亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        氣力式小粒徑種子精量排種器吸種效果影響因素研究

        2019-01-14 10:37:58廖宜濤廖慶喜高麗萍
        關(guān)鍵詞:型孔排種單粒

        廖宜濤,廖慶喜,王 磊,鄭 娟,高麗萍

        ?

        氣力式小粒徑種子精量排種器吸種效果影響因素研究

        廖宜濤1,2,廖慶喜1,2,王 磊1,鄭 娟1,高麗萍1

        (1. 華中農(nóng)業(yè)大學(xué)工學(xué)院,武漢 430070; 2. 農(nóng)業(yè)部長江中下游農(nóng)業(yè)裝備重點(diǎn)實(shí)驗(yàn)室,武漢 430070)

        針對油菜、青菜等類球形小粒徑種子粒徑小、質(zhì)量輕,通過排種合格指數(shù)、漏播指數(shù)等指標(biāo)研究吸種環(huán)節(jié)影響機(jī)制易受后續(xù)卸種、導(dǎo)種等串聯(lián)環(huán)節(jié)影響的問題,以正負(fù)氣壓組合式小粒徑種子精量排種器為研究對象,通過吸種運(yùn)移狀態(tài)圖像拍攝試驗(yàn),確定型孔漏吸、單粒吸種及重吸發(fā)生概率,開展吸種環(huán)節(jié)研究。吸種狀態(tài)分析發(fā)現(xiàn)小粒徑種子質(zhì)量輕,?200 Pa時(shí)即可被吸附,在負(fù)壓絕對值較大時(shí)會出現(xiàn)4~6粒重吸;型孔單粒吸種發(fā)生概率與種子千粒質(zhì)量、排種盤轉(zhuǎn)速、型孔直徑、工作負(fù)壓等因素相關(guān)性極顯著(<0.01);排種器存在穩(wěn)定吸種臨界負(fù)壓,當(dāng)工作負(fù)壓在臨界負(fù)壓1~2倍范圍內(nèi),型孔單粒吸種概率高于0.92,漏吸與重吸發(fā)生概率均低于0.04;結(jié)合吸種過程受力分析可知排種盤轉(zhuǎn)速變化造成單粒吸種概率變化的主要機(jī)制是影響型孔與種子吸附作用時(shí)間,進(jìn)而影響單粒吸種可靠性;當(dāng)轉(zhuǎn)速增加,實(shí)現(xiàn)穩(wěn)定吸種的臨界負(fù)壓絕對值增大,吸種負(fù)壓計(jì)算的可靠性系數(shù)應(yīng)增大;以漏吸概率0.02及單粒吸種概率0.92的工作負(fù)壓為參考值,建立了可靠性系數(shù)與排種盤工作轉(zhuǎn)速及型孔直徑相關(guān)的數(shù)學(xué)模型,利用該模型計(jì)算排種器吸種可靠性系數(shù),進(jìn)而確定吸種負(fù)壓臨界值,可使排種器漏吸發(fā)生概率小于0.04,單粒吸種概率大于0.92,排種器穩(wěn)定工作。研究明確了正負(fù)氣壓組合式小粒徑種子精量排種器吸種環(huán)節(jié)影響機(jī)制和用于計(jì)算吸種臨界負(fù)壓的可靠性系數(shù)模型,為氣吸式排種器設(shè)計(jì)與性能提升提供了參考。

        農(nóng)業(yè)機(jī)械;農(nóng)作物;優(yōu)化;排種器;吸種負(fù)壓;吸種可靠性;小粒徑種子

        0 引 言

        氣吸式精量排種器通過負(fù)壓氣流將種子吸附在排種盤型孔上,運(yùn)移至卸種區(qū)后隔斷負(fù)壓使種子在重力作用下卸種,使種子群轉(zhuǎn)變?yōu)閱瘟5乳g隔種子流,具有品種適應(yīng)性強(qiáng)、傷種率低、易實(shí)現(xiàn)單粒排種等特點(diǎn),得到廣泛研究與應(yīng)用[1-4]。油菜、青菜、大白菜等作物種子直徑在3 mm以下,粒徑小、質(zhì)量輕,氣吸式排種采用的吸種型孔直徑小,靠自身質(zhì)量難以及時(shí)卸種,采用強(qiáng)制卸種裝置易損傷種子、堵塞型孔,在氣吸式排種器卸種區(qū)設(shè)計(jì)與吸種負(fù)壓氣室隔離的正壓氣室,利用正壓氣吹適時(shí)卸種,有效克服了該難題[5-8]。

        吸種負(fù)壓是影響排種器性能的關(guān)鍵參數(shù)[9-10]。型孔處吸附力由工作負(fù)壓和型孔結(jié)構(gòu)決定;吸附力小,容易發(fā)生漏吸,導(dǎo)致排種器漏播指數(shù)增大;吸附力過大會使重吸增加,導(dǎo)致重播指數(shù)增大[11-14]。排種過程屬于多環(huán)節(jié)串聯(lián),吸種效果受充種環(huán)節(jié)影響。充種室內(nèi)種子數(shù)量過多,會增加吸種時(shí)被吸附籽粒與種群的摩擦力,使吸附籽粒脫落,出現(xiàn)漏吸;流動性差的種子充種不充分會降低種群與型孔接觸的概率,造成漏吸;排種盤轉(zhuǎn)速增大會導(dǎo)致被吸附種子的離心力增加,種子所需吸附力增大;同時(shí)轉(zhuǎn)速增大導(dǎo)致型孔與種子群接觸時(shí)間變短,會使吸種過程不充分,進(jìn)而造成漏吸;適當(dāng)增大工作負(fù)壓可以提高型孔吸附力,加強(qiáng)型孔從籽粒群中攫取種子的能力,降低漏吸,改善排種性能[15-19]。

