亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        噴淋預(yù)冷工藝參數(shù)對(duì)荔枝降溫特性的影響

        2019-01-14 10:49:10呂恩利陳明林劉妍華郭嘉明虞新新李鵬飛
        關(guān)鍵詞:預(yù)冷層數(shù)荔枝

        呂恩利,陳明林,劉妍華,郭嘉明,黃 浩,虞新新,李鵬飛

        ?

        噴淋預(yù)冷工藝參數(shù)對(duì)荔枝降溫特性的影響

        呂恩利1,陳明林1,劉妍華2※,郭嘉明1,黃 浩1,虞新新1,李鵬飛1

        (1. 華南農(nóng)業(yè)大學(xué)工程學(xué)院,廣州 510642;2. 華南農(nóng)業(yè)大學(xué)工程基礎(chǔ)教學(xué)與訓(xùn)練中心,廣州 510642)

        為掌握噴淋預(yù)冷工藝參數(shù)對(duì)荔枝降溫特性的影響,搭建了荔枝噴淋預(yù)冷試驗(yàn)平臺(tái),以“淮枝”荔枝為試驗(yàn)材料,研究了噴淋溫度和噴淋流量對(duì)單層荔枝果實(shí)以及多層荔枝果實(shí)噴淋預(yù)冷降溫特性的影響。試驗(yàn)結(jié)果表明:?jiǎn)螌永笾︻A(yù)冷,噴淋溫度越低,冷卻系數(shù)越大,7/8預(yù)冷時(shí)間越短,果實(shí)溫度均勻性越差,選擇(5±0.5)℃,能夠保持較好預(yù)冷均勻性和較快的預(yù)冷速度;噴淋流量增大,冷卻系數(shù)先增大后趨于穩(wěn)定,7/8預(yù)冷時(shí)間先縮短后趨于平緩,與噴淋流量呈二次函數(shù)關(guān)系,果實(shí)溫度均勻性提高,臨界噴淋流量為5.9 L/(s·m2);多層荔枝堆疊時(shí),果實(shí)離噴頭越近,冷卻系數(shù)越大,7/8預(yù)冷時(shí)間越短,果實(shí)溫度均勻性越好,相對(duì)預(yù)冷時(shí)間與層數(shù)呈二次函數(shù)關(guān)系,臨界預(yù)冷層數(shù)為4;研究結(jié)果為荔枝噴淋預(yù)冷裝置的設(shè)計(jì)及單層與多層荔枝預(yù)冷應(yīng)用提供參考。

        果實(shí);溫度;流量;荔枝;噴淋預(yù)冷;降溫特性

        0 引 言

        荔枝是嶺南特色水果,具有較高的經(jīng)濟(jì)價(jià)值,其采收于高溫多濕的季節(jié),采后攜帶大量田間熱[1]。預(yù)冷能使果蔬快速冷卻,釋放田間熱,降低酶與微生物的活性,延長(zhǎng)保鮮時(shí)間,是農(nóng)產(chǎn)品冷鏈物流的重要環(huán)節(jié)[2-6]。冷水預(yù)冷是荔枝較優(yōu)的預(yù)冷方式[7-8],噴淋預(yù)冷是冷水預(yù)冷的一種方法[9-10];其主要原理是將冷水噴淋到果蔬表面,使果蔬與冷水發(fā)生熱量交換,具有效率高、操作方便等優(yōu)點(diǎn)[11-12]。但荔枝預(yù)冷效果受噴淋流量、冷水溫度、荔枝數(shù)量等參數(shù)的影響,需明確預(yù)冷工藝參數(shù)對(duì)荔枝噴淋預(yù)冷降溫特性的影響,以優(yōu)化荔枝噴淋預(yù)冷技術(shù)與裝備,保障荔枝采后品質(zhì)。

        針對(duì)冷水預(yù)冷的研究多集中在浸泡預(yù)冷,Liang等[13]研究了浸泡預(yù)冷方式下,預(yù)冷延遲時(shí)間對(duì)荔枝貯藏品質(zhì)的影響;Clément等[14]分別研究了噴淋和浸泡預(yù)冷2種方式下,甜玉米的不同擺放方式對(duì)預(yù)冷時(shí)間和貯藏品質(zhì)的影響;Bárbara等[15]研究了浸泡預(yù)冷方式下,不同形狀大小的果蔬與冷卻速率之間的關(guān)系;呂盛坪等[16]研究了冷水、冷庫和差壓預(yù)冷荔枝果肉的降溫規(guī)律和溫度差異性;Elansari等[17]研究了噴淋預(yù)冷方式下,不同尺寸和不同溫度椰棗的冷卻速率。然而,針對(duì)不同噴淋流量、噴淋溫度等參數(shù)下荔枝降溫特性以及多層荔枝噴淋預(yù)冷降溫特性的研究暫未發(fā)現(xiàn)報(bào)道。

        為此,本文搭建荔枝噴淋預(yù)冷試驗(yàn)平臺(tái),研究了噴淋溫度、噴淋流量對(duì)荔枝果實(shí)降溫效果的影響,以及多層荔枝降溫特性。以期為荔枝噴淋預(yù)冷技術(shù)與裝備的優(yōu)化提供參考。

