齊 飛,李 愷,李 邵,何 芬,周新群
?
世界設(shè)施園藝智能化裝備發(fā)展對中國的啟示研究
齊 飛1,2,李 愷1,2,李 邵1,2,何 芬1,2,周新群1
(1. 農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計研究院,北京 100125;2. 農(nóng)業(yè)部農(nóng)業(yè)設(shè)施結(jié)構(gòu)工程重點實驗室,北京 100125)
設(shè)施園藝智能化是實現(xiàn)園藝產(chǎn)品播種移栽、栽培管理、環(huán)境調(diào)控、監(jiān)測預(yù)警、作物采收、內(nèi)部物流等全過程數(shù)字化、精細化、自主化的高級生產(chǎn)形態(tài),是當前包括中國在內(nèi)的世界農(nóng)業(yè)智能化裝備的研發(fā)熱點和產(chǎn)業(yè)升級重點。為在全球設(shè)施園藝智能化裝備發(fā)展的大格局下科學(xué)定位中國的發(fā)展路徑,指導(dǎo)中國設(shè)施園藝智能化裝備的研發(fā)和推廣,需要對世界各國在該領(lǐng)域的發(fā)展現(xiàn)狀和趨勢進行研究分析。該文以全球設(shè)施園藝領(lǐng)域個人、企業(yè)和科研機構(gòu)在智能化方面的主要研究內(nèi)容和裝備開發(fā)重點為基礎(chǔ),從全產(chǎn)業(yè)鏈的角度,分析世界設(shè)施園藝智能化裝備的發(fā)展現(xiàn)狀。籽種生產(chǎn)在播種、移栽等環(huán)節(jié)上已初步實現(xiàn)了智能化應(yīng)用;作物生產(chǎn)在植株調(diào)整、授粉、植保和收獲等環(huán)節(jié)正加快研發(fā),剪葉、巡檢等部分智能化裝備已經(jīng)進入商業(yè)化試用;倉儲物流在內(nèi)部運輸、分級分選、清洗、包裝等智能化方面不斷完善,智能苗床輸送、運輸機器人已大量應(yīng)用,高速分選、包裝機器人等在加快研發(fā)。分析發(fā)現(xiàn),世界設(shè)施園藝智能化裝備需求增長快、研發(fā)方向逐步聚焦、更加注重綠色安全、單機商業(yè)化速度加快、系統(tǒng)集成的全智能化生產(chǎn)設(shè)施開始出現(xiàn)。研究分析成果對中國設(shè)施園藝智能化的科技戰(zhàn)略和產(chǎn)業(yè)政策制訂、科研立項、成果評價、國際合作、裝備研發(fā)及推廣等工作提供參考和借鑒。
裝備;溫室;農(nóng)業(yè);設(shè)施園藝;智能化;現(xiàn)狀;趨勢
設(shè)施園藝智能化裝備是指將現(xiàn)代網(wǎng)絡(luò)通信技術(shù)、信息技術(shù)、智能控制技術(shù)與設(shè)施園藝商品化生產(chǎn)技術(shù)相結(jié)合,形成的具有感知能力、記憶和思維能力、學(xué)習(xí)和自適應(yīng)能力、決策與行為能力的用于設(shè)施園藝生產(chǎn)管理的裝備。在新一輪工業(yè)革命方興未艾的大背景下,世界經(jīng)濟強國都在大力推動智能化為重點的產(chǎn)業(yè)升級并制定了相應(yīng)的發(fā)展路線,如德國“工業(yè)4.0”項目(德文語境中又稱“第四次工業(yè)革命”)旨在通過“智能工廠”的應(yīng)用,全面開啟工農(nóng)業(yè)生產(chǎn)乃至整個國民經(jīng)濟體系的智能化過程[1]。中國也頒布了以智能制造為核心的綱領(lǐng)性文件《中國制造2025》[2-3]。在第二和第三產(chǎn)業(yè)中,智能化技術(shù)和裝備發(fā)展較快[4-8],而相對于工業(yè)與民用智能裝備,設(shè)施園藝等農(nóng)業(yè)產(chǎn)業(yè)在操作對象的標準性、環(huán)境狀態(tài)的復(fù)雜性、產(chǎn)品的易損性等方面均具有不同特點,研發(fā)難度更大、商業(yè)化周期更長,因此至今還沒有像工業(yè)機器人那樣在實際生產(chǎn)中得到普遍應(yīng)用。隨著新經(jīng)濟時代到來,設(shè)施園藝發(fā)達國家均加快了向智能化升級的步伐,如美國[9-10]、英國[11-12]、荷蘭[13-15]、日本[16-17]等國都制定了相關(guān)計劃并加大了研究力度,以澳大利亞[18-20]、加拿大等為代表的設(shè)施園藝新興國家甚至將智能化作為產(chǎn)業(yè)跨越式發(fā)展的重大機遇。歐洲提出了以精細農(nóng)業(yè)為特征的“農(nóng)業(yè)4.0”概念[21]。中國也將智能化作為“十三五”現(xiàn)代農(nóng)業(yè)裝備技術(shù)發(fā)展的重點方向之一[22],并制定了新一代人工智能發(fā)展規(guī)劃[23]。設(shè)施園藝領(lǐng)域國家重點研發(fā)計劃“智能農(nóng)機裝備”專項“溫室智能化精細生產(chǎn)技術(shù)與裝備研發(fā)”項目正式啟動[24]。
從發(fā)展看,世界設(shè)施園藝技術(shù)進步都要經(jīng)歷機械化、自動化、信息化、智能化等階段。當前,荷蘭、美國等設(shè)施園藝發(fā)達國家也正處在信息化向智能化的演進時期,絕大多數(shù)國家還沒有完成傳統(tǒng)意義上機械化和自動化的改造,以中國為例,生產(chǎn)力水平不平衡造成同一時間和空間內(nèi)多種階段并存的現(xiàn)象[25-27]非常普遍。按照設(shè)施農(nóng)業(yè)機械化評價標準[28-29],2016年中國設(shè)施園藝綜合機械化水平31.5%,遠低于大田農(nóng)作物耕種收65%的水平[30],尤其在種植和采運環(huán)節(jié)僅分別為15.2%和7.7%。為開啟設(shè)施園藝智能化發(fā)展道路,中國必須在提高機械化和自動化水平、突破智能化關(guān)鍵技術(shù)裝備瓶頸、開展全過程智能化試點[31-32]等方面同步推進,才有可能在新一輪技術(shù)革命中贏得發(fā)展先機,同時借助農(nóng)業(yè)智能化過程對社會就業(yè)產(chǎn)生的“替代效應(yīng)”和“創(chuàng)造效應(yīng)”[33],來提高農(nóng)業(yè)、乃至全社會的人均勞動生產(chǎn)率。本文按照設(shè)施農(nóng)業(yè)生產(chǎn)環(huán)節(jié)分類,分項闡述了世界先進設(shè)施園藝生產(chǎn)裝備水平,分析了智能化關(guān)鍵技術(shù)與自動化裝備結(jié)合的研發(fā)應(yīng)用現(xiàn)狀與趨勢,對指導(dǎo)中國設(shè)施園藝智能化發(fā)展方向、研發(fā)重點和開展國際合作、推廣應(yīng)用等具有一定的借鑒和參考價值。
從設(shè)施園藝產(chǎn)業(yè)自身看,智能化技術(shù)研究開展較早[34-36],但受全球人力成本上升、農(nóng)業(yè)從業(yè)者減少[37],高技能專業(yè)人員不足等因素影響,同時為了進一步提高操作效率、減少人工操作對園藝產(chǎn)品質(zhì)量的影響[38]、保證供應(yīng)的及時性、提高產(chǎn)業(yè)競爭力,以商業(yè)化為目標的設(shè)施園藝智能化在近10年內(nèi)開始加速發(fā)展。
從外部環(huán)境看,設(shè)施園藝智能化在硬件方面依賴于機械、信息、通訊等產(chǎn)業(yè)的發(fā)展。國際金融危機發(fā)生后,新一代信息技術(shù)與先進制造技術(shù)加快發(fā)展、深度融合,智能制造成為全球新一輪產(chǎn)業(yè)變革的代表,數(shù)字化、網(wǎng)絡(luò)化、智能化逐漸成為未來制造業(yè)發(fā)展的主要趨勢,人工智能技術(shù)的不斷突破[39-41]也為設(shè)施園藝的智能化預(yù)示出光明的前景。這種態(tài)勢為設(shè)施園藝智能化提供了有力的產(chǎn)業(yè)技術(shù)支撐,也使包括設(shè)施園藝在內(nèi)的農(nóng)業(yè)領(lǐng)域成為智能化制造業(yè)新的投資方向之一。近期硅谷在農(nóng)業(yè)信息化、機器人技術(shù)等方面投資的大幅增長也說明了這一趨勢[42],某些設(shè)施園藝新興國家也出現(xiàn)相同態(tài)勢[43],迄今投資速度仍在加快、總量不斷增長。不少國家也以設(shè)立諸如“產(chǎn)業(yè)戰(zhàn)略挑戰(zhàn)基金”[44]等形式增加農(nóng)業(yè)人工智能、機器人和遙感等方面的創(chuàng)新投入,提高技術(shù)競爭力。
除以企業(yè)和研究機構(gòu)單獨進行的研發(fā)行動外,世界各國采用多種協(xié)同攻關(guān)的方式加快智能化技術(shù)裝備在園藝產(chǎn)業(yè)的應(yīng)用。歐盟依靠“Horizon2020”計劃[45]的資助并以此前開展的歐洲農(nóng)業(yè)高技術(shù)研究項目CROPS[46]為基礎(chǔ),與跨學(xué)科的REELER項目[47]合作,整合來自荷蘭、比利時、瑞典和以色列的6家研發(fā)單位自2015年開展了名為Sweeper[48]的甜椒收獲機器人研究,旨在實現(xiàn)第一代收獲機器人的商業(yè)化。英國聯(lián)合劍橋大學(xué)等5所頂尖研究型高校組成了科技創(chuàng)新聯(lián)盟[49],以期在包括智能化農(nóng)業(yè)等產(chǎn)業(yè)技術(shù)研發(fā)方面發(fā)揮更重要的作用。日本富士集團聯(lián)合九州大學(xué)[50],發(fā)揮各自的優(yōu)勢,加快人工智能技術(shù)在農(nóng)業(yè)產(chǎn)業(yè)的應(yīng)用。韓國通過建立以智能化為特征的智慧農(nóng)業(yè)綜合體[51]來加快技術(shù)進步、提升產(chǎn)業(yè)競爭力、創(chuàng)造就業(yè)并吸引年輕人進入農(nóng)業(yè)領(lǐng)域。上述研發(fā)雖與大田園藝智能化交叉進行,但這些裝備在技術(shù)原理和功能上與設(shè)施園藝相通性很多,部分產(chǎn)品可直接用于溫室作業(yè)。為促進全球設(shè)施園藝智能技術(shù)研發(fā)大協(xié)作,2018年瓦赫寧根大學(xué)研究中心在中國騰訊公司的支持下,組織了“國際挑戰(zhàn)”活動[52-53],通過人工智能、傳感技術(shù)和“自治”溫室(autonomous greenhouses)技術(shù)的綜合應(yīng)用來提高設(shè)施蔬菜的生產(chǎn)水平。