        由種子吸種環(huán)節(jié)受力情況分析可建立與型孔直徑、排種盤型孔處線速度、種子質(zhì)量、粒徑大小、自然休止角等參數(shù)相關(guān)的吸種負(fù)壓計(jì)算公式,但需要根據(jù)經(jīng)驗(yàn)選取吸種可靠性系數(shù)和外界條件系數(shù)等參數(shù)[20-21]。通過排種器性能試驗(yàn),以排種合格指數(shù)較高時(shí)的吸種負(fù)壓值為因變量,種子千粒質(zhì)量、投影面積、球形度等為自變量,采用多元回歸分析建立吸種負(fù)壓預(yù)測數(shù)學(xué)模型可確定不同種子對象的最優(yōu)工作負(fù)壓,但建模過程未考慮型孔大小、排種盤轉(zhuǎn)速對吸種性能的影響[22];根據(jù)排種器在不同工作負(fù)壓、工作轉(zhuǎn)速及型孔大小等條件下的合格指數(shù)、重播指數(shù)及漏播指數(shù),通過優(yōu)化求解確定最佳參數(shù)組合,提升排種性能,但結(jié)果僅適應(yīng)試驗(yàn)種子對象[23-26];而且試驗(yàn)研究以排種性能指數(shù)為評價(jià)指標(biāo),忽略了排種串聯(lián)過程中卸種與導(dǎo)種環(huán)節(jié)對排種性能的影響[27-29]。

        小粒徑種子粒徑小、質(zhì)量輕,吸種效果對排種型孔大小、吸種負(fù)壓變化敏感,卸種、導(dǎo)種過程更易受擾動,因此需要針對吸種環(huán)節(jié)進(jìn)行研究,以明確吸種性能影響機(jī)制。本文以正負(fù)氣壓組合式小粒徑種子精量排種器為研究對象,試驗(yàn)拍攝排種盤型孔的吸種運(yùn)移狀態(tài)圖像,通過分析不同試驗(yàn)因素水平下型孔單粒吸種、漏吸和多粒重吸發(fā)生概率的變化規(guī)律,明確吸種過程影響因素和影響程度,建立類球形小粒徑種子吸種可靠性系數(shù)數(shù)學(xué)模型,確定排種器穩(wěn)定工作負(fù)壓范圍,為類球形小粒徑種子氣吸式排種器設(shè)計(jì)與性能優(yōu)化提供參考。

        1 材料與方法

        1.1 種子篩分與測量

        為獲得不同粒徑大小和千粒質(zhì)量的種子對象,試驗(yàn)選用“快綠236”(白菜)、“四月慢”(青菜)、“華油雜62”(油菜)、“中雙11”(油菜)等4種作物商品化種子,采用10~14目標(biāo)準(zhǔn)分級篩進(jìn)行篩選分組。分組的種子利用游標(biāo)卡尺測定種子長、寬、高三軸尺寸,由全自動數(shù)粒儀(浙江托普)和電子感量天平測量千粒質(zhì)量;其中三軸尺寸每組測量100粒,千粒質(zhì)量每組重復(fù)5次,統(tǒng)計(jì)其長寬高三軸尺寸的平均值、顆粒平均粒徑、顆粒尺寸范圍、千粒質(zhì)量、球形度等參數(shù)。

        1.2 吸種試驗(yàn)

        試驗(yàn)在JPS-12型排種試驗(yàn)臺上進(jìn)行;所用氣力式排種器通過負(fù)壓吸種、正壓氣吹卸種,工作時(shí)排種鏈輪帶動排種盤轉(zhuǎn)動,種子在充種區(qū)被負(fù)壓吸附到排種盤型孔上,隨排種盤一起轉(zhuǎn)動至正壓區(qū)后,在正壓和自身重力作用下脫離型孔進(jìn)入卸種口,完成排種過程[30]。

        拍攝的排種器吸種運(yùn)移狀態(tài)圖像如圖1所示,為便于吸種運(yùn)移過程型孔吸種狀態(tài)判別,去除排種器罩殼上半部分。篩分的種子裝入種箱,持續(xù)供給充種倉;充種倉種子被負(fù)壓吸附后隨排種盤運(yùn)移至卸種區(qū);排種盤上半部分圓環(huán)形區(qū)域?yàn)樾涂孜N狀態(tài)觀測區(qū)域。

        1.充種區(qū) 2.種箱 3.氣室殼體 4.負(fù)壓出氣口 5.排種盤 6.吸種狀態(tài)觀測區(qū) 7.被吸附種子 8.充種卸種分隔板 9.傳動鏈條 10.負(fù)壓氣室區(qū)域 11.正壓氣室區(qū)域 12.正壓進(jìn)氣口 13.卸種口

        采用全交互試驗(yàn),試驗(yàn)因素包括分組種子、排種盤型孔直徑、排種盤工作轉(zhuǎn)速及排種器工作負(fù)壓。其中篩分獲得的5組種子,千粒質(zhì)量分別為5.40、4.67、3.81、2.99和2.65 g;4組排種盤,型孔直徑0.9~1.2 mm,試驗(yàn)水平間隔0.1 mm;排種盤轉(zhuǎn)速10~30 r/min,試驗(yàn)水平間隔2 r/min;負(fù)壓?200~?3 000 Pa,試驗(yàn)水平間隔200 Pa。試驗(yàn)時(shí)卸種正壓設(shè)置為200 Pa。

        試驗(yàn)用數(shù)碼相機(jī)為Canon EOS 7D,拍攝參數(shù)為:光圈值f/10,曝光時(shí)間1/320 s,ISO-400,0曝光補(bǔ)償,無閃光模式,焦距100 mm,圖像分辨率為1 800萬像素(5 184×3 456 pixel)。每次圖像拍攝后及時(shí)觀察型孔堵塞情況,如發(fā)生堵塞,記錄堵塞情況、清理型孔,再重復(fù)拍攝。為減少誤差影響,每個因素組合重復(fù)拍攝10次,獲得10幅吸種運(yùn)移狀態(tài)圖像,統(tǒng)計(jì)型孔吸附情況概率用于分析。

        圖像由人工觀察確定型孔吸附的籽粒數(shù)量,計(jì)算不同試驗(yàn)條件下型孔漏吸、單粒吸種、多粒重吸的概率,用于吸種過程影響機(jī)制分析,概率計(jì)算公式為

        式中為型孔上吸附籽粒數(shù);為自然數(shù);1為試驗(yàn)用篩分種子千粒質(zhì)量,g;2為排種盤型孔直徑,mm;3為排種盤轉(zhuǎn)速,r/min;4為氣室負(fù)壓,Pa;N為當(dāng)前試驗(yàn)條件下吸種效果觀測區(qū)內(nèi)型孔上吸附籽種子的型孔數(shù),為0即是漏吸,為1即是單粒吸種,大于1是多粒重吸。