        1 試驗(yàn)裝置及方法

        1.1 試驗(yàn)裝置

        荔枝噴淋預(yù)冷試驗(yàn)平臺(tái)如圖1所示。蓄冷箱體采用1.5 mm厚不銹鋼和8 cm厚聚乙烯隔熱材料制成,箱體尺寸(長(zhǎng)×寬×高)為1.86 m×1.01 m×1.08 m,蓄冷箱體與制冷機(jī)組(包括蒸發(fā)器、2個(gè)2匹壓縮機(jī)、冷凝器等組成)相連。冷水在變頻泵的抽吸作用下經(jīng)噴頭噴淋在荔枝表面并最終流回蓄冷箱體,形成一個(gè)循環(huán),噴淋流量可通過改變變頻泵的壓力調(diào)節(jié),安全閥可緊急控制噴頭的開停。變頻泵型號(hào)為DY/SD-750由江蘇威樂科技有限公司生產(chǎn),可調(diào)壓力范圍為0~0.4 MPa,最大流量為4 m3/h。噴淋流量由山東信準(zhǔn)電子科技有限公司生產(chǎn)US211M智能數(shù)顯流量計(jì)測(cè)定,準(zhǔn)確度為±5%。荔枝平鋪于孔質(zhì)筐中,置于噴頭正下方0.1 m處,噴頭尺寸(長(zhǎng)×寬)為0.3 m× 0.3 m,開256個(gè)直徑為3.9 mm的小孔??踪|(zhì)筐尺寸(長(zhǎng)×寬×高)為0.3 m×0.3 m× 0.15 m,荔枝果肉溫度由德國(guó)賀利氏產(chǎn)鉑電阻PT100測(cè)得,量程為?60~300℃,精度為±0.15 ℃。

        1.變頻泵 2.卸壓閥 3.數(shù)顯流量計(jì) 4.噴頭 5.孔質(zhì)筐 6.荔枝 7.蒸發(fā)盤管 8.蓄冷箱體 9.壓縮機(jī) 10.冷凝器

        1.2 試驗(yàn)材料

        試驗(yàn)用荔枝品種為“淮枝”,清晨采摘于廣州從化果園,成熟度為8~9成熟。采摘后3 h內(nèi)運(yùn)回用于試驗(yàn),挑選直徑在30~32 mm間,規(guī)則無損傷荔枝為試驗(yàn)材料。

        1.3 試驗(yàn)方法

        在噴淋預(yù)冷試驗(yàn)平臺(tái)上,改變冷水溫度、噴淋流量,用冷卻系數(shù)、7/8預(yù)冷時(shí)間和預(yù)冷均勻性來評(píng)價(jià)其對(duì)荔枝預(yù)冷降溫過程的影響。噴淋溫度的試驗(yàn)水平選取為:(2±0.5)、(5±0.5)和(9±0.5)℃,噴淋流量的試驗(yàn)水平選取為:1、2、3、4、5和6 L/(s·m2)。

        將挑選好的荔枝平鋪一層于孔質(zhì)筐,將溫度傳感器,插入荔枝果肉,荔枝果實(shí)擺放與溫度測(cè)點(diǎn)分布如圖2a所示,其中深色位置為測(cè)點(diǎn)荔枝,以各點(diǎn)平均溫度表征荔枝果實(shí)溫度;通過制冷機(jī)組調(diào)節(jié)和維持噴淋溫度,通過改變變頻泵的壓力調(diào)節(jié)噴淋流量。

        注:深色位置放置被測(cè)量荔枝,溫度傳感器插入荔枝果肉。

        為進(jìn)一步分析多層荔枝堆疊預(yù)冷的降溫特性,將挑選好的荔枝平鋪5層于孔質(zhì)筐,靠近噴頭的為第一層,依次往下為第二、三、四、五層,如圖1所示;每層布置3個(gè)溫度傳感器,插于荔枝果肉,荔枝果實(shí)擺放與溫度測(cè)點(diǎn)分布如圖2b所示,以各點(diǎn)平均溫度表征荔枝果肉溫度。采用40路數(shù)據(jù)采集儀采集傳感器溫度,每1 s采集數(shù)據(jù)一次,并記錄。

        2 評(píng)價(jià)指標(biāo)

        2.1 7/8預(yù)冷時(shí)間

        在預(yù)冷過程中物體與周圍流體的溫差逐漸縮小,對(duì)流換熱逐漸減緩;物體要達(dá)到周圍流體的溫度需要無限長(zhǎng)的時(shí)間[17],因此,農(nóng)產(chǎn)品預(yù)冷常用7/8預(yù)冷時(shí)間來衡量冷卻效果和速率,以避免流體溫度影響[18]。7/8預(yù)冷時(shí)間指荔枝溫度與冷水溫度的差值為荔枝初始溫度與冷水溫度差值的1/8時(shí)所對(duì)應(yīng)的冷卻時(shí)間[19]。本文將7/8預(yù)冷時(shí)間作為預(yù)冷結(jié)束的標(biāo)準(zhǔn),計(jì)算式[20-21]為

        式中為無量綱數(shù),取1/8;為任意時(shí)刻荔枝果實(shí)溫度,℃;t為噴淋溫度,℃;0為荔枝果實(shí)初始溫度,℃。

        2.2 冷卻系數(shù)

        荔枝預(yù)冷過程中,過余溫度比與時(shí)間的關(guān)系曲線斜率的絕對(duì)值被定義為冷卻系數(shù)[22-23],直線傾斜程度越大表示冷卻速率越快。荔枝的預(yù)冷過程,可用方程[17,24]表示為