設(shè)施園藝工程技術(shù)裝備主要包括種苗工程、設(shè)施生產(chǎn)、產(chǎn)地物流、綜合管理4部分[54],涵蓋了設(shè)施園藝商品化產(chǎn)業(yè)鏈各個環(huán)節(jié),這些環(huán)節(jié)中均有適合于智能化升級的內(nèi)容,但受技術(shù)、經(jīng)濟、生產(chǎn)模式等影響,發(fā)展難度不同,重點和階段也不同。從世界設(shè)施園藝智能化裝備研發(fā)歷史和實際應(yīng)用進展看,目前收獲智能裝備的投入和研發(fā)進展最為顯著,這主要源于世界范圍內(nèi)的勞工短缺[55-56]和設(shè)施生產(chǎn)者老齡化等問題的加劇。但各個領(lǐng)域智能化技術(shù)與裝備的研發(fā)工作都在開展,從后文的分析中可清晰獲知。
全球智能化的長遠目標是為了更好地滿足全球不斷增長的食品供應(yīng)的需要,更有效地保障食品生產(chǎn)全過程的效率、質(zhì)量和供應(yīng)的精準性,同時降低農(nóng)業(yè)生產(chǎn)對生態(tài)環(huán)境的影響。從研究預(yù)測看,到2050年,世界人口數(shù)量將達到91億~96億、食物需求較當前增長70%[57],同時75%的世界人口將居住在城市之中,對高品質(zhì)園藝產(chǎn)品的需求更大。為實現(xiàn)上述目標,設(shè)施園藝智能化要以增加效益、提高競爭力和發(fā)展持續(xù)性為目的,以關(guān)鍵環(huán)節(jié)為突破口,以提高效率、降低消耗為主要要求,以提高操作速度、作業(yè)精度、減少人工為手段。最終,通過智能化的應(yīng)用,使設(shè)施園藝實現(xiàn)由人工操作型向人機協(xié)同型和真正意義上的全天候工廠化生產(chǎn)型[43]轉(zhuǎn)變,并實現(xiàn)技術(shù)供給、經(jīng)濟成本、社會需求三者的平衡。
除與園藝作物本身直接相關(guān)的生物、環(huán)境、管理等農(nóng)業(yè)工程技術(shù)外,設(shè)施園藝智能化技術(shù)裝備還主要涉及傳感器技術(shù)、網(wǎng)絡(luò)通訊技術(shù)、智能控制技術(shù)以及以“智能制造”[58-59]為代表的機械、電子等工業(yè)與信息化技術(shù),它們需要與設(shè)施園藝工程技術(shù)相互補充、深度融合才能實現(xiàn)由通用技術(shù)向設(shè)施園藝產(chǎn)業(yè)技術(shù)的轉(zhuǎn)變。同時,由于設(shè)施園藝智能化相對上述技術(shù)應(yīng)用相對滯后,后者技術(shù)進步和產(chǎn)業(yè)化的速度,會直接影響到設(shè)施園藝智能化技術(shù)裝備常規(guī)化和商業(yè)化的速度與程度。
種苗生產(chǎn)可分為播前處理、播種、嫁接、移栽、定植幾個過程。發(fā)達國家育苗已基本實現(xiàn)工廠化,大多數(shù)以穴盤育苗為主,荷蘭也有一定量巖棉直播育苗[60]。在育苗階段除嫁接、定植等少數(shù)環(huán)節(jié)以外,其他均已配套自動化設(shè)備,通過物流和輸送設(shè)備的串聯(lián)完成流水線作業(yè),裝備較為成熟,在智能化方面的研究主要集中在通過在線監(jiān)測技術(shù)和機器視覺反饋,進一步提高設(shè)備作業(yè)精度和穩(wěn)定性。
1)前處理環(huán)節(jié)。主要裝備包括基質(zhì)消毒、穴盤清洗消毒、基質(zhì)攪拌等,這些裝備均已實現(xiàn)機械化,并且向?qū)崿F(xiàn)自動化生產(chǎn)過渡,以荷蘭、德國、意大利為主的裝備制造和應(yīng)用大國采取蒸汽噴射基質(zhì)消毒、紫外線穴盤消毒等相對成熟的技術(shù)形成了適于推廣的系列生產(chǎn)設(shè)備[61-63]。
2)播種環(huán)節(jié)。主要采用播種流水線,由穴盤解垛、基質(zhì)填充、壓穴、播種、附土、噴淋、穴盤播后碼垛等單機設(shè)備串聯(lián)組成[64-65],各單體設(shè)備自動化程度、設(shè)備匹配度都很高,在運行穩(wěn)定性、種子適應(yīng)性等方面已經(jīng)能夠滿足當前育苗生產(chǎn)需求。滾筒式播種機生產(chǎn)效率可以達到1 200盤/h,準確率在95%以上,荷、意、美、英都在播種技術(shù)和設(shè)備方面形成自己特色[66-69]。如荷蘭大部分園藝生產(chǎn)以巖棉為主,播種時直接將種子播入巖棉塞或巖棉塊中。近年來,播種環(huán)節(jié)設(shè)備研究方向主要集中在如何進一步提高播種生產(chǎn)效率、加快或簡化不同類型種子變換時滾筒的更換以及對于特定種子的精量定向播種技術(shù)及裝備開發(fā)等;在智能化方面,荷蘭和美國為進一步提高針對不同種子播種時的自適應(yīng)性,增加了播種滾筒的真空度反饋自動調(diào)整系統(tǒng),通過實時檢測負壓系統(tǒng)的穩(wěn)定性,判斷播種機運行穩(wěn)定情況,并智能化調(diào)整設(shè)備作業(yè)速率,初步實現(xiàn)了播種機排種的智能化。中國在播種設(shè)備方面還處在自動化研發(fā)和初步推廣階段,如何進一步提高播種精度、提升作業(yè)穩(wěn)定性依然是研究重點,針對排種機構(gòu)、前后端自動化匹配設(shè)備的研發(fā)已初見成效[70-72]。
3)嫁接環(huán)節(jié)。從20世紀90年代日本提出自動化嫁接技術(shù)方案開始,嫁接設(shè)備經(jīng)歷了機械化、半自動化、全自動化的發(fā)展過程[73-75],目前正在與機器視覺技術(shù)結(jié)合實現(xiàn)智能化精準對接。由于嫁接作業(yè)過程精細,且嫁接對象復(fù)雜多樣,嫁接裝備研發(fā)速度緩慢。近期發(fā)展集中在2個方向,一是半智能嫁接機,由人工完成上苗,設(shè)備完成嫁接動作,荷蘭目前先進的生產(chǎn)設(shè)備生產(chǎn)效率可以達到1 050株/h[76];另一方面由人工完成嫁接作業(yè),研究依靠流程規(guī)劃并配套合理的輸送平臺,通過物流方式整合人工嫁接作業(yè)流程。在智能化應(yīng)用上荷蘭、韓國為進一步提高嫁接成功率,將機器視覺技術(shù)應(yīng)用于嫁接切削過程,通過實時識別合適的切削位置,躲避莖節(jié)、莖稈曲率過大等不利于嫁接的位置,從而調(diào)整切刀和對接手,保證對接成功率。中國在嫁接設(shè)備方面的研究處于并跑階段,在嫁接苗及穴盤的機器視覺識別定位,正負壓結(jié)合的持苗方式等方面有一定的研究,但距離實際生產(chǎn)應(yīng)用還有一定差距[77-79]。
4)移栽環(huán)節(jié)。近年,荷、意、美、韓、澳等國在移栽技術(shù)和設(shè)備研發(fā)方面發(fā)展較快[80-81],相繼開發(fā)出盆花與葉菜自動移栽系統(tǒng),并大面積應(yīng)用于設(shè)施園藝作物生產(chǎn)中[82],在高效自動化的基礎(chǔ)上結(jié)合機器視覺和圖像分析技術(shù)實現(xiàn)種苗智能分級移栽。當前的研究重點一是針對移栽機構(gòu)、末端執(zhí)行器等硬件的改良升級,不斷精簡優(yōu)化移栽拾取手的結(jié)構(gòu),通過改變移栽拾取軌跡減少對幼苗葉面的傷害,如荷蘭在傳統(tǒng)3軸直線伺服平臺基礎(chǔ)上引入6軸機械手臂和并聯(lián)機械手進行移栽,縮短單作業(yè)循環(huán)用時,提高移栽定位精度,移栽作業(yè)最高速度可達35 000株/h[83];二是智能化升級,在疏苗、補苗、移栽過程中,依靠機器視覺技術(shù)幼苗分級分選、精準調(diào)向為后續(xù)育苗和成苗商品化提供的可靠保障。通過幼苗托離穴盤、旋轉(zhuǎn)拍照,實現(xiàn)對每一株苗的2D或3D成像,進行圖像分析,綜合高度、葉面積、葉方向、莖直徑、莖彎曲度等參數(shù)建立分級評分算法進行分級[84]。荷蘭還在扦插移栽方面開展研究,基于視覺快速識別平面扦插葉片、莖稈和莖節(jié)側(cè)芽位置,通過機械手末端執(zhí)行器切割、拾取并插入基質(zhì),完成智能化扦插移栽作業(yè)[85]。中國在穴盤苗移栽設(shè)備研發(fā)方面起步較晚,目前還未形成成熟的商業(yè)化產(chǎn)品,但在基于機器視覺的識別分級研究和針對不同類型幼苗的末端執(zhí)行器研發(fā)方面有所進展[86-87]。
總體上,設(shè)施園藝種苗需在主要環(huán)節(jié)自動化、復(fù)雜環(huán)節(jié)半自動化的基礎(chǔ)上,進一步提升技術(shù)裝備的節(jié)能環(huán)保、智能化水平,尤其在復(fù)雜判斷環(huán)節(jié)通過增加機器視覺和人工智能(AI,artificial intelligence)等技術(shù),實現(xiàn)更快、更精準的識別、定位、分級、轉(zhuǎn)移。
生產(chǎn)過程自動化、智能化一直是設(shè)施園藝領(lǐng)域研究與發(fā)展的重點,目前中國與其他設(shè)施園藝發(fā)達國家相繼開發(fā)出設(shè)施環(huán)境控制、作物調(diào)整與授粉、病蟲害防治及自動采摘等自動化與智能化技術(shù)裝備,大幅度節(jié)省了勞動力、提高了資源利用率與生產(chǎn)效率及生產(chǎn)操作舒適度,在一定程度上實現(xiàn)了設(shè)施園藝的自動化與智能化生產(chǎn)[88-89]。