        第二,企業(yè)應(yīng)建立授權(quán)制。財(cái)務(wù)工作數(shù)據(jù)化后,數(shù)據(jù)很容易復(fù)制刻錄、企業(yè)存款轉(zhuǎn)賬極易操作,企業(yè)人員應(yīng)建立資金輸出文件或報(bào)告需授權(quán)的制度,確保資金的合理使用。比如,企業(yè)經(jīng)營過程中需要較大額的支出時(shí),除需要企業(yè)管理層進(jìn)行簽字審批之外,還需要在財(cái)務(wù)軟件中設(shè)立兩個以上需要授權(quán)登錄批準(zhǔn)后才可操作的授權(quán)制度。與資金相關(guān)的重要文件也盡可能地減少輸出。

        2 結(jié)果與分析

        2.1 種子物理特性分析

        篩分獲得5組種子,按千粒質(zhì)量大小排序,進(jìn)行球度、幾何尺寸等測量統(tǒng)計(jì),用于吸種運(yùn)移狀態(tài)拍攝試驗(yàn)。第1、2組分別為“華油雜62”、“中雙11”2種種子由10目標(biāo)準(zhǔn)篩篩下、12目標(biāo)準(zhǔn)篩篩上獲得;第3、4、5組種子為“華油雜62”、“快綠236”、“四月慢”等3種種子由12目標(biāo)準(zhǔn)篩篩下、14目標(biāo)準(zhǔn)篩篩上獲得。

        5組種子長寬高平均值、平均粒徑等物理特性如表1所示。其中“華油雜62”商品化種子由不同規(guī)格標(biāo)準(zhǔn)篩篩分出的2組種子千粒質(zhì)量差距接近15%;不同品種種子以相同標(biāo)準(zhǔn)篩篩分,各組種子千粒質(zhì)量、平均粒徑等指標(biāo)出現(xiàn)10%以上差異;同一組內(nèi)種子粒徑最小尺寸與平均尺寸相差20%以上。

        對比第1~2組種子的長、寬、高三軸尺寸概率分布可知:“華油雜62”種子的長度分布為1.62~2.42 mm,寬度分布為1.50~2.23 mm,高度分布為1.45~2.09 mm;中雙11種子長度分布為1.75~2.16 mm,寬度分布為1.71~2.14 mm,高度分布為1.63~2.14 mm。兩種類球形種子雖處在同一篩分規(guī)格內(nèi),但因?yàn)椤爸须p11”種子球形度更高,篩分后的種子尺寸分布更加集中,更接近于標(biāo)準(zhǔn)正態(tài)分布;“華油雜62”種子球形度低,篩分后的種子尺寸分布跨度更大;第3~5組種子尺寸分布也符合該規(guī)律。

        表1 分組種子物理特性統(tǒng)計(jì)

        注:長為100粒種子3個方位測量最大尺寸值的平均值;寬為100粒種子3個方位測量居中尺寸值的平均值;高為100粒種子3個方位測量最小尺寸值的平均值。

        Note: Length is the mean of the maximum values of the measured 100 seeds on the orientation of orthogonal three axis; width is the mean of the mediate values of the measured 100 seeds on the orientation of orthogonal three axis; Height is the mean of the minimum values of the measured 100 seeds on the orientation of orthogonal three axis.

        種子物理特性分析表明小粒徑類球形種子雖然粒徑小、質(zhì)量輕,但個體之間球度、三軸尺寸、質(zhì)量等均存在差異;種子球形度越高,篩分分級的種子尺寸分布更集中,千粒質(zhì)量更小,尺寸分布更近似于標(biāo)準(zhǔn)正態(tài)分布。

        2.2 型孔吸種情況分析

        試驗(yàn)觀察到型孔的吸種狀態(tài)包括漏吸、單粒吸種、多粒重吸等3種,如圖2所示。

        1.漏吸 2.單粒吸種 3.多粒重吸

        因種子質(zhì)量輕,在?200 Pa時(shí)即能觀察到種子被吸附在型孔上,在?800 Pa時(shí)觀察到有重吸現(xiàn)象。吸種過程是型孔與充種倉種子群的隨機(jī)作用過程,因此在?2 800 Pa也能觀察到型孔漏吸現(xiàn)象,而觀測區(qū)的型孔可能會出現(xiàn)漏吸、單粒吸種、多粒重吸同時(shí)存在的現(xiàn)象。與文獻(xiàn)[20]所述大粒徑種子氣吸式排種情況不同,類球形小粒徑種子因所需吸附負(fù)壓值較低,在工作負(fù)壓值較高情況下會出現(xiàn)型孔吸附4~6粒種子的現(xiàn)象。在排種試驗(yàn)臺上測試排種性能,吸種階段型孔漏吸會導(dǎo)致排種器漏播指數(shù)相應(yīng)增加,2粒重吸會導(dǎo)致重播指數(shù)相應(yīng)增加,而型孔3粒以上重吸會導(dǎo)致排種器重播指數(shù)急劇增加。因此為避免后續(xù)串聯(lián)過程中卸種與導(dǎo)種環(huán)節(jié)的影響,需要針對吸種運(yùn)移環(huán)節(jié)分析排排種盤工作轉(zhuǎn)速、型孔直徑、氣室負(fù)壓等因素對排種性能的影響機(jī)制。

        試驗(yàn)中未發(fā)現(xiàn)種子破損情況,但在第4組種子采用1.2 mm型孔直徑排種盤時(shí)現(xiàn)了型孔堵塞情況。堵塞主要原因是型孔吸附到粒徑偏小的種子,部分嵌入型孔中不能吹落,轉(zhuǎn)過卸種區(qū)后在充種卸種分隔板的擠壓下將型孔完全堵塞。因此在使用氣吸式排種器播種小粒徑種子時(shí),必須對種子進(jìn)行篩分處理,去除粒徑較小的籽粒,為降低型孔堵塞風(fēng)險(xiǎn),建議使用的排種盤型孔直徑與播種種子最小粒徑之比小于0.9。

        2.3 吸種效果影響因素分析

        統(tǒng)計(jì)不同排種盤轉(zhuǎn)速、不同型孔直徑、不同工作負(fù)壓下排種盤型孔吸附各組種子時(shí)型孔發(fā)生漏吸、單粒吸種、多粒重吸的概率,以吸孔吸附狀態(tài)發(fā)生概率為因變量,種子千粒質(zhì)量1;型孔直徑2;為排種盤轉(zhuǎn)速3;氣室負(fù)壓4等因素為自變量,開展多因數(shù)方差分析和多重比較。方差分析結(jié)果如表2所示:單粒吸種、漏吸及多粒重吸發(fā)生概率受籽粒千粒質(zhì)量1、排種盤型孔大小2、工作轉(zhuǎn)速3及吸種負(fù)壓4影響極顯著;但排種盤型孔大小2和吸種負(fù)壓4的交互作用對多粒重吸發(fā)生概率影響不顯著、排種盤轉(zhuǎn)速3和吸種負(fù)壓4的交互作用對多粒重吸發(fā)生概率影響不顯著。

        表2 吸種效果影響多因素方差分析

        注:1為種子千粒質(zhì)量,g;2為排種盤型孔直徑,mm;3為排種盤轉(zhuǎn)速,r·min-1;4為氣室負(fù)壓,Pa。**<0.01,極顯著。

        Note:1is thousand seeds weight, g;2is hole diameter of seeding disc, mm;3is rotate speed of seeding plate, r·min-1;4is negative pressure of air chamber, Pa. **<0.01, extreme significant.