        式中為過余溫度比;為任意時(shí)刻荔枝過余溫度[25],℃;0為初始過余溫度,℃;為冷卻延遲系數(shù),半對(duì)數(shù)圖線的截距[17];為冷卻系數(shù),s-1;為時(shí)間,s。

        2.3 均勻性

        預(yù)冷均勻性指預(yù)冷過程中不同位置果實(shí)溫度的差異性,預(yù)冷均勻性差,易導(dǎo)致荔枝出現(xiàn)冷害或預(yù)冷不完全,它是預(yù)冷效果的重要評(píng)價(jià)指標(biāo)[26]。采用均勻度評(píng)價(jià),其計(jì)算式為[27]

        值能有效反應(yīng)果品溫度的不均勻性,其取值越小,表明荔枝果實(shí)中心溫度離散程度越小,溫度分布越均勻。

        3 結(jié)果與分析

        3.1 噴淋溫度對(duì)單層荔枝噴淋預(yù)冷效果的影響

        當(dāng)噴淋流量為5 L/(s·m2)時(shí),噴淋溫度分別為(2±0.5),(5±0.5)和(9±0.5)℃條件下,對(duì)單層荔枝果實(shí)進(jìn)行預(yù)冷,荔枝果實(shí)初始溫度分別為26.3、25.8、26.4 ℃,記錄荔枝果實(shí)溫度變化。

        圖3a可知,噴淋溫度越低,荔枝果實(shí)溫度下降越快,荔枝果實(shí)終溫越低。當(dāng)噴淋溫度一定時(shí),預(yù)冷前期,荔枝果實(shí)溫度呈急劇下降趨勢(shì),預(yù)冷后期,荔枝果實(shí)溫度變化緩慢,直至恒定。預(yù)冷至15 min時(shí),噴淋溫度為(2±0.5)、(5±0.5)、(9±0.5)℃的荔枝果實(shí)溫度分別為2.92、5.82、10.28℃。由此可見,降低噴淋溫度,有利于縮短預(yù)冷時(shí)間,提高預(yù)冷效率[28]。

        圖3b所示為過余溫度比與預(yù)冷時(shí)間的關(guān)系,按式(2)對(duì)不同噴淋溫度的試驗(yàn)數(shù)據(jù)進(jìn)行擬合,擬合結(jié)果如表1所示;由表可知,噴淋溫度為(2±0.5)、(5±0.5)、(9±0.5)℃按式(2)擬合的降溫特性曲線決定系數(shù)2分別為0.987、0.995、0.981。從圖3b可知,在半對(duì)數(shù)圖中擬合曲線接近直線,直線斜率的絕對(duì)值為冷卻系數(shù),截距為延遲系數(shù)[17]。噴淋溫度為(2±0.5)、(5±0.5)、(9±0.5)℃時(shí),延遲系數(shù)均小于1,即荔枝果實(shí)對(duì)外部溫度變化做出的響應(yīng)是滯后的[29],這主要是因?yàn)槔笾麑?shí)存在熱阻作用。

        注:噴淋流量為5 L·(s-1·m-2),單層荔枝。

        表1為不同噴淋溫度條件下,荔枝果實(shí)到達(dá)7/8預(yù)冷時(shí)間時(shí)的評(píng)價(jià)參數(shù)。從表可知,冷卻系數(shù)隨噴淋溫度的降低呈增大趨勢(shì);噴淋溫度越低,7/8預(yù)冷時(shí)間越短[30],噴淋溫度為(5±0.5)℃時(shí)7/8預(yù)冷時(shí)間相對(duì)于(9±0.5) ℃變化顯著(<0.05),縮短了36.3%,噴淋溫度為(2±0.5) ℃時(shí)7/8預(yù)冷時(shí)間相對(duì)于(5±0.5)℃變化不明顯(>0.05),縮短了15.3%,隨著噴淋溫度的降低7/8預(yù)冷時(shí)間縮短減緩;噴淋溫度越低,果實(shí)溫度均勻性越差,噴淋溫度為(2±0.5)℃時(shí)果實(shí)均勻度相對(duì)于(5±0.5) ℃增大了230.4%,預(yù)冷均勻性明顯變差(<0.05),通過降低噴淋溫度來達(dá)到快速預(yù)冷有一定限度。因此,噴淋溫度可選擇(5±0.5)℃,能夠保持較好預(yù)冷均勻性和較快的預(yù)冷速度。

        表1 不同噴淋溫度荔枝預(yù)冷結(jié)束時(shí)評(píng)價(jià)參數(shù)

        注:同一列同一評(píng)價(jià)參數(shù)不同字母代表3種噴淋溫度7/8預(yù)冷時(shí)間、均勻度分別在<0.05水平上差異顯著,下同。

        Note: Different letters within a column for the same evaluation parameter indicates significant differences at<0.05 level among three different spray temperatures, the same below.