1)設(shè)施環(huán)境控制。環(huán)境控制是設(shè)施園藝智能化的重要前提。結(jié)合不斷提升精度和穩(wěn)定性的環(huán)境監(jiān)測傳感器以及葉片溫度、徑流、莖直徑、稱質(zhì)量等原位生理監(jiān)測傳感技術(shù),通過無線傳感網(wǎng)絡(luò)、物聯(lián)網(wǎng)技術(shù),融合AI技術(shù)實現(xiàn)信息通信傳輸,結(jié)合模糊理論、遺傳算法等數(shù)學(xué)工具建立精細的環(huán)境控制模型與植物生長模型相適應(yīng),同時,在智能算法方面,逐步由單因素控制向多因素耦合控制過渡,不斷豐富環(huán)境控制專家系統(tǒng),形成自適應(yīng)學(xué)習(xí)的設(shè)施環(huán)境控制“大腦”。熱泵技術(shù)、相變材料、LED補光、納米技術(shù)及清潔能源等新型技術(shù)與設(shè)備在設(shè)施農(nóng)業(yè)的推廣應(yīng)用實現(xiàn)了設(shè)施環(huán)境參數(shù)的精確控制;作物—環(huán)境互作機理的研究不斷深入,明確了不同作物對設(shè)施環(huán)境參數(shù)的需求。結(jié)合作物水分與養(yǎng)分快速診斷技術(shù)、無損檢測技術(shù)和裝備以及作物生長模型與決策模型研究成果,逐步實現(xiàn)了基于作物真實需求的環(huán)境精確控制目標,相應(yīng)技術(shù)與設(shè)備的應(yīng)用大幅度提高了設(shè)施作物生產(chǎn)的資源利用效率與生產(chǎn)管理效率[90-93]。
2)作物調(diào)整和授粉,視覺技術(shù)、人工智能、植物表型組學(xué)以及作物生長模型等技術(shù)綜合應(yīng)用到設(shè)施園藝作物調(diào)整與授粉方面[94-97],結(jié)合不斷發(fā)展的機器人技術(shù),裝備的智能化屬性不斷提升。如在勞動強度很大的吊落蔓環(huán)節(jié)中,美國研發(fā)了滑軌式自動吊蔓系統(tǒng)[98];在植物修剪葉方面,荷蘭開發(fā)出番茄自動剪葉機器人[99],并應(yīng)用到番茄生產(chǎn)管理中,通過3D視覺定位技術(shù)準確識別需要減掉的枝葉,由旋轉(zhuǎn)切刀快速精準完成剪葉工作;在設(shè)施作物授粉方面,基于風(fēng)力授粉與振動授粉原理,國內(nèi)外研究學(xué)者開發(fā)出有軌式與無人機類的機械化與自動化授粉機器人來代替自然授粉與雄峰授粉[100-101]。近年,華沙理工大學(xué)、美國哈弗大學(xué)、英國謝菲爾德大學(xué)和薩塞克斯大學(xué)學(xué)者將無人機和人造蜜蜂大腦結(jié)合在一起研究開發(fā)出機器蜂來進行作物授粉[102-103],但目前這種機器蜂在模擬蜜蜂大腦認知功能方面還有很大的提升空間[104]。
3)植物保護。目前研究大多基于1972年被公認病蟲害綜合治理理念上開展的[105],近幾年美國、荷蘭等國家利用多維與高精度光譜成像與分析技術(shù)及3D傳感器(立體攝像頭與激光掃描儀)對植物進行高頻率掃描,再進行圖像與反射比分析來精確監(jiān)控病蟲害發(fā)生情況[106-107],將分析后的結(jié)果記錄形成植保數(shù)據(jù)庫,作為噴藥等作業(yè)機器人的目標地圖,結(jié)合室內(nèi)定位技術(shù)實現(xiàn)智能對靶精量噴施。在植物病蟲害防治設(shè)備方面,20世紀90年代開始國內(nèi)外研究學(xué)者就研發(fā)了紫外線、臭氧、植物天敵等技術(shù)與設(shè)備,并廣泛應(yīng)用到生產(chǎn)中,近年來的智能化移動噴藥設(shè)備以及無人機噴藥設(shè)備也在生產(chǎn)中開始使用。目前作物病蟲害防治方向由從單純注重作物植保到注重作物健康的研究方向發(fā)展的趨勢。
4)作物收獲。設(shè)施作物收獲是生產(chǎn)中耗時耗力與持續(xù)時間較長的環(huán)節(jié),是智能農(nóng)業(yè)機器人技術(shù)集中呈現(xiàn)的領(lǐng)域。自動導(dǎo)航、機械手臂與視覺識別技術(shù)的日漸成熟提高了作物自動收獲的可行性。近年來,中國、荷蘭、日本、美國、比利時、西班牙、意大利均在果蔬收獲方面開展了探索性研究[108-113],分別針對不同外形、顏色的番茄、黃瓜、草莓等果蔬采摘機器人開展研發(fā)工作。在軟件方面,訓(xùn)練不同目標識別模板,運用雙目視覺、高光譜以及熒光成像技術(shù)并結(jié)合電子鼻技術(shù),獲取采摘果實的位置、尺寸、損傷、成熟度、品質(zhì)等信息。在識別算法方面研究不斷升級,多卷積神經(jīng)網(wǎng)絡(luò)、模糊決策、遺傳算法的聯(lián)合運用攻克背景噪聲分割、復(fù)雜果實外形識別、消除葉片遮擋和重疊影響等方面不斷進步,結(jié)合AI技術(shù)建立自適應(yīng)學(xué)習(xí)算法,提升識別模型的精準性。在執(zhí)行機構(gòu)方面,為提高采摘效率,開展了機械臂-手-眼協(xié)調(diào)研究[114-115],關(guān)節(jié)型多軸機械手臂已廣泛應(yīng)用于采摘機器人,針對草莓等柔軟易損對象在末端執(zhí)行器和拾取手方面展開研究,采摘方式包括夾持或吸持后切割的方式和更加仿生的柔性扭動采摘方式等[116],最快的草莓采摘機器人單次采摘周期可以縮短到3 s[117]。果蔬采摘機器人目前還未能商品化,但大量的研究成果展示出這一領(lǐng)域巨大的發(fā)展前景。
總體來看作物生產(chǎn)智能化裝備研究處于從單因素向多因素、多環(huán)節(jié)融合方向發(fā)展,單因素智能技術(shù)與裝備逐漸成熟,多因素與多環(huán)節(jié)融合還處于初級階段,美國率先提出的可與植物對話的技術(shù)(SPA,speak plant approach to environment control),是通過融合植物監(jiān)測、分析、模型決策、調(diào)控等環(huán)節(jié),利用自動化、信息化等技術(shù)與設(shè)備,實現(xiàn)對植物生產(chǎn)過程的智能化管控,這可能成為未來作物生產(chǎn)智能化技術(shù)與裝備的融合研究方向[118]。
物流倉儲是產(chǎn)后商品化的重要過程,主要包括內(nèi)部輸送、分級分選、洗凈、包裝、儲藏保鮮、追溯等裝備。
1)內(nèi)部輸送。包括智能苗床輸送系統(tǒng)、自動引導(dǎo)車輛(AGV,automated guided vehicle)、搬運機器人等。智能輸送是工廠化盆栽植物及育苗生產(chǎn)需要解決的重要環(huán)節(jié)[119]。目前,國外的盆栽植物智能栽培輸送設(shè)備已形成產(chǎn)業(yè)化。荷蘭盆花生產(chǎn)中將輸送帶、自動搬運軌道、苗床搬運天車和搬運叉車等輸送設(shè)備有機連接,構(gòu)成了溫室內(nèi)部物流生產(chǎn)體系,大大提高了生產(chǎn)效率,減輕了人工作業(yè)的勞動強度[120],配套智能化的管理軟件實現(xiàn)苗床等單元載荷的定時定點自動運輸。近年來,隨著中國勞動力成本上升和規(guī)模效益的驅(qū)動,智能化物流裝備的研發(fā)逐步開始,但只被極少數(shù)高檔花卉溫室采用。設(shè)施園藝AGV裝備在傳統(tǒng)的電磁、視覺或慣性導(dǎo)航基礎(chǔ)上,不斷拓展定位方式,如RFID(radio frequency identification)定位、Wi-Fi定位、UWB(ultra wide band)定位,精度不斷提升,實現(xiàn)溫室內(nèi)地圖與生長、環(huán)境信息的匹配,形成設(shè)施園藝生產(chǎn)數(shù)據(jù)庫,提升設(shè)施園藝生產(chǎn)的精準性。另一方面AGV成為內(nèi)部運輸、植保巡檢、視覺測產(chǎn)等功能機器人的智能化行走底盤[121]。荷蘭、中國生產(chǎn)者已經(jīng)將AGV應(yīng)用于收獲甜椒、西紅柿的運輸[122]和種苗生產(chǎn)中[123]。同時,越來越多的搬運機器人被應(yīng)用到溫室園藝生產(chǎn)搬運中[124],以此幫助保障工人的安全和整體效率。美國采用機器人進行盆花的搬運,效率達到240盆/h[125]。
2)分級分選。按大小、質(zhì)量、色澤、形狀、成熟度、病蟲害等指標對農(nóng)產(chǎn)品進行等級評定,是果蔬商品化的核心環(huán)節(jié),對增值減損具有重要意義。隨著視覺傳感元件的升級,識別精度和速度都在提升,算法模型更加精準、穩(wěn)定。國外從20世紀80年代中期開始水果品質(zhì)自動檢測的研究,早期主要采用彩色CCD相機作為傳感器,近年多運用神經(jīng)網(wǎng)絡(luò),灰度、顏色自適應(yīng)評估、小波分析和遺傳算法、分形理論等對蘋果、紅棗、番石榴、芒果等進行顏色、果形、缺陷等的檢測分級[126-129];采用高光譜和多光譜圖像技術(shù)、熱紅外、X射線、近紅外和中紅外雙相機在線檢測損傷缺陷[130-132];采用核磁共振、紅外線、沖擊檢測水果的成熟度[133]。法國、西班牙、意大利、荷蘭等發(fā)達國家較早開始利用計算機進行果蔬分級,開發(fā)設(shè)備已系列化、商業(yè)化。法國可對蘋果、柑桔、葡萄、菠蘿、火龍果等圓形和穗狀水果以及茄子、辣椒等長形蔬菜進行分級分選,其中蘋果、柑橘等的分選效率最高可達18 000個/h,火龍果5~8 t/h[134]。日本山岡大學(xué)開發(fā)的菜用大豆分選設(shè)備,分選效率達到85 kg/h,是人工分選的7倍[135]。中國關(guān)于果蔬品質(zhì)智能識別分選所采用的理論與技術(shù)與國外差別不大[136-137],研發(fā)的設(shè)備多聚焦在蔬果的外部品質(zhì)檢測,如國內(nèi)企業(yè)已實現(xiàn)了贛南臍橙、獼猴桃、檸檬、蜜柚等的分級分選,四通道電子果蔬分選機處理量達到20 t/h[138]。未來重點是進行多傳感器測量信息集成,采用機械、光學(xué)與機器視覺、傳統(tǒng)計算和AI等實現(xiàn)實時自動檢測與分級,同時基于大數(shù)據(jù)的深度學(xué)習(xí)應(yīng)用于黃瓜等果蔬的分選也將成為熱點研究[139]。