        多重比較得單因素多個水平之間的排種器吸種狀態(tài)概率平均值差異如圖3所示。單粒吸種的發(fā)生概率與種子千粒質(zhì)量大小呈線性遞減關(guān)系,與排種盤型孔大小呈非線性遞增關(guān)系,與排種盤轉(zhuǎn)速大小呈線性遞減關(guān)系;漏吸發(fā)生概率與種子千粒質(zhì)量大小呈線性遞增關(guān)系,與排種盤型孔大小呈非線性遞減關(guān)系,與排種盤轉(zhuǎn)速大小呈線性遞增關(guān)系。從整體趨勢看,千粒質(zhì)量大時(shí)多粒重吸發(fā)生概率小,排種盤型孔小時(shí)多粒重吸發(fā)生概率小,排種盤轉(zhuǎn)速高時(shí)重吸概率小;但千粒質(zhì)量、排種盤型孔、轉(zhuǎn)速等因素與重吸發(fā)生概率均值為非單調(diào)函數(shù)關(guān)系,表明重吸發(fā)生概率存在隨機(jī)性波動。由多個負(fù)壓水平之間的吸種效果發(fā)生概率均值差異可知當(dāng)負(fù)壓值在?200~?1 400 Pa范圍內(nèi),隨著負(fù)壓絕對值增加,單粒吸種概率單調(diào)遞增,漏吸概率單調(diào)遞減;在?1 600~?3 000 Pa范圍內(nèi),隨著負(fù)壓絕對值增加,漏吸發(fā)生概率均值差異不明顯;在?1 600~?2 800 Pa范圍內(nèi),隨著負(fù)壓絕對值增加,單粒吸種與重吸發(fā)生概率均值差異不明顯;達(dá)到?3 000 Pa時(shí)單粒吸種概率下降,重吸發(fā)生概率增大。

        圖3 影響排種器吸種狀態(tài)概率的各因素多重比較結(jié)果

        排種盤型孔單粒吸種,漏吸及多粒重吸發(fā)生概率隨工作負(fù)壓(4?200~?3 000 Pa)和轉(zhuǎn)速(310~30 r/min)變化而變化的等高線圖如圖4所示(第1組種子,千粒質(zhì)量1=5.40 g;排種盤型孔直徑2=0.9 mm)。由圖4可知類球形小粒徑種子氣吸式排種存在穩(wěn)定吸種臨界氣壓0;且排種器工作轉(zhuǎn)速越大,實(shí)現(xiàn)穩(wěn)定吸種的臨界氣壓0絕對值越大。當(dāng)工作負(fù)壓|4|<|0|,由排種器單粒吸種及漏吸的發(fā)生概率受排種盤工作轉(zhuǎn)速的影響明顯,重吸發(fā)生概率小于0.02,屬于小概率偶然事件;當(dāng)|4|≥|0|時(shí),單粒吸種概率穩(wěn)定在0.92以上,漏吸概率穩(wěn)定在0.04以下,重吸發(fā)生概率在0.04以下,吸種狀態(tài)發(fā)生概率受轉(zhuǎn)速影響不明顯,重吸與漏吸具有一定隨機(jī)性;而|4|繼續(xù)增加,重吸發(fā)生概率有增加趨勢。

        圖4中,排種器轉(zhuǎn)速10 r/min時(shí),圖4a顯示單粒吸種概率大于0.92、圖4b與4c顯示漏吸重吸概率小于0.04,對應(yīng)0約為?1 200 Pa;14 r/min時(shí),對應(yīng)0約為?1 400 Pa;30 r/min時(shí),對應(yīng)0約為?2 400 Pa。以排種器工作負(fù)壓為4=?1 400 Pa為例,當(dāng)排種器轉(zhuǎn)速10 r/min時(shí),|4|>|0|,此時(shí)圖4a中單粒吸種概率大于0.92,圖4b中漏吸概率小于0.04,圖4c中多粒重吸概率小于0.04;當(dāng)排種器轉(zhuǎn)速14 r/min時(shí),|4|=|0|,此時(shí)圖4a中單粒吸種概率等于0.92,圖4b中漏吸概率等于0.04,圖4c中多粒重吸概率小于0.04;當(dāng)排種器轉(zhuǎn)速30 r/min時(shí),|4|<|0|,此時(shí)圖4a中單粒吸種概率小于0.90,圖4b中漏吸概率大于0.10,圖4c中多粒重吸出現(xiàn)概率小于0.02。當(dāng)排種器轉(zhuǎn)速14 r/min時(shí),排種器工作負(fù)壓4達(dá)到?2 800 Pa,|4|≈2|0|,此時(shí)圖4c顯示排種器重吸發(fā)生概率增大到0.08;結(jié)合型孔吸種情況方差分析多重比較結(jié)果可知排種器合理的工作負(fù)壓范圍為|0|≤|4|≤2|0|。

        注:試驗(yàn)對象是第1組種子,千粒質(zhì)量x1=5.40 g;排種盤型孔直徑x2=0.9 mm。

        2.4 穩(wěn)定吸種臨界負(fù)壓分析

        根據(jù)種子在排種盤上的受力情況分析,氣吸室所需負(fù)壓計(jì)算公式為[20]

        式中為氣吸室負(fù)壓,Pa;為種子重心與排種盤間距,cm;為一粒種子的質(zhì)量,kg;為排種盤吸孔中心處的線速度,m/s;為型孔直徑,m;為排種盤吸孔處的轉(zhuǎn)動半徑,m;為重力加速度,m/s2;為種子的摩擦阻力綜合系數(shù),=(6~10)tan,為種子自然休止角;1為吸種可靠性系數(shù);2為工作穩(wěn)定可靠性系數(shù)。

