat locations such as spawning grounds, include fish resource surveys, observation of fish spawning behavior and interviews with fishermen. But these are subject to problems including poor accuracy and large error. Precise positioning of fish can accurately locate key habitats (such as spawning grounds) based on key life cycle phases (such as spawning periods), permitting observation of corresponding habitat parameters. Fish movement trajectory data can also deepen understanding of fish habits and habitats, permitting suitable habitat indicators to be scientifically determined, and providing theoretical and technical support for fish protection and habitat restoration efforts. Ultrasonic tag tracking technology is widely used in fish behavior research due to its long underwater propagation distance and broad applicability. But most existing researches derived fish movement trajectories from hydrophone data using equipment manufacturers’ software or services, and few articles concerning fish positioning principles and methods optimized for natural aquatic environments have been published. The Chan’s algorithm (1994) in literature[24] and robust least squares estimation were combined to get the location of ultrasonically-tagged fish in this paper, leveraging the strengths of these methods to overcome their disadvantages when used singly. Chan’s algorithm was first used to obtain approximate coordinates of fish, which were used as initial position estimates from which the final position estimates were obtained with robust least squares. Prior information such as water depth and fish swimming speed could also be taken into account, making the proposed positioning method well-suited for dealing with ultrasonically-tagged fish in natural aquatic environments. The proposed method was suitable for existing ultrasound hydrophones, and effectively solved problems with large observation errors. Based on these research results, the UWP (under water positioning) software package was developed. To verify the effectiveness of the proposed method, an observation network was constructed which consisting of 16 hydrophones uniformly distributed over a area of 120 m×120 m in Huangbai River, Yichang. 4 ultrasonic signal tags were used to evaluate the positioning results, 2 was co-located with hydrophones for static simulation, and the other 2 affixed to a boat hull for dynamic simulation. Comparisons with Beidou/GNSS RTK with centimeter-level accuracy positioning estimates over 115 groups of test results, using millisecond-level accuracy observation data from existing hydrophones, swimming trajectories of ultrasonically-tagged fish could be obtained to an accuracy of about 2.15 m. While complex water environments degraded this accuracy, where single observations contained gross errors exceeding 10 m, 100% of these errors could be identified. The success rate for identification of observations with gross error was a gradually declining function of gross errors, dropping to 84.3% for 3 such observations. With over 3 gross error-bearing observations, the success rate declined significantly. With over 5 gross error-bearing observations where gross error-bearing observations accounted for over 31.25% of all observations, application of the proposed method could detect the error’ existence, but was unable to identify the error-bearing observations effectively. The ultrasonic tag precise positioning method of fish proposed in this paper provide an effective method for determining the accurate swimming trajectory of fish in rivers, lakes and seas with low visibility. In addition, by modifying the data communication interface, this method can be effectively applied to ultrasonicall-taggeds fish and hydrophones of different manufacturers. In the future, it can play a more important role in promoting ecological environmental protection, and human beings’ understanding of ecological and behavioral evolution in the aquatic environment at the population level.
position measurement; ultrasonic waves; algorithms; fish; natural aquatic environment; distance intersection; swimming trajectory; gross error detection
侯軼群,鄒 璇,姜 偉,陳 亮,朱佳志.自然水體中超聲波標記魚游動軌跡精密確定算法[J]. 農(nóng)業(yè)工程學報,2019,35(3):182-188.doi:10.11975/j.issn.1002-6819.2019.03.023 http://www.tcsae.org
Hou Yiqun, Zou Xuan, Jiang Wei, Chen Liang, Zhu Jiazhi. Accurate determination algorithm of swimming trajectory for ultrasonically-tagged fish in natural water[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 182-188. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.03.023 http://www.tcsae.org
2018-09-12
2018-12-31
三峽工程魚類資源保護湖北省重點實驗室開放課題項目(SXSN/4008);國家自然科學基金資助項目(51609157,51609155)
侯軼群,助理研究員,主要從事魚類生態(tài)學、生態(tài)水力學等研究。Email:greenhan16@163.com
姜 偉,博士,高級工程師,主要從事鱘魚繁殖技術(shù)、長江生態(tài)修復研究。Email:jiang_wei6@ctg.com.cn
10.11975/j.issn.1002-6819.2019.03.023
TB568
A
1002-6819(2019)-03-0182-07