3)清洗。發(fā)達國家已形成完善的蔬菜加工設(shè)備體系,在結(jié)構(gòu)優(yōu)化、新工藝和新材料應(yīng)用等方面處于技術(shù)創(chuàng)新階段;設(shè)備專用性強,一套設(shè)備一般只針對特定種類蔬菜如蘑菇、草本植物等進行清洗,裝備主要還是以自動化作業(yè)為主,通過增加水位及水質(zhì)實時監(jiān)測傳感器,實現(xiàn)清洗水的自動補充和更新,清洗過程全自動化,避免了人工污染[140-141]。荷蘭[142]、德國[143]企業(yè)研制的筐式生菜清洗生產(chǎn)設(shè)備,針對性強,清洗性能和效果好、蔬菜損傷小且以生產(chǎn)線為主,清洗過程全自動化,生產(chǎn)效率高;荷蘭公司[144-145]研制的蔬菜清洗生產(chǎn)線采用氣浴、水射流和噴淋相結(jié)合,通過在水中產(chǎn)生更強的湍流對蔬菜進行低損清潔,清洗能力可達4 000 kg/h。中國蔬菜清洗技術(shù)研究基礎(chǔ)比較薄弱。山東研制的TS型臥式混流噴沖清洗機清洗能力≤2 000 kg/h[146],且蔬菜加工設(shè)備應(yīng)用多集中在發(fā)達城市,與美國、荷蘭、德國、日本等食品工業(yè)發(fā)達國家存在一定差距。
4)包裝。包裝是采后商品化不可或缺的環(huán)節(jié),在保鮮過程中起到至關(guān)重要的作用,目前設(shè)備主要以自動化作業(yè)為主。常見蔬菜包裝技術(shù)有薄膜包裝、涂膜包裝、氣調(diào)包裝以及真空包裝等[147]。國外蔬菜包裝設(shè)備起步較早,意、西、德、日等國的企業(yè)已開發(fā)出商業(yè)化的包裝設(shè)備。由于果蔬包裝屬勞動密集型工作,為此西、澳、英、荷等國果蔬生產(chǎn)商均使用機器人來協(xié)助包裝生菜、草莓、黃瓜等,使勞動力需求減少80%,如黃瓜最大包裝效率可達6 000根/h[148-151]。中國蔬菜包裝裝備研發(fā)較快,在2011-2015年協(xié)作機器人在包裝業(yè)的應(yīng)用從9.5%增加到17.4%,特別是《機器人產(chǎn)業(yè)發(fā)展規(guī)劃(2016-2020年)》的發(fā)布將有助于進一步推動果蔬包裝業(yè)的自動化和智能化水平[152]。
農(nóng)業(yè)作為人類生存的基礎(chǔ)性產(chǎn)業(yè),隨著人口的絕對增加,在社會進步的大背景下必然面臨著傳統(tǒng)要素投入減少、環(huán)境和資源壓力增加的客觀現(xiàn)實,設(shè)施園藝也同樣。相較于工業(yè),農(nóng)業(yè)智能化發(fā)展依然較落后,但實現(xiàn)智能化的趨勢卻成為一種必然并呈現(xiàn)出以下主要特點。
需求是促進技術(shù)進步和產(chǎn)業(yè)升級的根本動力。從長遠看,農(nóng)產(chǎn)品供應(yīng)的壓力使智能化成為戰(zhàn)略投資者的必然選擇,并對此產(chǎn)業(yè)前景充滿樂觀。從當前生產(chǎn)需求看,面對投入成本的增加和人力資源供應(yīng)的持續(xù)減少,設(shè)施園藝種植者面臨著前所未有的競爭壓力,而智能化產(chǎn)品的初步應(yīng)用,就為許多種植者帶來了顯著的經(jīng)濟效益[153],展現(xiàn)出巨大的潛力[154],大大激發(fā)了種植者采用先進智能化技術(shù)裝備的熱情[43],并且這種意愿不斷保持增長,不僅傳統(tǒng)的大型企業(yè)加快智能化裝備的應(yīng)用,中小企業(yè)也在不斷增加投入。某些種植者甚至直接與機器人公司合作,以加快相關(guān)技術(shù)裝備的研發(fā)[155]、更早地獲得技術(shù)優(yōu)勢。這種工業(yè)制造企業(yè)尋求新市場,設(shè)施種植者追求更高效率和效益的需求在當前高度契合,形成了“拉”和“推”的2種動力,相互促進的態(tài)勢越來越明顯。
技術(shù)進步通常受到發(fā)展的必要性、迫切性、技術(shù)成熟性和經(jīng)濟性等方面的影響,智能化技術(shù)裝備也不例外。通過前文的分析不難發(fā)現(xiàn),世界設(shè)施園藝智能化技術(shù)裝備研發(fā)應(yīng)用也呈現(xiàn)出不同的層次和熱度,當前的研發(fā)重點主要集中在以下幾個方面:1)人工操作比例大、勞動強度高的工作,如收獲、打葉、授粉、除草、室內(nèi)運輸、設(shè)施維護等;2)操作精度要求高、人員技能要求高的工作,如播種、嫁接、移苗等;3)對經(jīng)營成本影響大的環(huán)節(jié),如灌溉、施肥、施藥等;4)內(nèi)容單調(diào)重復(fù),易引起誤差的工作,如巡檢、數(shù)據(jù)采集等;5)決策綜合性強、內(nèi)容涉及面廣的工作,如環(huán)境調(diào)控系統(tǒng)、能源綜合管理系統(tǒng)等。這些技術(shù)裝備的局部應(yīng)用或集成應(yīng)用可以顯著提高設(shè)施園藝的作業(yè)精度、降低投入成本、提高生產(chǎn)質(zhì)量,因此也將是智能化技術(shù)裝備研發(fā)應(yīng)用的長期關(guān)注點。
農(nóng)業(yè)既受環(huán)境影響又影響環(huán)境,而設(shè)施園藝相對大田農(nóng)業(yè)具有能耗高[156]、藥肥施用量大[157]等特點,因此綠色生產(chǎn)的壓力更大。針對綠色生產(chǎn),智能化裝備一方面在信息判斷的科學(xué)性、操作的精準性、施用的精量化、流程的便捷化等方面不斷提高,使水、藥、肥、廢棄物減量程度不斷提高[158],甚至嘗試通過建立植物、人類、機器人之間的信息交流平臺[159-160],使作物的可持續(xù)生產(chǎn)與人類生活更加協(xié)調(diào);另一方面,智能技術(shù)裝備也在適應(yīng)綠色制造的趨勢[161-162],不斷推進機械系統(tǒng)、動力系統(tǒng)、能源供應(yīng)系統(tǒng)的優(yōu)化和材料的改進,充分利用太陽能等可再生能源,減少材料和能源消耗。針對安全生產(chǎn),智能化裝備在避障、無人化、容錯等技術(shù)方面也不斷提高,最大程度地減少對作物、設(shè)施和生產(chǎn)人員[163]的不良影響。
智能化作為一種復(fù)雜性很高的實現(xiàn)過程,技術(shù)和產(chǎn)品需要多個應(yīng)用、反饋、改進的循環(huán)。智能化的實現(xiàn)也需要通過局部和某些環(huán)節(jié)的突破來帶動系統(tǒng)化解決方案的實現(xiàn)。除直接采用工業(yè)技術(shù)的部分倉儲物流智能裝備應(yīng)用較早外,其他單一功能的智能化裝備均在近5a才開始投入商業(yè)化運行,如嫁接機器人、移苗機器人、苗圃和盆花生產(chǎn)轉(zhuǎn)運維護機器人[164]、打葉機器人[165]、授粉無人機、施藥機器人、除草機器人[166]、運輸機器人等均逐漸進入市場。從目前的研發(fā)進度看,以番茄、黃瓜、甜椒為對象的果菜采摘機器人,以草莓為代表的漿果采摘機器人[167-168]等研發(fā)進度很快,許多機型都已進入商業(yè)化測試階段[169],如松下公司計劃2019年開始番茄采收機器人的試銷[170]。其他諸如綜合巡檢機器人[171]、診斷機器人[172]、葉菜采收機器人、落蔓機器人等均在加快研發(fā)和測試。隨著工業(yè)和信息產(chǎn)業(yè)在新材料、智能制造、5G通訊、AI等方面的技術(shù)進步和產(chǎn)業(yè)發(fā)展,單機商業(yè)化的速度將進一步加快,成本也將逐步降低。
完全通過數(shù)字化信息聯(lián)接各種生產(chǎn)裝備而形成的智能農(nóng)場將是設(shè)施農(nóng)業(yè)發(fā)展的最高階段,在實現(xiàn)此目標之前,小規(guī)模、局部性的集成化智能生產(chǎn)單元既是研發(fā)過程的必經(jīng)階段,也是生產(chǎn)實踐的迫切要求,并且這種嘗試需要在生產(chǎn)單元結(jié)構(gòu)化程度相對較高的環(huán)境下才易于實現(xiàn)。在當前所有設(shè)施類型中,近年來方興未艾的植物工廠[173-176],品種也逐漸由傳統(tǒng)的葉菜、香料作物向果菜、花卉拓展。為進一步提高這一高度集約化生產(chǎn)設(shè)施的效率,全智能化設(shè)施將會率先以植物工廠為平臺開始集成[177],如近年來日本松下、三菱等公司正在探索完全由機械手操作的植物工廠[178]。從經(jīng)濟角度看,雖然目前植物工廠的投入成本還是相對較高[179-180],但隨著以植物工廠為代表的都市農(nóng)業(yè)不斷升溫,以自動化和智能化為主要手段來降低成本的趨勢將更加明顯。
在農(nóng)業(yè)全球化的背景下,智能化技術(shù)裝備將是包括設(shè)施園藝在內(nèi)的新一輪農(nóng)業(yè)競爭的焦點之一,中國既承擔(dān)著滿足國內(nèi)社會轉(zhuǎn)型、消費升級和生態(tài)需求的重任,也肩負著穩(wěn)定世界農(nóng)產(chǎn)品市場的國際責(zé)任。作為世界設(shè)施園藝面積最大的國家[181],智能化技術(shù)裝備可以全面促進技術(shù)升級、產(chǎn)業(yè)轉(zhuǎn)型和競爭力彎道超車,支撐中國城鎮(zhèn)化發(fā)展和鄉(xiāng)村振興戰(zhàn)略的實施。因此,中國在大力發(fā)展智能化工業(yè)和服務(wù)業(yè)的同時,應(yīng)當將農(nóng)業(yè)智能化作為重要的戰(zhàn)略性發(fā)展目標之一,并率先在設(shè)施園藝這一生產(chǎn)參數(shù)可控度和相對效益較高的行業(yè)率先探索實踐,以提高技術(shù)進步效率和發(fā)揮示范引領(lǐng)作用。