        由式(2)可知?dú)馕宜柝?fù)壓與種子千粒質(zhì)量、排種盤型孔大小、排種盤轉(zhuǎn)速等相關(guān),轉(zhuǎn)速越低、排種盤型孔越大、種子千粒質(zhì)量越小,穩(wěn)定吸種所需要的|0|越小。

        在理想條件下,即=0、1=1、2=1時(shí),試驗(yàn)用種子吸種負(fù)壓在?20~?160 Pa,因此試驗(yàn)觀察到負(fù)壓?200 Pa時(shí)有種子被吸附,但因種子間摩擦阻力影響,且吸種可靠性和工作穩(wěn)定可靠性較低,漏吸現(xiàn)象發(fā)生概率大。油菜、青菜等類球形小粒徑種子自然休止角=26.7[31],種子流動性好,充種區(qū)種子量較少,摩擦阻力綜合系數(shù)=6tan;試驗(yàn)中外界振動及沖擊影響較小,取2=1.6;排種器的排種盤吸種處轉(zhuǎn)動半徑=0.057 5 m。

        排種盤轉(zhuǎn)速去試驗(yàn)最高轉(zhuǎn)速30 r/min時(shí),式(2)中種子運(yùn)動離心力系數(shù)2/=0.058,遠(yuǎn)小于種子重力和種子之間內(nèi)摩擦阻力影響系數(shù)(1+),說明類球形小粒徑種子采用的排種盤直徑小,轉(zhuǎn)速變化引起的離心力變化較小,對所需負(fù)壓吸附力變化影響較小。而排種器在臨界負(fù)壓以下,漏吸概率和單粒吸種概率均受排種盤轉(zhuǎn)速影響明顯,表明吸種負(fù)壓低于臨界負(fù)壓時(shí),排種器轉(zhuǎn)速影響型孔與充種區(qū)種子的接觸時(shí)間,進(jìn)而影響吸種可靠性。轉(zhuǎn)速越高,型孔與種子吸附作用的時(shí)間越短,相同吸種負(fù)壓條件下型孔吸附種子的可靠性就越差,種子被型孔吸附的概率越低,漏吸概率越大;轉(zhuǎn)速越高,實(shí)現(xiàn)穩(wěn)定吸種的臨界負(fù)壓絕對值就越大。因此吸種可靠性系數(shù)1與排種器工作轉(zhuǎn)速密切相關(guān)。

        根據(jù)排種器穩(wěn)定吸種狀態(tài)下單粒穩(wěn)定吸種與漏吸概率變化情況,取排種盤吸種狀態(tài)概率等高線圖中單粒吸種概率0.92及漏吸概率0.02的等高線坐標(biāo)值為對應(yīng)轉(zhuǎn)速下穩(wěn)定吸種壓臨界負(fù)參考值ref,以種子平均粒徑、千粒質(zhì)量、排種盤型孔與轉(zhuǎn)速為因變量,對應(yīng)臨界負(fù)壓參考值為自變量,根據(jù)式(2)通過非線性擬合計(jì)算確定吸種可靠性系數(shù)1。其中第1、3、5組種子為校正集,第2、4組種子為驗(yàn)證集。

        設(shè)吸種可靠系數(shù)1與排種盤工作轉(zhuǎn)速3線性相關(guān)(方案I),即

        K

        1

        =

        a

        x

        3

        +

        b

        (3)

        計(jì)算得:1=0.0643+0.638。

        設(shè)1與排種盤工作轉(zhuǎn)速3及排種盤型孔直徑2線性相關(guān)(方案II),即

        K

        1

        =

        a

        1

        x

        3

        +

        b

        1

        x

        2

        +

        c

        1

        (4)

        計(jì)算得:1=0.0643+1.7072?1.032。

        根據(jù)2種方案確定1,由式(2)計(jì)算校正集和驗(yàn)證集各組種子在不同型孔、不同轉(zhuǎn)速下的單粒穩(wěn)定吸種臨界負(fù)壓值與參考值相關(guān)性如圖5中所示。由圖5可知雖然方案I與方案II的校正集決定系數(shù)接近,均大于0.82,但因未考慮型孔直徑變化對吸種可靠性系數(shù)1影響,其驗(yàn)證集決定系數(shù)低于方案II。

        圖5 臨界負(fù)壓計(jì)算值與參考值比較

        排種器工作在臨界負(fù)壓計(jì)算值cal條件下單粒吸種、漏吸概率如圖6所示(第1、2組種子,千粒質(zhì)量1=5.40、4.67 g;排種盤型孔直徑2=0.9、1.0、1.1、1.2 mm)。由圖6可知,排種所需的單粒穩(wěn)定吸種臨界負(fù)壓cal絕對值隨種子千粒質(zhì)量1增大而增大,隨型孔直徑2增大而減小,隨工作轉(zhuǎn)速增大3而增大。型孔直徑0.9 mm時(shí),方案I確定的cal絕對值高于方案II;型孔直徑1.0 mm,方案I與方案II的cal絕對值接近;型孔直徑1.1、1.2 mm時(shí),方案I確定的cal絕對值低于方案II。結(jié)合單粒吸種概率和漏播概率等高線分布可知,方案I確定型孔直徑0.9 mm的cal絕對值偏大,型孔直徑1.1、1.2 mm的cal絕對值偏?。恍涂字睆?.2 mm時(shí),排種器工作在cal條件下單粒吸種概率小于0.90、漏吸概率大于0.04,工作負(fù)壓偏低,處于非穩(wěn)定吸種狀態(tài)。方案II考慮型孔影響,排種器工作在cal條件下,排種器的漏吸發(fā)生概率小于0.04,單粒吸種概率大于0.92,處于穩(wěn)定工作狀態(tài)。由計(jì)算結(jié)果對比可知,方案II優(yōu)于方案I,即排種器吸種可靠系數(shù)1與排種器工作轉(zhuǎn)速及型孔大小相關(guān)。

        3 結(jié)論與討論

        1)油菜、白菜、青菜等類球形小粒徑種子,球度在90%以上,種子個體之間球度、三軸尺寸、質(zhì)量等均存在差異;為避免型孔堵塞,小粒徑種子氣吸式排種的型孔直徑與種子群最小顆粒粒徑之比應(yīng)小于0.9;種子在工作負(fù)壓值較高時(shí)會出現(xiàn)型孔吸附4~6粒種子的現(xiàn)象,通過型孔漏吸、單粒吸種及重吸發(fā)生概率開展吸種環(huán)節(jié)研究可有效避免后續(xù)卸種、導(dǎo)種等串聯(lián)環(huán)節(jié)的影響。