        3.2 噴淋流量對(duì)單層荔枝噴淋預(yù)冷效果的影響

        當(dāng)噴淋溫度為(5±0.5)℃時(shí),噴淋流量分別為1、2、3、4、5和6 L/(s·m2)的條件下,對(duì)單層荔枝果實(shí)進(jìn)行預(yù)冷,記錄荔枝果實(shí)溫度變化。

        從圖4a可知,噴淋流量越大,荔枝果實(shí)溫度下降越快,荔枝果實(shí)預(yù)冷終溫越低。預(yù)冷至15 min時(shí),噴淋流量為1、2、3、4、5和6 L/(s·m2)對(duì)應(yīng)的荔枝果實(shí)溫度依次為7.79、7.49、7.09、6.33、5.82和5.96 ℃。

        注:圖4a中15 min時(shí)圖中線條代表噴淋流量從上至下依次為1、2、3、4、5、6 L·(s-1·m-2), 噴淋溫度為(5±0.5)℃,單層荔枝。

        表2為不同噴淋流量條件下荔枝果實(shí)預(yù)冷結(jié)束時(shí)各評(píng)價(jià)參數(shù)。從表可知,噴淋流量越大,冷卻系數(shù)先增加后穩(wěn)定;7/8預(yù)冷時(shí)間先縮短后趨于平緩,噴淋流量為5 L/(s·m2)的7/8預(yù)冷時(shí)間相較1 L/(s·m2)減少了7.31 min,增加噴淋流量能顯著縮短預(yù)冷時(shí)間;荔枝果實(shí)溫度均勻性變化不明顯(>0.05),均勻度在0.095~0.068范圍內(nèi)先減小后趨于穩(wěn)定。當(dāng)噴淋流量達(dá)到5 L/(s·m2)后,荔枝果實(shí)冷卻系數(shù)、7/8預(yù)冷時(shí)間和均勻度均趨于穩(wěn)定,可能原因是荔枝果實(shí)與冷水的接觸面積隨著噴淋流量的增加變化減緩。因此,適宜的噴淋流量能增加預(yù)冷效率,提高果實(shí)溫度均勻性。

        表2 不同噴淋流量荔枝預(yù)冷結(jié)束時(shí)評(píng)價(jià)參數(shù)

        為研究噴淋預(yù)冷較優(yōu)噴淋流量,通過7/8預(yù)冷時(shí)間與噴淋流量的關(guān)系尋找臨界流量值,當(dāng)噴淋流量大于臨界值時(shí),荔枝果實(shí)與冷水的接觸面積隨著噴淋流量的增加變化緩慢。將7/8預(yù)冷時(shí)間與噴淋流量的關(guān)系進(jìn)行非線性回歸,回歸曲線如圖4b,7/8預(yù)冷時(shí)間與噴淋流量呈二次函數(shù)關(guān)系,回歸方程為=0.32?3.547+18.2,決定系數(shù)2=0.989,這類曲線在頂點(diǎn)處變化率為零,可用頂點(diǎn)處對(duì)應(yīng)的噴淋流量值估算7/8預(yù)冷時(shí)間隨噴淋流量減緩的臨界噴淋流量[16]。根據(jù)回歸方程,求出該曲線頂點(diǎn)所對(duì)應(yīng)的噴淋流量值,即為基于7/8預(yù)冷時(shí)間的臨界噴淋流量。經(jīng)過計(jì)算,得出試驗(yàn)條件下的臨界噴淋流量為5.9 L/(s·m2),即當(dāng)噴淋流量大于5.9 L/(s·m2)時(shí),隨著噴淋流量的增加,7/8預(yù)冷時(shí)間變化緩慢。因此,噴淋流量可選擇5.9 L/(s·m2),若噴淋流量繼續(xù)增大,不但預(yù)冷效率提升緩慢,泵的能耗也增大。

        3.3 多層荔枝堆疊對(duì)噴淋預(yù)冷效果的影響

        當(dāng)噴淋溫度為(5±0.5)℃,噴淋流量為5.9 L/(s·m2),在孔質(zhì)筐內(nèi)平鋪5層荔枝,對(duì)其預(yù)冷,記錄各層荔枝果實(shí)溫度變化。

        從圖5a可知,上層荔枝果實(shí)溫度較下層荔枝果實(shí)溫度降溫更快,即上層荔枝果實(shí)降溫曲線更靠近荔枝果實(shí)溫度軸;預(yù)冷后期上層荔枝果實(shí)溫度較下層荔枝果實(shí)溫度更低,即預(yù)冷后期上層荔枝果實(shí)降溫曲線更靠近預(yù)冷時(shí)間軸,預(yù)冷至15 min時(shí),第一至第五層的荔枝果實(shí)溫度分別為6.27、6.50、7.03、6.93和7.80 ℃。

        5層荔枝預(yù)冷結(jié)束時(shí),中部縱截面上荔枝果實(shí)溫度分布如圖5b所示。從圖可知,荔枝果實(shí)上層溫度低,下層溫度高,同層之間中間溫度略高于兩邊。中部縱截面上,荔枝果實(shí)均勻度為0.14,各點(diǎn)平均溫度為7.15 ℃,預(yù)冷耗時(shí)14.02 min。由此可見,多層荔枝堆疊放置時(shí)各層降溫速率不一致,預(yù)冷時(shí)間較長(zhǎng),預(yù)冷終溫不協(xié)調(diào)。