1)主動適應(yīng)設(shè)施園藝智能化的趨勢??朔粍雍透S的產(chǎn)業(yè)推動模式和技術(shù)研發(fā)模式,通過各種方式,研究并準確預(yù)見設(shè)施園藝智能化發(fā)展可能帶來的生產(chǎn)方式和競爭態(tài)勢變化,在產(chǎn)業(yè)發(fā)展規(guī)劃和政策、技術(shù)發(fā)展戰(zhàn)略等宏觀方面具有前瞻性。在技術(shù)引進、知識產(chǎn)權(quán)保護、技術(shù)轉(zhuǎn)移等方面采取相應(yīng)的保護和促進措施。
2)努力形成中國的核心技術(shù)和產(chǎn)品體系。針對關(guān)鍵零部件、大數(shù)據(jù)構(gòu)建和挖掘、系統(tǒng)集成等關(guān)鍵環(huán)節(jié)加大投入,國家應(yīng)設(shè)置連續(xù)的共性基礎(chǔ)研究支持項目,鼓勵協(xié)同創(chuàng)新、跨行業(yè)聯(lián)合,構(gòu)建具有中國特色的技術(shù)支撐體系。鼓勵企業(yè)成為創(chuàng)新主體,特別是在大數(shù)據(jù)共建共享、產(chǎn)品集成和服務(wù)方面形成穩(wěn)定的推廣和服務(wù)體系。
3)大力加強國際技術(shù)、人才和商業(yè)合作。中國設(shè)施園藝智能化技術(shù)起步較晚,目前的研究項目數(shù)量、研發(fā)團隊規(guī)模、企業(yè)投入都相對弱小,但在AI等技術(shù)發(fā)展的外部環(huán)境上卻十分有利,并具有巨大的市場潛力。因此,在技術(shù)、產(chǎn)業(yè)的發(fā)展上要擴大開放,積極引進先進技術(shù)和產(chǎn)品,利用本地優(yōu)勢吸引國外高水平專家,同時推動中國產(chǎn)品在“一帶一路”等框架下的輸出。
4)加快各類智能化生產(chǎn)模式的研究示范。智能化作為生產(chǎn)方式的一種革命,隨著制造成本的下降和農(nóng)產(chǎn)品銷售價格的上升,必然會在適當?shù)臅r刻成為主流。因此中國應(yīng)加大在技術(shù)、組織、產(chǎn)業(yè)3方面的創(chuàng)新探索,以適度先進的技術(shù)裝備為基礎(chǔ)、以適當?shù)慕M織方式為經(jīng)營主體、以良好的政策與產(chǎn)業(yè)環(huán)境為保障,探索形成適應(yīng)中國自然、社會特點和市場需求的新一代生產(chǎn)模式,形成設(shè)施園藝和智能化裝備制造業(yè)的共促共贏。
設(shè)施園藝智能化正成為產(chǎn)業(yè)發(fā)展的時代潮流和全球設(shè)施園藝產(chǎn)業(yè)升級的重要標志,在未來5~10a內(nèi),育苗、收獲、植保等智能化裝備將在設(shè)施園藝發(fā)達國家率先實現(xiàn)商品化應(yīng)用,全智能生產(chǎn)的植物工廠也將出現(xiàn)。在全球化背景下,受價格競爭和技術(shù)輸出的影響,各國都將加快設(shè)施園藝產(chǎn)業(yè)裝備升級。在農(nóng)業(yè)供給側(cè)改革深入推進的長期趨勢下,中國高品質(zhì)農(nóng)產(chǎn)品需求加快增長,并對設(shè)施園藝的生產(chǎn)成本、質(zhì)量和供給效率提出更高要求,智能化裝備的市場空間巨大。為保障園藝產(chǎn)品供給的數(shù)量安全和質(zhì)量安全,中國應(yīng)在智能化上升為國家戰(zhàn)略的大背景下,將設(shè)施園藝智能化裝備研發(fā)作為實現(xiàn)農(nóng)業(yè)產(chǎn)業(yè)技術(shù)升級的重要舉措,力爭在主要環(huán)節(jié)、重點裝備上優(yōu)先研發(fā)、率先突破。為此,一要充分考慮中國設(shè)施園藝數(shù)量大、類型雜、層次多的特點,在洞悉世界發(fā)展特點的前提下確立具有高度適應(yīng)性和針對性的中國設(shè)施園藝智能裝備研發(fā)目標體系;二要借鑒發(fā)達國家在注重國際合作、協(xié)同研發(fā)、強調(diào)企業(yè)主體等方面成功經(jīng)驗,形成以自主創(chuàng)新為主的研發(fā)推廣體制機制;三要在政府科研投入、政策引導(dǎo)、金融支持、知識產(chǎn)權(quán)交易與保護等方面加大對設(shè)施園藝智能化的傾斜,通過構(gòu)建良好的發(fā)展環(huán)境,讓更多的機構(gòu)、人才、資金、技術(shù)進入該領(lǐng)域。通過上述措施,使中國設(shè)施園藝產(chǎn)業(yè)能夠抓住此次智能化技術(shù)革命的機遇,成為智慧農(nóng)業(yè)和中國農(nóng)業(yè)現(xiàn)代化的領(lǐng)頭羊。
[1] 賈根良. 第三次工業(yè)革命與工業(yè)智能化[J]. 中國社會科學(xué),2016(6):87-106.
JiaGenliang. The third industrial revolution and industrial intellectualization[J]. Social Sciences in China, 2016(6): 87-106. (in Chinese with English abstract)
[2] 周濟. 智能制造——“中國制造2025”的主攻方向[J]. 中國機械工程,201526(17):2273-2284.
Zhou Ji. Intelligent manufacturing main direction of “Made in China 2025”[J]. China Mechanical Engineering, 2015, 26(17): 2273-2284. (in Chinese with English abstract)
[3] 國務(wù)院. 國務(wù)院關(guān)于印發(fā)《中國制造2025》的通知[EB/OL]. 2015-05-19[2018-5-12]. http://www.gov.cn/zhengce/content/ 2015-05/19/content_9784.htm.
[4] 楊靜. 國內(nèi)外智能化控制系統(tǒng)發(fā)展態(tài)勢的研究[J]. 裝備機械,2016(1):59-64.
[5] 肖武坤. 工業(yè)4.0背景下工業(yè)設(shè)計在汽車智能化中的應(yīng)用探析——以特斯拉為例[J]. 時代汽車,2016(12):25-26.
[6] 駱金威,李飛,盧大偉. 航空結(jié)構(gòu)件智能化加工設(shè)備的發(fā)展方向[J]. 航空制造技術(shù),2017(6):51-54.
Luo Jinwei, Li Fei, Lu Dawei. Future directions of intelligent machining equipment for aeronautic structure[J]. Aeronautical Manufacturing Technology, 2017(6): 51-54. (in Chinese with English abstract)
[7] 劉煥彬,李繼庚. 工業(yè)4.0及構(gòu)建智能造紙企業(yè)的思考[J]. 造紙科學(xué)與技術(shù),2016(3):1-15.
Liu Huanbin, Li Jigeng. Reflect on industry 4. 0 and how to build the smart paper-enterprise[J]. Paper Science & Technology, 2016(3): 1-15. (in Chinese with English abstract)
[8] 袁粵. 淺析未來工業(yè)機器人發(fā)展方向與智能化[J]. 科技經(jīng)濟導(dǎo)刊,2017(9):69.
[9] Matt McFarland. Farmers turn to artificial intelligence to grow better crops [EB/OL]. 2017-7-26[2018-5-12]. http://money. cnn.com/2017/07/26/technology/future/farming-ai-tomatoes/ index.html.
[10] National Science Foundation. National robotics initiative 2.0: Ubiquitous collaborative robots (NRI-2.0) [EB/OL]. 2017-11-21[2018-5-12]. https://www.nsf.gov/publications/ pub_summ.jsp?ods_key=nsf18518.
[11] HortiBiz. UK: More investment in automation is needed [EB/OL]. 2018-1-26[2018-5-12]. http://www.hortibiz.com/ item/news/uk-more-investment-in-automation-is-needed.
[12] HortiBiz. AHDB Hort. Launches robotics survey in UK [EB/OL]. 2017-9-1[2018-5-12]. http://www.hortibiz.com/ item/news/ahdb-horticulture-launches-robotics-survey.
[13] Autonomous greenhouses. Autonomous Greenhouses [EB/OL]. 2018-3-21[2018-5-12].https://www.autonomousgreenhouses.com/en/autonomousgreenhouses.htm.
[14] Hortidaily. Autostix to set a new industry standard[EB/OL]. 2017-6-6[2018-5-12].http://www.hortidaily.com/article/35268/ Autostix-to-set-a-new-industry-standard.