        2)型孔吸種狀態(tài)發(fā)生概率分析表明排種器存在穩(wěn)定吸種臨界氣壓0,當(dāng)排種器工作負(fù)壓范圍為0~20時(shí),排種器處于穩(wěn)定工作狀態(tài);穩(wěn)定吸種臨界氣壓與種子千粒質(zhì)量、型孔直徑、排種盤轉(zhuǎn)速、吸種可靠性系數(shù)、工作穩(wěn)定可靠性系數(shù)等參數(shù)密切相關(guān);結(jié)合吸種過程受力分析明確排種盤工作轉(zhuǎn)速對型孔吸種狀態(tài)的主要影響機(jī)制是影響型孔與充種區(qū)種子的接觸時(shí)間,進(jìn)而影響吸種可靠性;排種器工作轉(zhuǎn)速越高,達(dá)到穩(wěn)定吸種的臨界氣壓絕對值|0|就越高,要求臨界負(fù)壓計(jì)算選取的可靠性系數(shù)越大。

        3)以排種盤型孔吸種狀態(tài)概率等高線圖中漏吸概率0.02以及單粒吸種概率0.92的等高線坐標(biāo)值為對應(yīng)轉(zhuǎn)速下穩(wěn)定吸種壓臨界負(fù)參考值,通過非線性擬合建立了吸種可靠性系數(shù)與型孔直徑、排種盤轉(zhuǎn)速的函數(shù)關(guān)系,研究結(jié)果為氣吸式排種器設(shè)計(jì)與性能提升提供了參考。

        本文通過臺架試驗(yàn)研究了排種器吸種過程的影響機(jī)制,確定了小粒徑種子氣吸式排種器吸種負(fù)壓計(jì)算的可靠性系數(shù)計(jì)算公式。播種機(jī)田間作業(yè)條件下排種器的吸種狀態(tài)影響及吸種負(fù)壓計(jì)算的工作穩(wěn)定可靠性系數(shù)確定有待進(jìn)一步研究。

        [1] 廖慶喜,雷小龍,廖宜濤,等. 菜精量播種技術(shù)研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(9):1-16.

        Liao Qingxi, Lei Xiaolong, Liao Yitao, et al. Research progress of precision seeding for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 1-16. (in Chinese with English abstract)

        [2] Li Y, Bingxin Y, Tao C, et al. Global overview of research progress and development of precision maize planters[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(1): 9-26.

        [3] St Jack D, Hesterman D C, Guzzomi A L. Precision metering of(Australian Sandalwood) seeds[J]. Biosystems Engineering, 2013, 115(2): 171-183.

        [4] Kachman S D, Smith J A. Alternative measures of accuracy in plant spacing for planters using single seed metering[J]. Transactions of the ASAE, 1995, 38(2): 379-387.

        [5] 田波平,廖慶喜,黃海東,等. 2BFQ-6型油菜精量聯(lián)合直播機(jī)的設(shè)計(jì)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2008,39(10):211-213.

        Tian Boping, Liao Qingxi, Huang Haidong, et al. Design of 2BFQ-6 combined precision seeder for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(10): 211-213. (in Chinese with English abstract)

        [6] 李明,劉曉輝,廖宜濤,等. 氣力滾筒式油菜精量集排器[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(12):68-73.

        Li Ming, Liu Xiaohui, Liao Yitao, et al.Pneumatic cylinder-type centralized precision metering device for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(12): 68-73. (in Chinese with English abstract)

        [7] Li Yitao, Wei Lei, Li Qingxi. Design and test of an inside-filling pneumatic precision centralized seed-metering device for rapeseed[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(2): 56-62.

        [8] 顏秋艷,廖宜濤,廖慶喜. 油麥氣力式一器雙行兼用型排種器的設(shè)計(jì)與功能分析[J]. 華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2014,33(3):109-114.

        Yan Qiuyan, Liao Yitao, Liao Qingxi. Design and function analysis of dual-purpose rape-wheat pneumatic double-row metering device[J]. Journal of Huazhong Agricultural University, 2014, 33(3): 109-114. (in Chinese with English abstract)

        [9] 廖宜濤,舒彩霞,廖慶喜,等. 油菜精量直播機(jī)氣力式排種系統(tǒng)穩(wěn)壓控制方法與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(15):49-56.

        Liao Yitao, Shu Caixia, Liao Qingxi, et al. Air pressure stabilizing method and experiment of pneumatic seed-metering system of precision rapeseed planter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 49-56. (in Chinese with English abstract)

        [10] 舒彩霞,韋躍培,廖宜濤,等. 油菜氣力式排種系統(tǒng)參數(shù)對其負(fù)壓特性的影響及風(fēng)機(jī)選型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(10):26-33.

        Shu Caixia, Wei Yuepei, Liao Yitao, et al. Influence of air blower parameters of pneumatic seed-metering system for rapeseed on negative pressure characteristics and air blower selection[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(10): 26-33. (in Chinese with English abstract)

        [11] 楊明金,邱兵,楊玲,等. 振動氣吸式精密穴播機(jī)的排種性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(9):139-143.

        Yang Mingjin, Qiu Bing, Yang Ling, et al. Metering performance of the vibrational vacuum precision tray seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(9): 139-143. (in Chinese with English abstract)

        [12] 陳海濤,李桐輝,王洪飛,等. 氣吸滾筒式壟上三行大豆密植排種器設(shè)計(jì)與參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(17):16-24.

        Chen Haitao, Li Tonghui, Wang Hongfei, et al. Design and parameter optimization of pneumatic cylinder ridge three-row close-planting seed-metering device for soybean[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(17): 16-24. (in Chinese with English abstract)

        [13] 楊松,廖宜濤,廖慶喜. 2BFQ-6型油菜精量聯(lián)合直播機(jī)氣力式排種系統(tǒng)試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(17):57-62.

        Yang Song, Liao Yitao, Liao Qingxi. Experimental study on pneumatic seed-metering system of 2BFQ-6 precision planter for rapeseed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(17): 57-62. (in Chinese with English abstract)

        [14] 廖宜濤,黃海東,李旭,等. 浸種預(yù)處理對油菜籽氣力精量排種性能的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(增刊1):72-76.