        表3為各層荔枝分別到達(dá)7/8預(yù)冷時(shí)間時(shí)各評(píng)價(jià)參數(shù)。由表可知,荔枝果實(shí)第一層至第五層冷卻系數(shù)逐漸減小;7/8預(yù)冷時(shí)間逐漸增大;預(yù)冷均勻性逐漸變差,且第五層顯著變大(<0.05),均勻度為0.213,相較第四層增大了63%。這是因?yàn)?,噴淋預(yù)冷過程中,冷水依次從第一層至第五層通過荔枝果實(shí)間隙流下,并與荔枝果實(shí)進(jìn)行熱交換,溫度逐漸升高,所以上層荔枝果實(shí)較下層有更快的預(yù)冷速率;且由于荔枝果實(shí)間隙分布不均,導(dǎo)致冷水與下層荔枝果實(shí)接觸不均,荔枝果實(shí)溫度均勻性逐漸變差。因此,適宜的預(yù)冷層數(shù)有利于保證較好的預(yù)冷效果。

        圖5 多層荔枝堆疊果實(shí)降溫過程與預(yù)冷結(jié)束時(shí)中部縱截面溫度分布

        表3 不同層荔枝預(yù)冷結(jié)束時(shí)評(píng)價(jià)參數(shù)

        為研究噴淋預(yù)冷較優(yōu)預(yù)冷層數(shù),通過相對(duì)預(yù)冷時(shí)間與層數(shù)的關(guān)系尋找臨界層數(shù),當(dāng)層數(shù)大于臨界值時(shí),預(yù)冷效率較高,相對(duì)預(yù)冷時(shí)間為7/8預(yù)冷時(shí)間/層數(shù)。將相對(duì)預(yù)冷時(shí)間與層數(shù)的關(guān)系進(jìn)行非線性回歸,回歸曲線如圖6所示,相對(duì)預(yù)冷時(shí)間與層數(shù)呈二次函數(shù)關(guān)系,回歸方程為=0.5242?4.346+11.654,2=0.944。根據(jù)噴淋流量的臨界值確定方法,求出該曲線頂點(diǎn)所對(duì)應(yīng)的層數(shù),即為基于相對(duì)預(yù)冷時(shí)間的臨界層數(shù)。經(jīng)計(jì)算得出試驗(yàn)條件下的臨界層數(shù)為4.1,取臨界層數(shù)為4;即當(dāng)荔枝堆疊層數(shù)大于等于4時(shí)相對(duì)預(yù)冷時(shí)間隨層數(shù)的變化很小;為提高預(yù)冷效率荔枝堆疊層數(shù)應(yīng)大于等于4,但是隨著堆疊層數(shù)的增加預(yù)冷均勻性逐漸變差,預(yù)冷不完全,荔枝層數(shù)應(yīng)越小越好。綜合分析,荔枝堆疊層數(shù)選4為宜,即保證了預(yù)冷效率,又保持了較好預(yù)冷均勻性。

        圖6 相對(duì)預(yù)冷時(shí)間與層數(shù)的關(guān)系

        4 結(jié)論與討論

        搭建了荔枝噴淋預(yù)冷試驗(yàn)平臺(tái),研究了冷水溫度、噴淋流量對(duì)單層荔枝果實(shí)以及多層荔枝果實(shí)噴淋預(yù)冷降溫特性的影響,為荔枝噴淋預(yù)冷技術(shù)與裝備的優(yōu)化提供參考。實(shí)驗(yàn)結(jié)果表明:

        1)單層荔枝,噴淋溫度越低,冷卻系數(shù)越大,7/8預(yù)冷時(shí)間越短,預(yù)冷均勻性越差,噴淋溫度選擇(5±0.5) ℃,能夠保持較好預(yù)冷均勻性和較快的預(yù)冷速度。增大噴淋流量,冷卻系數(shù)先增大后趨于穩(wěn)定,7/8預(yù)冷時(shí)間先縮短后趨于穩(wěn)定,與噴淋流量呈二次函數(shù)關(guān)系,預(yù)冷均勻性逐漸變好,分析可得臨界噴淋流量為5.9 L/(s·m2),當(dāng)噴淋流量大于5.9 L/(s·m2)時(shí),預(yù)冷效率提升緩慢,泵的能耗增大;噴淋流量可選擇5.9 L/(s·m2)。

        2)采用單層荔枝篩選出的參數(shù)對(duì)多層荔枝預(yù)冷,從第一層至第五層,冷卻系數(shù)逐漸降低,7/8預(yù)冷時(shí)間逐漸變長(zhǎng),預(yù)冷均勻性變差;相對(duì)預(yù)冷時(shí)間與層數(shù)呈二次函數(shù)關(guān)系,分析可得臨界層數(shù)為4.1,堆疊層數(shù)可選擇4,即保證了預(yù)冷效率,又保持了較好預(yù)冷均勻性。

        荔枝噴淋預(yù)冷降溫特性可能還受噴頭開孔形狀、開孔率大小、荔枝果實(shí)初始溫度、荔枝果實(shí)大小等因素的影響,本課題組將在今后進(jìn)行深入研究。

        [1] 呂恩利,陸華忠,楊松夏,等. 氣調(diào)運(yùn)輸包裝方式對(duì)荔枝保鮮品質(zhì)的影響[J]. 現(xiàn)代食品科技,2016,32(4):156-160.Lü Enli, Lu Huazhong, Yang Songxia, et al. Effects of packaging methods on fresh-keeping quality of litchi during controlled atmosphere transport[J]. Modern Food Science and Technology, 2016, 32(4): 156-160. (in Chinese with English abstract)

        [2] Han Q, Gao H, Chen H, et al. Precooling and ozone treatments affects postharvest quality of black mulberry (Morus nigra) fruits[J]. Food Chemistry, 2017, 221: 1947-1953.