[15] Wageningen university&research. PhenomicsNL-WUR[EB/OL]. 2017-03-23[2018-5-12]. http://www.wur.nl/en/ Research-Results/Projects-and-programmes/PhenomicsNL.htm.
[16] HortiBiz. Japanese companies in race for farm tech[EB/OL]. 2016-10-07[2018-5-12]. http://www.hortibiz.com/item/news/ japanese-companies-in-race-for-farm-tech/.
[17] HortiBiz. Panasonic develops tomato-picking robot[EB/OL]. 2016-10-06[2018-5-12]. http://www.hortibiz.com/item/news/ panasonic-develops-tomato-picking-robot/.
[18] GetFarming. Mission to MARS for Australian vegetable industry [EB/OL]. 2018-4-4[2018-5-12]. http://www.getfarming.com.au/ 2017/03/28/mission-mars-australian-vegetable-industry/.
[19] ABC Rural. Horticulture hub for robot research could bear fruit within a couple of years, even in internet black spots [EB/OL]. 2018-4-4[2018-5-12]. http://www.abc.net.au/news/ rural/2016-10-06/horticulture-innovation-funds-establish-robot-research-hub/7908502?section=technology.
[20] ABC News (Australian Broadcasting Corporation). Swarm farm robotics launches world-first crop spraying technology in Queensland[EB/OL]. 2016-10-06[2018-5-12]. http://www.abc. net.au/news/2016-03-22/campbell-newman-robotics-robots-emerald-youth-employment/7265932.
[21] EURACTIV. Farming 4.0: The future of agriculture? [EB/OL]. 2016-11-8[2018-5-12].https://www.euractiv.com/section/agriculture-food/infographic/farming-4-0-the-future-of-agriculture/.
[22] 工業(yè)和信息化部. 三部委關(guān)于印發(fā)《農(nóng)機裝備發(fā)展行動方案(2016-2025)》的通知[EB/OL]. 2016-12-22[2018-5-12]. http://www.miit.gov.cn/n1146295/n1652858/n1652930/ n3757018/ c5433686/content.html.
[23] 國務(wù)院. 國務(wù)院關(guān)于印發(fā)新一代人工智能發(fā)展規(guī)劃的通知(國發(fā)〔2017〕35號) [EB/OL]. 2017-07-20[2018-5-12]. http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm.
[24] 農(nóng)業(yè)部規(guī)劃設(shè)計研究院. 國家重點研發(fā)計劃“溫室智能化精細生產(chǎn)技術(shù)與裝備研發(fā)”在京啟動[EB/OL]. 2017-09-26 [2018-5-12].http://www.caae.com.cn/kygz/gzdt_88/201709/t20170926_5828614.htm.
[25] 李中華,孫少磊,丁小明,等. 我國設(shè)施園藝機械化水平現(xiàn)狀與評價研究[J]. 新疆農(nóng)業(yè)科學(xué),2014(6):1143-1148.
Li Zhonghua, Sun Shaolei, Ding Xiaoming, et al. Research on the present situation and evaluation of protected horticulture mechanization level in China[J]. Xinjiang Agricultural Sciences, 2014(6): 1143-1148. (in Chinese with English abstract)
[26] 邢碩. 天津市武清區(qū)設(shè)施農(nóng)業(yè)機械化技術(shù)發(fā)展現(xiàn)狀及對策[J]. 農(nóng)業(yè)工程,2018(1):22-24.
Xing Shuo. Development status and sounter measures of facility agriculture mechanization technology in Wuqing district of Tianjin city[J]. Agricultural Engineering, 2018(1): 22-24. (in Chinese with English abstract)
[27] 張魯云,楊耀武,鄭炫,等. 新疆兵團設(shè)施園藝機械化發(fā)展現(xiàn)狀及建議[J]. 農(nóng)機化研究,2015(5):264-268.
Zhang Luyun, Yang Yaowu, Zheng Xuan, et al. Xinjiang crops protected horticulture agriculture mechanization development status analysis and suggestions[J]. Journal of Agricultural Mechanization Research, 2015(5): 264-268. (in Chinese with English abstract)
[28] 何芬,丁小明,李中華,等. 設(shè)施農(nóng)業(yè)機械化水平評價指標體系構(gòu)建[J]. 農(nóng)機化研究,2013(12):47-51.
He Fen, Ding Xiaoming, Li Zhonghua, et al. Based on the CAD variable geometric method for solving kinematics analysis of harvesting robot[J]. Journal of Agricultural Mechanization Research, 2013(12): 47-51. (in Chinese with English abstract)
[29] NY/T 1408.6-2016農(nóng)業(yè)機械化水平評價第6部分:設(shè)施農(nóng)業(yè)[S]. 農(nóng)業(yè)部:中華人民共和國農(nóng)業(yè)部公告第2405號,2016.
[30] 中國政府網(wǎng). 主要農(nóng)作物生產(chǎn)全程機械化深入推進[EB/OL]. 2018-4-4[2018-5-12]. http://www.gov.cn/shuju/ 2016-12/07/content_5144560.htm.
[31] 張躍峰,秦四春. 設(shè)施園藝智能化發(fā)展趨勢與路徑[J]. 溫室園藝,2015(9):25-28.
[32] 齊飛,魏曉明,張躍峰. 中國設(shè)施園藝裝備技術(shù)發(fā)展現(xiàn)狀與未來研究方向[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(24):1-9.
Qi Fei, Wei Xiaoming, Zhang Yuefeng. Development status and future research emphases on greenhouse horticultural equipment and its relative technology in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017,33(24): 1-9.
[33] 蔡秀玲,高文群. 中國智能制造對農(nóng)業(yè)轉(zhuǎn)移勞動力就業(yè)的影響[J]. 福建師范大學(xué)學(xué)報:哲學(xué)社會科學(xué)版,2017(1):68-78.
Cai Xiuling, Gao Wenqun. Influence of China's intelligent manufacturing on the employment of agricultural transfer labor[J]. Journal of Fujian Normal University: Philosophy and Social Sciences Edition, 2017(1): 68-78. (in Chinese with English abstract)
[34] HortiBiz. Agribusiness US: 'Get us workers'[EB/OL]. 2016-10-07[2018-5-12].http://www.hortibiz.com/item/news/agribusiness-us-get-us-workers/.
[35] 齊飛,周新群,張躍峰,等. 世界現(xiàn)代化溫室裝備技術(shù)發(fā)展及對中國的啟示[J]. 農(nóng)業(yè)工程學(xué)報, 2008, 24(10):279-285.
Qi Fei, Zhou Xinqun, Zhang Yuefeng, et al. Development of world greenhouse equipment and technology and some implications to China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(10): 279-285. (in Chinese with English abstract)
[36] Tillett N D. Robotic manipulators in horticulture: A review[J]. Journal of Agricultural Engineering Research, 1993, 55(2): 89-105.
[37] Kondo N, Monta M, Fujiura T. Fruit harvesting robots in Japan[J]. Advances in Space Research, 1996, 18(1/2): 181.
[38] Tillett N D, He W, Tillett R D. Development of a vision guided robot manipulator for packing horticultural produce[J]. Journal of Agricultural Engineering Research, 1995, 61(3): 145-154.
[39] Gil Press. Top 10 hot artificial intelligence (AI) technologies [EB/OL]. 2018-4-8[2018-5-12].https://www.forbes.com/sites/gilpress/2017/01/23/top-10-hot-artificial-intelligence-ai- technologies/ #7ed24b271928.
[40] 網(wǎng)易科技. 人工智能的十個里程碑事件,你知道幾個?[EB/OL]. 2017-9-27[2018-5-12]. http://tech.163.com/17/0927/ 08/CVB08LD400098IEO.html.
[41] 搜狐網(wǎng). 年終盤點2017年人工智能大事件[EB/OL]. 2017-12-22[2018-5-12]. http://www.sohu.com/a/212148659_99970484.
[42] HortiBiz. Silicon valley ventures into high-tech farming [EB/OL]. 2016-10-07[2018-5-12]. http://www.hortibiz.com/ item/news/silicon-valley-ventures-into-high-tech-farming/?tx_news_pi1%5Bcontroller%5D=News&tx_news_pi1%5Baction%5D=detail&cHash=ceb59ce0efe7289c8ee4ef99d53fcb8d.
[43] Fruitworldmedia. Robots, sensors, apps: Investment by farmers in AG tech is picking up[EB/OL]. 2016-10-07 [2018-5-12]. http://fruitworldmedia.com/index.php/featured/ robots-sensors-apps-investment-farmers-ag-tech-picking/.
[44] HortiBiz. £90M to revolutionise tech in UK agriculture [EB/OL]. 2018-3-5[2018-5-12]. http://www.hortibiz.com/ item/news/pound90m-to-revolutionise-tech-in-uk-agriculture.
[45] European Commission. Horizon 2020[EB/OL]. [2018-5-22]. http://ec.europa.eu/programmes/horizon2020/.
[46] European Commission in the 7th Framework Programme. Intelligent sensing and manipulation for sustainable production and harvesting of high value crops[EB/OL]. [2018-5-22]. http://www.crops-robots.eu/.
[47] Reeler. Responsible ethical learning with robotics [EB/OL]. [2018-5-12]. http://reeler.eu/.
[48] European commission. Sweet pepper harvesting robot [EB/OL]. 2016-10-11[2018-5-12]. http://www.sweeper-robot.eu/.
[49] University of Cambridge. Cambridge and four other universities form agritech partnership[EB/OL]. 2018-4-10 [2018-5-12]. http://www.cam.ac.uk/news/cambridge-and-four-other-universities-form-agritech-partnership.
[50] Fujitsu global. Fujitsu and Kyushu University enter into joint research on AI in agricultural production[EB/OL]. 2018-4-12[2018-5-12].http://www.fujitsu.com/global/about/ resources/news/press-releases/2018/0412-01.html.
[51] Be Korea-savvy. Government to Create 4, 300 Jobs in smart farm industry[EB/OL]. 2018-4-17 [2018-5-12]. http:// koreabizwire.com/government-to-create-4300-jobs-in-smart- farm-industry/117235.
[52] HortiBiz. The race toward auton. greenhouses[EB/OL]. [2018-3-21]. http://www.hortibiz.com/item/news/intl- challenge-of-self-cultivating-greenhouses/?e=qf2008%40188.com,
[53] Autonomous Greenhouses. Build the greenhouse of the future, join our international challenge to improve greenhouses through AI and sensors[EB/OL]. 2018-3-21[2018-5-12]. http://www.autonomousgreenhouses.com/.
[54] 齊飛,周新群,丁小明,等. 設(shè)施農(nóng)業(yè)工程技術(shù)分類方法探討[J]. 農(nóng)業(yè)工程學(xué)報,2012, 28(10):1-7.