        Liao Yitao, Huang Haidong, Li Xu, et al. Effects of seed pre-soaking on sowing performance by pneumatic precision metering device for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(Supp.1): 72-76. (in Chinese with English abstract)

        [15] 張靜,李志偉,劉皞春,等. 氣力滾筒式排種器種子吸附邊界模型及驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(23):12-20.

        Zhang Jing, Li Zhiwei, Liu Haochun, et al. Mathematical modeling and validation of seeder’s suction-boundary on pneumatic-roller type metering[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(23): 12-20. (in Chinese with English abstract)

        [16] 賴慶輝,馬文鵬,劉素,等. 氣吸圓盤式微型薯排種器充種性能模擬與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(5):44-53.

        Lai Qinghui, Ma Wenpeng, Liu Su, et al. Simulation and experiment on seed-filling performance of pneumatic disc seed-metering device for mini-tuber[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(5): 44-53. (in Chinese with English abstract)

        [17] 史嵩,張東興,楊麗,等. 基于EDEM軟件的氣壓組合孔式排種器充種性能模擬與驗(yàn)證[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(3):62-69.

        Shi Song, Zhang Dongxing, Yang Li, et al. Simulation and verification of seed-filling performance of pneumatic-combined holes maize precision [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 62-69. (in Chinese with English abstract)

        [18] 顏丙新,張東興,崔濤,等. 排種盤和負(fù)壓腔室同步旋轉(zhuǎn)氣吸式玉米精量排種器設(shè)計(jì)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(23):15-23.

        Yan Bingxin, Zhang Dongxing, Cui Tao, et al. Design of pneumatic maize precision seed-metering device with synchronous rotating seed plate and vacuum chamber[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 15-23. (in Chinese with English abstract)

        [19] 賈洪雷,陳玉龍,趙佳樂,等. 氣吸機(jī)械復(fù)合式大豆精密排種器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(4):75-86,139.

        Jia Honglei, Chen Yulong, Zhao Jiale, et al. Design and experiment of pneumatic-mechanical combined precision metering device for soybean[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 75-86, 139. (in Chinese with English abstract)

        [20] 李林. 氣吸式排種器理論及試驗(yàn)的初步研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),1979,10(3):56-63.

        Li Lin. A preliminary study on the theory and experimentation of the suction-type metering device for precision drill[J]. Transactions of the Chinese Society for Agricultural Machinery, 1979, 10(3): 56-63. (in Chinese with English abstract)

        [21] 劉文忠,趙滿全,王文明,等. 氣吸式排種裝置排種性能理論分析與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(9):133-138.

        Liu Wenzhong, Zhao Manquan, Wang Wenming, et al. Theoretical analysis and experiments of metering performance of the pheumatic seed metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(9): 133-138. (in Chinese with English abstract)

        [22] Karayel D, Barut Z B, ?zmerzi A. Mathematical modelling of vacuum pressure on a precision seeder[J]. Biosystems Engineering, 2004, 87(4): 437-444.

        [23] Arzu Yazgi, Adnan Degirmencioglu. Optimisation of the seed spacing uniformity performance of a vacuum-type precision seeder using response surface methodology[J]. Biosystems Engineering, 2007, 97(3): 347-356.

        [24] 高筱鈞,周金華,賴慶輝. 中草藥三七氣吸滾筒式精密排種器的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(2):20-28.

        Gao Xiaojun, Zhou Jinhua, Lai Qinghui. Design and experiment of pneumatic cylinder precision seed-metering device for panax notoginseng[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 20-28. (in Chinese with English abstract)

        [25] 趙佳樂,賈洪雷,姜鑫銘,等. 大豆播種機(jī)偏置雙圓盤氣吸式排種器[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(8):78-83.

        Zhao Jiale, Jia Honglei, Jiang Xinming, et al. Suction type offset double disc seed metering device of soybean seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(8): 78-83. (in Chinese with English abstract)

        [26] 叢錦玲,余佳佳,曹秀英,等. 油菜小麥兼用型氣力式精量排種器[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(1):46-52.

        Cong Jinling, Yu Jiajia, Cao Xiuying. Design of dual-purpose pneumatic precision metering device for rape and wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1): 46-52. (in Chinese with English abstract)

        [27] 陳學(xué)庚,鐘陸明. 氣吸式排種器帶式導(dǎo)種裝置的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(22):8-15.

        Chen Xuegeng, Zhong Luming. Design and test on belt-type seed delivery of air-suction metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(22): 8-15. (in Chinese with English abstract)

        [28] 邢赫,臧英,曹曉曼,等. 水稻氣力式排種器投種軌跡試驗(yàn)與分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(12):23-30.

        Xing He, Zang Ying, Cao Xiaoman, et al. Experiment and analysis of dropping trajectory on rice pneumatic metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(12): 23-30. (in Chinese with English abstract)

        [29] Yazgi A. Effect of seed tubes on corn planter performance[J]. Applied Engineering in Agriculture, 2016, 32(6): 783-790.

        [30] 廖慶喜,李繼波,覃國良. 氣力式油菜精量排種器試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(8):44-48.

        Liao Qingxi, Li Jibo, Qin Guoliang. Experiment of pneumatic precision metering device for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(8): 44-48. (in Chinese with English abstract)

        [31] 叢錦玲,廖慶喜,曹秀英,等. 油菜小麥兼用排種盤的排種器充種性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(8):30-39.

        Cong Jinling, Liao Qingxi, Cao Xiuying, et al. Seed filling performance of dual-purpose seed plate in metering device for both rapeseed & wheat seed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 30-39. (in Chinese with English abstract)

        Investigation on vacuum singulating effect influencing factors of pneumatic precision seed metering device for small particle size of seeds

        Liao Yitao1,2, Liao Qingxi1,2, Wang Lei1, Zheng Juan1, Gao Liping1

        (1.430070,; 2.430070,)