        [3] Azam M M, Eissa A H A, Hassan A H. Monitoring of change in cantaloupe fruit quality under pre-cooling and storage treatments[J].Journal of Food Processing & Technology, 2015, 6(12): 527.

        [4] 韓佳偉,趙春江,楊信廷,等. 送風(fēng)風(fēng)速對(duì)蘋果差壓預(yù)冷性能的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(11):280-289. Han Jiawei, Zhao Chunjiang, Yang Xinting, et al. Effect of air-inflow velocity on cooling efficiency during forced-air precooling of apples[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(11): 280-289. (in Chinese with English abstract)

        [5] 王娟,譚金翠,王相友.風(fēng)速對(duì)雙孢蘑菇預(yù)冷過程的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(10):203-208. Wang Juan, Tan Jincui, Wang Xiangyou. Effect of air velocity on pre-cooling process of agaricus bisporus[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(10): 203-208. (in Chinese with English abstract)

        [6] 宋曉燕,劉寶林. 真空冷卻中的上海青表面溫度變化規(guī)律[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(1):266-269. Song Xiaoyan Liu Baolin. Temperature variation on Shanghaiqing surface during vacuum cooling process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(1): 266-269. (in Chinese with English abstract)

        [7] 呂盛坪,呂恩利,陸華忠,等. 不同預(yù)冷方式對(duì)荔枝貯藏品質(zhì)的影響[J]. 現(xiàn)代食品科技,2014,30(3):157-162. Lü Shengping, Lü Enli, Lu Huazhong, et al. Effect of different precooling methods on the storage quality of litchi[J]. Modern Food Science and Technology, 2014, 30(3): 157-162. (in Chinese with English abstract)

        [8] 阮文琉,劉寶林,宋曉燕. 荔枝的冷卻方式選擇[J].食品工業(yè)科技,2012,33(11):352-353. Ruan Wenliu, Liu Baolin, Song Xiaoyan. Comparison of cooling method for litchi fruit[J]. Science and Technology of Food Industry, 2012, 33(11): 352-353. (in Chinese with English abstract)

        [9] Becker B R, Fricke B A. Hydrocooling time estimation methods[J]. International Communications in Heat and Mass Transfer, 2002, 29(2): 165-174.

        [10] 付艷武,高麗樸,王清,等. 蔬菜預(yù)冷技術(shù)的研究現(xiàn)狀[J].保鮮與加工,2015,15(1):58-63. Fu Wuyan, Gao Lipu, Wang Qing, et al. Research status on precooling techniques of vegetables[J]. Storage and Process, 2015, 15(1): 58-63. (in Chinese with English abstract)

        [11] Góral D, Kluza F, Koz?owicz K. Assessment of heat transfer and mass change during fruits and vegetables impingement pre-cooling[J]. International Journal of Food Engineering, 2014, 10(1): 183-189.

        [12] 楊洲. 水果產(chǎn)后處理技術(shù)與裝備[M]. 1版. 北京:中國(guó)農(nóng)業(yè)出版社,2014.

        [13] Liang Y S, Wongmetha O, Wu P S, et al. Influence of hydrocooling on browning and quality of litchi cultivar Feizixiao during storage[J]. International Journal of Refrigeration, 2013, 36(3): 1173-1179.

        [14] Clément Vigneault, Goyette B , Yvan Gariépy, et al. Effect of ear orientations on hydrocooling performance and quality of sweet corn[J]. Postharvest Biology & Technology, 2007, 43(3): 351-357.

        [15] Bárbara T, Theo K, Luis C. Cooling parameters for fruits and vegetables of different sizes in a hydrocooling system[J].Scientia Agricola, 2004, 61(6): 655-658.

        [16] 呂盛坪,呂恩利,陸華忠,等. 荔枝不同預(yù)冷方式降溫特性研究[J]. 華南農(nóng)業(yè)大學(xué)學(xué)報(bào),2015,36(3):114-119. Lü Shengping, Lü Enli, Lu Huazhong, et al. Cooling characteristics of different precooling methods for litchi[J]. Journal of South China Agricultural University,2015, 36(3): 114-119. (in Chinese with English abstract)

        [17] Elansari A M. Hydrocooling rates of Barhee dates at the Khalal stage[J]. Postharvest Biology & Technology, 2008, 48(3): 402-407.

        [18] 劉美玉,崔建云,任發(fā)政,等. 雞蛋強(qiáng)制通風(fēng)預(yù)冷工藝研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2010,41(8):135-139. Liu Meiyu, Cui Jianyun, Ren Fazheng, et al. Forced-air precooling conditions of eggs[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(8): 135-139. (in Chinese with English abstract)

        [19] 譚晶瑩,楊昭. 蘋果強(qiáng)制通風(fēng)預(yù)冷試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2008,39(7):95-98. Tan Jingying, Yang Zhao. Experimental study on forced-air precooling of apples in bulk[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(7): 95-98. (in Chinese with English abstract)

        [20] Teruel B, Cortez L, Leal P, et al. Forced-air cooling of banana[J]. Revista Brasileira De Fruticultura, 2002, 24(1): 142-146.