Qi Fei, Zhou Xinqun, Ding Xiaoming, et al. Discussion on classification method of protected agricultural engineering technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(10): 1-7. (in Chinese with English abstract)
[55] CNBC. Wave of agriculture robotics holds potential to ease farm labor crunch[EB/OL]. 2018-3-8[2018-5-12]. https:// www.cnbc.com/2018/03/08/wave-of-agriculture-robotics-holds- potential-to-ease-farm-labor-crunch.html.
[56] Los Angeles times. As California’s labor shortage grows, farmers race to replace workers with robots[EB/OL]. 2017-7-21[2018-5-12].http://www.latimes.com/projects/la-fi-farm-mechanization/.
[57] B.L. Loeb. Water Energy Food Nexus[J]. Ozone: Science & Engineering, 2016, 38(3): 173-174.
[58] 萬志遠,戈鵬,張曉林,等.智能制造背景下裝備制造業(yè)產(chǎn)業(yè)升級研究[J]. 世界科技研究與發(fā)展,2018(3):1-8.
[59] 李末軍. 智能制造領(lǐng)域研究現(xiàn)狀及未來發(fā)展探討[J]. 工程技術(shù)研究,2017(3):26-30.
[60] 辜松,楊艷麗,張躍峰,等. 荷蘭蔬菜種苗生產(chǎn)裝備系統(tǒng)發(fā)展現(xiàn)狀及對中國的啟示[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(14):185-194.
Gu Song, Yang Yanli, Zhang Yuefeng, et al. Development status of automated equipment systems for greenhouse vegetable seedlings production in Netherlands and its inspiration for China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(14): 185-194. (in Chinese with English abstract)
[61] Urbinati. LAV 10 - Traywasher, washing lines[EB/OL]. [2018-5-22]. https://www.urbinati.com/en/product/traywasher- lav10/.
[62] Urbinati. MC1120 Soil mixer[EB/OL]. [2018-5-22]. http://en.urbinati.com/product/soilmixer-mc1120-mc2120/.
[63] Urbinati. 3561 Gobbler-Bale Processors[EB/OL]. 2018-4-12 [2018-5-22]. http://www.kaseworks.com/products/ 3561-gobbler.htm.
[64] De. Mayer. The container filling machine TM 2018-There’s no easier way[EB/OL]. 2018-5-3[2018-5-22]. http://mayer.de/en/ products/filling/potting-machines/tm2018/.
[65] Visser horti systems. Robomatic seeder[EB/OL]. [2018-5-22]. https://www.visser.eu/filling-machines-potting-machines/robomatic-seeder/.
[66] The blackmore company. Cylinder seeder[EB/OL]. [2018-5-22]. http://www.blackmoreco.com/products-and-services/machines-and-automation.
[67] Visser horti systems. Auto seeder roulette[EB/OL]. [2018-5-22]. https://www.visser.eu/seeding-machines/auto- seeder-roulette-ssl/.
[68] Hamilton-design. Natural seeder-system 3[EB/OL]. 2017-12-19 [2018-5-22]. http://www.hamilton-design.co.uk/system3.html.
[69] Helper Robotech Co., Ltd. Stepping seeder[EB/OL]. [2018-5-22]. http://helpersys.en.ec21.com/Stepping_Seeder- - 1_1319.html.
[70] 姜凱,張騫,王秀.機械式自清潔播種頭設(shè)計與試驗[J].農(nóng)業(yè)工程學(xué)報,2013,29(20):18-23.
[71] 楊艷麗,辜松,李愷,等. 大粒種子定向精量播種裝置參數(shù)優(yōu)化試驗[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(13):15-22.
Yang Yanli, Gu Song, Li Kai, et al. Parameters optimization of directing precision seeder for large cucurbitaceous seeds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(13): 15-22. (in Chinese with English abstract)
[72] 田素博,楊繼峰,王瑞麗,等. 蔬菜嫁接機嫁接夾振動排序裝置工作參數(shù)優(yōu)化試驗[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(6):9-16.
Tian Subo, Yang Jifeng, Wang Ruili, et al. Optimization experiment of operating parameters on vibration sorting-clip device for vegetable grafting machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(6): 9-16. (in Chinese with English abstract).
[73] Conic system. EMP-300 [EB/OL]. [2018-5-22]. http://www. conic-system.com/wp/en/gallery/injection-robot/?lang=en
[74] HRC. Ultra grafting robot[EB/OL]. [2018-5-22]. http:// helpersys.cafe24.com/wp/en/portfolio/pro01/.
[75] 大越崇博,小林研. Development of automatic seedling feeding device for cucurbits grafting robot (Part 1) evaluation of automatic stock feeder[J]. Journal of JSAM, 2013, 75: 100-107.
[76] ISO-group. iso-graft-1200[EB/OL]. [2018-5-22]. http://www. iso-group.nl/en/machines/iso-graft-1200.
[77] ISO-group. iso-3d-sorter[EB/OL]. [2018-5-22]. http://www. iso-group.nl/en/machines/iso-3d-sorter.
[78] 賀磊盈,蔡麗苑,武傳宇. 基于機器視覺的幼苗自動嫁接參數(shù)提取[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(24):190-195.
He Leiying, Cai Liyuan, Wu Chuanyu. Vision-based parameters extraction of seedlings for grafting robot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(24): 190-195. (in Chinese with English abstract).
[79] 劉姣娣,曹衛(wèi)彬,許洪振,等. 自動補苗裝置精準定位自適應(yīng)模糊PID控制[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(9):37-44.
Liu Jiaodi, Cao Weibin, Xu Hongzhen, et al. Adaptive fuzzy –PID control of accurate orientation for auto –detect seedling supply device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017,33(9): 37-44. (in Chinese with English abstract)
[80] 王躍勇,于海業(yè),劉媛媛.基于雙目立體視覺的機械手移栽穴盤定位方法[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(5):43-49.
Wang Yueyong, Yu Haiye, Liu Yuanyuan. Mechanical transplanting plug tray localization method based on binocular stereo vision[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(5): 43-49. (in Chinese with English abstract).
[81] TTA. Transplanting[EB/OL]. [2018-5-22]. http://www.tta. eu/products/transplanting/.
[82] 辜松.我國設(shè)施園藝智能化生產(chǎn)裝備發(fā)展現(xiàn)狀[J].農(nóng)業(yè)工程技術(shù),2015(28):46-50.
[83] Visser horti systems. Pic-o-mat-vision[EB/OL]. [2018-5-22]. https://www.visser.eu/plug-transplanters/pic-o-mat-vision/.
[84] TTA. Flex Sorter [EB/OL]. [2018-5-22]. http://www.tta.eu/ products/grading/flexsorter.
[85] ISO-group. ISO cutting planter 4000[EB/OL]. [2018-5-22]. http://www.iso-group.nl/en/machines/iso-cutting-planter-4000.
[86] 高國華,馮天翔,李福. 斜入式穴盤苗移栽手爪工作參數(shù)優(yōu)化及試驗驗證[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(24):16-22.
Gao Guohua, Feng Tianxiang, Li Fu. Working parameters optimization and experimental verification of inclined- inserting transplanting manipulator for plug seedling[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(24): 16-22. (in Chinese with English abstract)
[87] 韓綠化,毛罕平,胡建平,等. 蔬菜穴盤苗自動精確移栽組合式取苗機構(gòu)設(shè)計與測試(英文)[J].農(nóng)業(yè)工程學(xué)報,2015,31(增刊2):17-23.
Han Lvhua, Mao Hanping, Hu Jianping, et al. Design and test of combined pick-up device for automatic and precise transplanting of vegetable plug seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE),2015, 31 (Supp.2): 17-23. (in English)
[88] Visser horti Systems. Visser autostix live demonstrations [EB/OL]. [2018-5-22].https://www.visser.eu/autostix-live- demonstrations/.
[89] EU scientific foresight study. Precision agriculture and the future of farming in Europe[J], European Parliamentary Research Service, December 2016, PE 581.892.
[90] Pekkeriet E J, Henten E J V, Campen J B. Contribution of innovative technologies to new developments in horticulture [J]. Acta Horticulturae, 2015(1099): 45-54.
[91] Shamshiri R R, Kalantari F, Ting K C, et al. Advances in greenhouse automation and controlled environment agriculture: A transition to plant factories and urban farming[J]. International Journal of Agricultural & Biological Engineering, 2018, 11(1): 1-18.
[92] 王紀章,李萍萍,毛罕平. 基于作物生長和控制成本的溫室氣候控制決策支持系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報,2006,22( 9): 168-171.
Wang Jizhang, Li Pingping, Mao Hanping. Decision support system for greenhouse environment management based oncrop growth and control cost[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22( 9): 168-171. (in Chinese with English abstract)
[93] 王立舒,侯濤,姜淼. 基于改進多目標進化算法的溫室環(huán)境優(yōu)化控制[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(5):131-137.
Wang Lishu, Hou Tao, Jiang Miao. Improved multi-objective evolutionary algorithm for optimization control in greenhouse environment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 131-137. (in Chinese with English abstract)
[94] Frank Tobe. Views and forecasts about robotics for the ag industry: The robot report, [EB/OL]. 2016-12-27[2018-5-22]. https://www.therobotreport.com/views-and-forecasts-about-robotics-for-the-ag-industry.
[95] Erik Pekkeriet. Vision technology in horticulture practice[J]. Fruit & Veg Tech 2009, 12(2): 20-22.
[96] Artificial intelligence in agriculture. Part 2: How farming is going automated with AI technologies.[EB/OL]. [2018-5-22]. http://ai.business/2016/05/06/artificial-intelligence-in-agriculture- part-2-how-farming-is-going-automated-with-ai-technologies/.
[97] 武書彥,朱坤華,王輝,等. 人工智能系統(tǒng)設(shè)計在園藝栽培生產(chǎn)中的運用[J]. 農(nóng)機化研究,2018(2):216-220.
Wu Shuyan, Zhu Kunhua, Wang Hui, et al. The application of artificial intelligence system in the production of horticultural cultivation[J]. Journal of agricultural mechanization research, 2018(2): 216-220(in Chinese with English abstract)
[98] Growers develop mechanized lean-lower trellis device for tomatoes. Vegetable grower news[EB/OL]. [2018-5-22]. https://vegetablegrowersnews.com/article/growers-develop- mechanized-lean-lower-trellis-device/.
[99] Priva. Priva kompano deleaf-Line [EB/OL]. [2018-5-22]. https://www.priva.com/uk/discover- priva/news-and-stories/ priva-kompano-deleaf-line.