        Accurately separating a single seed from the seed population by vacuum suction precision is the core advantage for a precision pneumatic seed metering device. For spherical small particle size seeds such as rapeseed, vegetable seed, investigating on the influence mechanism of vacuum singulation process of pneumatic seed metering device through the qualified index and missing index is susceptible to subsequent seed discharging and seed guiding processes. The purpose of this research was to explore the vacuum singulation process of a precision pneumatic seed metering device which was innovated specifically for spherical small particle size seeds by employing negative vacuum and positive pressure to singulate and discharge the seed respectively. With different parameter combinations of grouped seeds, hole diameter, seeding disc rotate speed and negative pressure, the photos of seed suction and migration state on seed metering device were photographed. It were statistics and analysis that the probabilities of the holes no seed holding, single seed holding and multiple seeds holding in the seeding disc. 5 sets of seeds with different thousand seeds weight were obtained by seed screening pretreatment. The analysis of seed physical properties showed that there were large relative differences although these small-sized seeds had small particle size and light weight. The experiment revealed that small particle size seeds could be held by the hole at -200 Pa because they were light in weight, 4-6 multi-seeds holding would occur when the absolute value of negative pressure was too large. The analysis showed that the probability of single-seed holding was a highly significant correlation with factors such as thousand seeds weight, the hole diameter of seeding disc, the rotate speed of the seeding disc and negative pressure. There was an applicable negative pressure range as 1-2 times of the critical negative pressure to ensure the seed metering device to separate a single seed accurately, by which the single seed holding probability of the device was higher than 0.92, and the probabilities of no seed holding and multiple seeds holding were less than 0.04. Force analysis of the suction process showed that the critical negative pressure was related to mechanical and physical properties of seeds, hole diameter, rotate speed of seeding disc and suction reliability. The main mechanism of the variation of seeding disk rotate speed affecting the seed holding was that the fast rotation speed reduced the effective time of the hole and the seed, thereby degraded the single seed holding reliability. When the rotate speed was faster, the absolute value of the critical negative pressure to accurately separate a single seed should increase. Therefore, the reliability coefficient to calculate the negative pressure should be increased. In order to quantify the reliability coefficient of seed holding by vacuum, a nonlinear fitting calculation method was applied. The 1st, 3rd, and 5th set seeds were divided into the correction set for the fitting calculation and the 2nd and 4th set seeds were divided into the verification set. The working negative pressure with no seed holding probability 0.02 and single seed holding probability 0.92 were selected as the reference value. A mathematical model of the reliability coefficient was established with rotate speed of seeding disc and hole diameter as dependent variables. The determination coefficient of the calibration set and the verification set of the mode were both greater than 0.82, which proved the reliability coefficient could be determined by using this model. Then the critical value of negative pressure could be worked out, by which the no seed holding probability kept less than 0.04, the single seed holding probability kept more than 0.92 and the seed metering device worked at optimal status. The research clarifies the influence mechanism of positive and negative pressure combined precision metering device for small particle seed accurately separating process and provides a reference for design and performance improvement of pneumatic seed metering device.

        agricultural machinery; crops; optimization; seed metering device; negative pressure of seed holding; seed holding reliability; small particle size seed

        廖宜濤,廖慶喜,王 磊,鄭 娟,高麗萍. 氣力式小粒徑種子精量排種器吸種效果影響因素研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(24):10-17.doi: 10.11975/j.issn.1002-6819.2018.24.002 http://www.tcsae.org

        Liao Yitao, Liao Qingxi, Wang Lei, Zheng Juan, Gao Liping. Investigation on vacuum singulating effect influencing factors of pneumatic precision seed metering device for small particle size of seeds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(24): 10-17. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.24.002 http://www.tcsae.org

        2018-08-19

        2018-12-10

        國家自然科學(xué)基金資助項(xiàng)目(51405180,51875229);國家重點(diǎn)研發(fā)計(jì)劃資助項(xiàng)目(2017YFD0700702);國家油菜產(chǎn)業(yè)體系專項(xiàng)資助項(xiàng)目(CARS-12)

        廖宜濤,博士,副教授,主要從事現(xiàn)代農(nóng)業(yè)裝備設(shè)計(jì)與測控研究。Email:liaoetao@mail.hzau.edu.cn

        10.11975/j.issn.1002-6819.2018.24.002

        S223.2

        A

        1002-6819(2018)-24-0010-08

        猜你喜歡
        型孔排種單粒
        小麥寬苗帶高速排種系統(tǒng)設(shè)計(jì)與試驗(yàn)
        預(yù)切種式木薯排種機(jī)構(gòu)設(shè)計(jì)與試驗(yàn)
        一種排種盤傳動結(jié)構(gòu)的設(shè)計(jì)與應(yīng)用
        家蠶種質(zhì)資源單粒繅絲成績評價(jià)
        組合型孔輪式玉米精量穴播器設(shè)計(jì)與試驗(yàn)
        一種新式高調(diào)油動機(jī)密封圈冷卻系統(tǒng)
        玉米單粒播種子質(zhì)量標(biāo)準(zhǔn)實(shí)施我國精量化播種步入規(guī)范化新時(shí)代
        中國食品(2021年21期)2021-11-07 10:30:48
        家蠶單??壗z質(zhì)評價(jià)體系初報(bào)
        Design and evaluation of PID electronic control system for seed meters for maize precision planting
        小籽粒種子排種物理機(jī)械特性參數(shù)的測量
        亚洲国产美女精品久久久久| 国产精品自产拍在线18禁| 人成在线免费视频网站| 欧美人与善在线com| 欧洲熟妇色xxxx欧美老妇多毛| 又爆又大又粗又硬又黄的a片| 一区二区三区福利在线视频| 国产自产自现在线视频地址| 国产一区二区三区青青草 | 天天爽天天爽夜夜爽毛片| 少妇人妻偷人精品一区二区| 亚欧乱色束缚一区二区三区| 日本高清色一区二区三区| 日本一区三区三区在线观看| 中国无码人妻丰满熟妇啪啪软件 | 中文字幕在线乱码一区| 亚洲精品v欧洲精品v日韩精品| 色婷婷综合中文久久一本| 97久久久久国产精品嫩草影院| 国产视频一区二区三区在线看| 伊人青青草综合在线视频免费播放| 夜夜高潮夜夜爽国产伦精品| 人妻忍着娇喘被中进中出视频| 日本不卡一区二区高清中文| 亚洲人妻av综合久久| 国产内射视频在线免费观看| 亚洲国产精品无码久久98| 久久久久久久女国产乱让韩| av无码特黄一级| 日本韩国三级在线观看| 日韩av无码一区二区三区| 日产无人区一线二线三线乱码蘑菇| 揄拍成人国产精品视频| 日本人妻伦理片在线观看| 亚洲国产精品情侣视频| 精品国产免费一区二区三区| 亚洲欧洲巨乳清纯| aⅴ色综合久久天堂av色综合| 午夜视频在线观看国产19| 日本动漫瀑乳h动漫啪啪免费| 精产国品一二三产区m553麻豆|