        [21] 王強(qiáng),劉鳳珍,連添達(dá). 葡萄差壓通風(fēng)預(yù)冷影響參數(shù)的試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(4):212-215. Wang Qiang, Liu Fengzhen, Lian Tianda. Experimental study on parameters affecting grape pressure pre-cooling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(4): 212-215. (in Chinese with English abstract)

        [22] Anderson, B A, Sarkar A, Thompson, J F, et al. Commercial-scale forced-air cooling of packaged strawberries[J]. Transactions of the ASAE, 2004, 47(1): 183-190.

        [23] Henry F E, Bennett A H. “Hydraircooling” vegetable products in unit loads[J]. Transactions of the Asae, 1973, 16(4): 731-733.

        [24] Dincer I, Genceli O F. Cooling process and heat transfer parameters of cylindrical products cooled both in water and in air[J]. International Journal of Heat & Mass Transfer, 1994, 37(4): 625-633.

        [25] 楊世銘,陶文銓. 傳熱學(xué)[M]. 4版. 北京:高等教育出版社,2006.

        [26] 楊培志,胡霞,廖剛.送風(fēng)溫度對(duì)蘋果差壓預(yù)冷降溫效果的影響[J].熱科學(xué)與技術(shù),2017,16(5):381-386. Yang Peizhi, Hu Xia, Liao Gang. Effect of air supply temperature on cooling efficiency for pressure precooling of apples[J]. Journal of Thermal Science and Technology, 2017, 16(5): 381-386. (in Chinese with English abstract)

        [27] 郭嘉明,呂恩利,陸華忠,等. 盒裝荔枝果實(shí)降溫特性數(shù)值分析與驗(yàn)證[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(5):218-224. Guo Jiaming, Lü Enli, Lu Huazhong, et al. Numerical analysis and verification on characteristics of temperature decreasing of litchi fruits with packages[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(5): 218-224. (in Chinese with English abstract)

        [28] 季麗麗,梁蕓志,陳存坤,等. 不同溫度差壓預(yù)冷及其對(duì)西葫蘆冷藏效果的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(1):287-293. Ji Lili, Liang Yunzhi, Chen Cunkun. et al. Forced-air pre-cooling of different temperatures and its effects on cold storage of Cucurbita pepo[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(1): 287-293. (in Chinese with English abstract)

        [29] 周慧娟,葉正文,蘇明申,等. 低溫和差壓式預(yù)冷對(duì)不同品種桃果實(shí)預(yù)冷性能的影響[J]. 保鮮與加工,2015,15(1):16-19. Zhou Huijuan, Ye Zhengwen, Su Mingshen, et al. Effects of low temperature and forced-air precooling on precooling performance of different varieties of peach fruits[J]. Storage and Process, 2015, 15(1): 16-19. (in Chinese with English abstract)

        [30] 高治國(guó),王偉鋒. 不同預(yù)冷溫度對(duì)番茄壓差預(yù)冷效果的影響[J]. 建筑熱能通風(fēng)空調(diào),2014,33(3):73-75. Gao Zhiguo, Wang Weifeng. The Influences of different precooling temperature on tomato pressure pre-cooling effects[J]. Building Energy & Environment, 2014, 33(3): 73-75. (in Chinese with English abstract)

        Effects of different spray precooling parameters on cooling characteristics of litchi

        Lü Enli1, Chen Minglin1, Liu Yanhua2※,Guo Jiaming1, Huang Hao1, Yu Xinxin1, Li Pengfei1

        (1.,,510642,; 2.,510642,)

        To investigate the effects of spray precooling parameters on the cooling characteristics of litchi fruit, a spray precooling test platform was established. “Huaizhi” litchi fruit was chosen as raw materials for this study. The effects of spray temperature and spray flow rates on the cooling coefficient, 7/8 cooling time, and cooling uniformity, as well as the characteristics of multilayer litchi spray cooling, were studied. For spray precooling of single layer litchi, the lower the spray temperature was, the bigger the cooling coefficient was, the shorter the 7/8 cooling time was, and the worse the temperature uniformity of the fruit was. When the spraying temperature was less than (5±0.5)℃, the 7/8 precooling time was shortened, and the precooling unevenness increased significantly (<0.05). The effects of spray temperature to achieve rapid precooling was limited. Therefore, a spray temperature of (5±0.5)℃ could be chosen in the actual precooling process, and it could maintain the precooling uniformity and accelerate precooling rate of litchi. With the increase of pray flow rate, the cooling coefficient initially increased and then stabilized, and the 7/8 precooling time initially shortened and then leveled gently, and the fruit temperature uniformity increased. The 7/8 precooling time had a quadratic function relationship with the spray flow rate. The 7/8 precooling time decreased slowly when the spray flow was higher than 5.9 L/(s·m2). This was because the contact area between the litchi and cold water increased more slowly than the flow rate. Therefore, the flow rate of litchi spray precooling could be selected to be 5.9 L/(s·m2), which could improve the precooling efficiency and reduce the energy consumption of the pump. When multilayer litchi fruits were stacked, the closer the spray nozzle was, the bigger the cooling coefficient was, the shorter the 7/8 precooling time was, and the better the temperature uniformity was. The relative precooling time had a quadratic function relationship with the number of layers, and the number of critical precooling layers was 4.1. When the number of litchi stacks was larger than or equal to 4, the relative precooling time varied little. To improve the precooling efficiency, the number of litchi stacks should be bigger than or equal to 4. However, as the number of layers increased, the precooling uniformity gradually deteriorated. When the multilayer litchees were stacked, the cooling rate of each layer was inconsistent, the precooling time was longer, and the precooling final temperature was not coordinated. The whole process of precooling took 14.02 minutes. After precooling, theof the middle longitudinal section was 0.14, and the average temperature was 7.15 ℃. In single layer litchi spray precooling, the spray temperature could be selected as (5±0.5)℃, and the spray flow could be selected as 5.9 L/(s·m2). The parameters of the single layer litchi spray precooling were used to precool the multilayer litchi, and the number of layers of the best stack of litchi was found to be 4. The research results provided reference for the design of litchi spray precooling equipment and single-layer and multilayer litchi precooling applications.

        fruits; temperature; flow rate;litchi; spray precooling; cooling characteristics

        呂恩利,陳明林,劉妍華,郭嘉明,黃 浩,虞新新,李鵬飛. 噴淋預(yù)冷工藝參數(shù)對(duì)荔枝降溫特性的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(24):292-298. doi:10.11975/j.issn.1002-6819.2018.24.035 http://www.tcsae.org

        Lü Enli, Chen Minglin, Liu Yanhua, Guo Jiaming, Huang Hao, Yu Xinxin, Li Pengfei. Effects of different spray precooling parameters on cooling characteristics of litchi[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(24): 292-298. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.24.035 http://www.tcsae.org

        2018-07-05

        2018-11-19

        國(guó)家重點(diǎn)研發(fā)計(jì)劃子任務(wù)(2018YFD0701002);廣東省省級(jí)(基礎(chǔ)研究及應(yīng)用研究重大)項(xiàng)目(2016KZDXM028);廣東省科技計(jì)劃項(xiàng)目(2017B020206005);廣州市科技計(jì)劃項(xiàng)目(201704020067);國(guó)家自然科學(xué)基金項(xiàng)目(51108194)

        呂恩利,博士,副教授,博士生導(dǎo)師,主要研究方向?yàn)檗r(nóng)產(chǎn)品冷鏈物流技術(shù)與裝備。Email:enlilv@scau.edu.cn.

        劉妍華,博士,副教授,主要研究方向?yàn)檗r(nóng)產(chǎn)品冷鏈物流和農(nóng)業(yè)設(shè)施節(jié)能設(shè)計(jì)。Email:cynthial@scau.edu.cn.

        10.11975/j.issn.1002-6819.2018.24.035

        S375; TS255.3

        A

        1002-6819(2018)-24-0292-07

        猜你喜歡
        預(yù)冷層數(shù)荔枝
        日啖荔枝三百顆,會(huì)上火嗎
        填筑層數(shù)對(duì)土石壩應(yīng)力變形的影響研究
        基于ANSYS的LNG接收站典型管道預(yù)冷分析
        煤氣與熱力(2022年4期)2022-05-23 12:44:58
        上海發(fā)布藥品包裝物減量指南
        康復(fù)(2022年31期)2022-03-23 20:39:56
        小型LNG氣化站預(yù)冷方法對(duì)比分析
        煤氣與熱力(2021年7期)2021-08-23 01:11:10
        ЛИЧИ: ЭКЗОТИЧЕСКИЙ ТРОПИЧЕСКИЙ ФРУКТ
        MoS2薄膜電子性質(zhì)隨層數(shù)變化的理論研究
        電子制作(2019年11期)2019-07-04 00:34:50
        千里采荔枝的鶴
        荔枝熟了
        嶺南音樂(2017年2期)2017-05-17 11:42:07
        不同預(yù)冷方式對(duì)紅提葡萄的預(yù)冷效果
        欧美成人在线视频| 精品少妇一区二区三区四区 | 国产亚洲精品a片久久久| 午夜精品久久久久久| 久久久久国产一级毛片高清版A| 久久精品国产成人午夜福利| 日本免费一区二区精品| 日本一区二区三级在线观看 | 日韩av水蜜桃一区二区三区| 亚洲午夜久久久精品影院| 亚洲av日韩av在线观看| 大伊香蕉在线精品视频75| 亚洲欧洲日产国码无码| 亚洲av大片在线免费观看| 99久久婷婷国产亚洲终合精品| 亚洲精品成人片在线观看精品字幕| 又黄又爽又色又刺激的视频| 国产精品久久久久久久y| 视频一区二区三区国产| 天堂av在线美女免费| 久久99精品国产麻豆宅宅| 久久久久国产一级毛片高清版A| 一本久久综合亚洲鲁鲁五月夫| 亚洲精品岛国av一区二区| 成人网站在线进入爽爽爽| 欧美成年黄网站色视频| 一区二区三区国产高潮| 亚洲精品一区二区三区在线观| 精品无码一区二区三区爱欲| 四川老熟妇乱子xx性bbw| 亚洲三区二区一区视频| 国产主播一区二区三区在线观看| 日韩a级精品一区二区| 亚洲av无码专区首页| 久久一区二区三区四区| 亚洲av乱码国产精品观看麻豆| 国偷自拍av一区二区三区| 亚洲码国产精品高潮在线| 国产高清精品自在线看| 久久国产精品懂色av| 凌辱人妻中文字幕一区|