[100] HortiBiz. Robots help Australian growers pollinate[EB/OL]. 2016-10-07[2018-5-22]. http://www.hortibiz.com/item/news/ robots-help-australian-growers-pollinate/?tx_news_pi1%5Bcontroller%5D=News&tx_news_pi1%5Baction%5D=detail&cHash=2b344e690fbcd3899f560ffbb3d79385.
[101] CNNtech. This 'bee' drone is a robotic flower pollinator: [EB/OL]. 2017-02-15[2018-5-22]. http://money.cnn.com/ 2017/02/15/technology/bee-drone-pollination/index.html.
[102] B-Droid-a robot that's busy as a bee: Warsaw University of technology [EB/OL]. 2016-12-2[2018-5-22]. https://www. pw.edu.pl/engpw/Research/Business-Innovations-Technology-BIT-of-WUT/B-Droid-a-robot-that-s-busy-as-a-bee.
[103] Autonomous flying microrobots (RoboBees): Wyss institute [EB/OL]. [2018-5-22]. https://wyss.harvard.edu/technology/ autonomous-flying-microrobots-robobees/
[104] HortiBiz. Could robots replace honeybees?[EB/OL]. 2017-06-19 [2018-5-22]. http://www.hortibiz.com/item/news/could-robots-replace-honeybees-as-pollinators/.
[105] Rice knowledge bank.植物保護與IPM. [EB/OL]. 2013-6-3 [2018-5-22]. http://www.knowledgebank.irri.org/country- specific/asia/rice-knowledge-for-china/2013-06-03-07-41-48/2013- 06-03-07-42-35.
[106] Mahlein A K. Plant disease detection by imaging sensors–parallels and specific demands for precision agriculture and plant phenotyping[J]. Plant Disease, 2016, 100(2): 241-251.
[107] Cui Shaoqing, Ling Peter, Zhu Heping, et al. Plant pest detection using an artificial nose system: A review[J]. Sensors, 2018, 18: 378.
[108] 王丹丹,宋懷波,何東健.蘋果采摘機器人視覺系統(tǒng)研究進展[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(10):59-69.
Wang Dandan, Song Huaibo, He Dongjian. Research advance on vision system of apple picking robot[J]. Transactions of theChinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(10): 59-69. (in Chinese with English abstract)
[109] 彭艷,劉勇敢,楊揚,等. 軟體機械手爪在果蔬采摘中的應(yīng)用研究進展[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(9):11-20.
Peng Yan, Liu Yonggan, Yang Yang, et al. Research progress on application of soft robotic gripper in fruit and vegetable picking[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(9): 11-20. (in Chinese with English abstract)
[110] 王糧局,張立博,段運紅,等. 基于視覺伺服的草莓采摘機器人果實定位方法[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(22):25-31.
Wang Liangju, Zhang Libo, Duan Yunhong, et al. Fruit localization for strawberry harvesting robot based on visualservoing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(22): 25-31. (in Chinese with English abstract)
[111] 許常蕾,王慶,陳洪,等. 基于體感交互的仿上肢采摘機器人系統(tǒng)設(shè)計與仿真[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(增刊1):49-55.
Xu Changlei, Wang Qing, Chen Hong, et al. Design and simulation of artificial limb picking robot based on somatosensory interaction[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(Supp.1): 49-55. (in Chinese with English abstract)
[112] Barth R, Hemming J, Henten E J V. Design of an eye-in-hand sensing and servo control framework for harvesting robotics in dense vegetation[J]. Biosystems Engineering, 2016, 146: 71-84.
[113] Kondon,Yatak,Iida M,et al. Development of an end-effector for a tomato cluster harvesting robot[J]. Engineering in Agriculture,Environment and Food,2010,3(1): 20-24.
[114] Han L J, Fujiura T, Yamada H, et al. Cherry tomato harvesting robot with 3-D sensor on its end effecter (part 2): Image recognition and harvest experiment[J]. Journal of the Japanese Society of Agricultural Machinery, 2010, 62: 127-136.
[115] Garc A-Luna F, Morales-D AZ A. Towards an artificial vision-robotic system for tomato identification[J]. IFAC Papers On Line, 2016, 49(16): 365-370.
[116] Zhao H, O’Brien K, Li S, et al. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides[J]. Science Robotics. 2016, 1(1): eaai7529.
[117] Octinion. Strawberry picker [EB/OL]. [2018-5-22]. http://octinion.com/products/harvesting-series/strawberry- picking-robot.
[118] Nishina H. Development of speaking plant approach technique for intelligent greenhouse[J]. Agriculture & Agricultural Science Procedia, 2015, 3: 9-13.
[119] 馬偉,王秀,劉旺,等. 溫室栽培輸送設(shè)備試驗[J]. 農(nóng)業(yè)工程技術(shù):溫室園藝,2013(12):24-25.
[120] 辜松,楊艷麗,張躍峰. 荷蘭溫室盆花自動化生產(chǎn)裝備系統(tǒng)的發(fā)展現(xiàn)狀[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(19):1-8.
Gu Song, Yang Yanli, Zhang Yuefeng. Development status of automated equipment systems for greenhouse potted flowers production in Netherlands[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(19): 1-8. (in Chinese with English abstract)
[121] 潘海兵,萬鵬,黎煊,等. 基于自動導(dǎo)引小車系統(tǒng)盆栽水稻高通量輸送系統(tǒng)的設(shè)計[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(4):136-143.
Pan Haibing, Wan Peng, Li Xuan, et al. Design of high throughput conveyor system of potted rice based on automated guided vehicle system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(4): 136-143. (in Chinese with English abstract)
[122] Hortidaily: Netherlands-Nursery Duijnisveld uses AGV pepper trolleys [EB/OL]. 2013-7-12[2018-5-22]. http://www. hortidaily.com/article/2900/Netherlands-Nursery-Duijnisveld- uses-AGV-pepper-trolleys.
[123] 王偉琳,何芬,丁小明,等. 基于智能物流車的種苗生產(chǎn)物流規(guī)劃研究[J]. 北方園藝,2017(24):215-218.
[124] This Robotic Wheelbarrow will follow farmworkers as they pick berries[EB/OL]. 2018-3-5[2018-5-22]. https://www.fastcompany.com/40535591/this-robotic-wheelbarrow-will- follow-farmworkers-as-they-pick-berries.
[125] Robots used in greenhouses to improve productivity[EB/OL]. 2015-5-2[2018-5-22]. https://www.controleng.com/single- article/robots-used-in-greenhouses-to-improve-productivity/45b6143e52894edac5be623674279884.html.
[126] Khoje S. Appearance and characterization of fruit image textures for quality sorting using wavelet transform and genetic algorithms[J]. Journal of Texture Studies, 2017, 49(6): 65-83.
[127] Kumar R A, Rajpurohit V S, Nargund V B. A neural network assisted machine vision system for sorting pomegranate fruits[C]// Second International Conference on Electrical, Computer and Communication Technologies. IEEE, 2017: 1-9.
[128] Song X, Yang L. The study of adaptive multi threshold segmentation method for apple fruit based on the fractal characteristics[C]. International Symposium on Computational Intelligence and Design. IEEE, 2016: 168-171.
[129] Lou H, Hu Y, Wang B, et al. Dried jujube classification using support vector machine based on fractal parameters and red, green and blue intensity[J]. International Journal of Food Science & Technology, 2012, 47(9): 1951-1957.
[130] Jafri M Z M, Tan S C. Feature selection from hyper spectral imaging for guava fruit defects detection[C]. Digital Optical Technologies. International Society for Optics and Photonics, 2017: 103351E.
[131] Wu Y, Li L, Liu L, et al. Nondestructive measurement of internal quality attributes of apple fruit by using NIR spectroscopy[J]. Multimedia Tools & Applications, 2017: 1-17.
[132] Cheng X. NIR/MIR dual-sensor machine vision system for online apple stem-end/calyx recognition[J]. Transactions of the ASAE, 2003, 46(2): 551-558.
[133] 張方明,應(yīng)義斌. 水果分級機器人關(guān)鍵技術(shù)的研究和發(fā)展[J]. 機器人技術(shù)與應(yīng)用,2004(1):33-37.
Zhang Fangming, Ying Yibin. Research and development on the key technologies of fruit grading robot[J]. Robot Technique and Application, 2004(1): 33-37.(in Chinese with English abstract)
[134] Fresh Plaza. MAF Roda launches first ever dragon fruit sorting line [EB/OL]. 2017-7-21[2018-5-22]. http://www. freshplaza.com/article/179255/MAF-Roda-launches-first-ever- dragon-fruit-sorting-line.
[135] Kaminaga Shunsuke, Takahashi Fumio, Katahir Mitsuhiko, et al. Development for Vegetable soybean (edamame) sorting machine to use image processing[M]. American Society of Agricultural and Biological Engineers Annual International Meeting.2015.
[136] 張立彬,胡海根,計時鳴,等. 果蔬產(chǎn)品品質(zhì)無損檢測技術(shù)的研究進展[J]. 農(nóng)業(yè)工程學(xué)報,2005,21(4):176-180.
Zhang Libin, Hu Haigen, Ji Shiming, et al. Review of non- destructive quality evaluation technology for fruit and vegetable products[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(4): 176-180. (in Chinese with English abstract)
[137] 郭志明,陳全勝,張彬,等. 果蔬品質(zhì)手持式近紅外光譜檢測系統(tǒng)設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(8):245-250.
Guo Zhiming, Chen Quansheng, Zhang Bin, et al. Design and experiment of handheld near-infrared spectrometer for determination of fruit and vegetable quality[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 245-250.(in Chinese with English abstract)
[138] 中國果蔬分選設(shè)備先行者,挖掘先鋒水果人的創(chuàng)業(yè)精神[EB/OL]. 2017-10-18[2018-7-2]. http://www.sohu.com/a/ 198620288_99988178
[139] Hortidaily.Japan: Farmer develops cucumber sorting machine with the help of Google. [EB/OL]. 2016-9-6[2018-5-22]. http://www.hortidaily.com/article/28517/Japan-Farmer-develops-cucumber-sorting-machine-with-the-help-of-Google.
[140] 范雙喜,陳湘寧. 我國葉類蔬菜采后加工現(xiàn)狀及展望[J]. 食品科學(xué)技術(shù)學(xué)報,2014(5):1-5.
Fan Shuangxi, Chen Xiangning. Present aspects and prospect of post-harvest processing and preservation of China leafy vegetables[J]. Journal of Food Science and Technology, 2014(5): 1-5. (in Chinese with English abstract)
[141] 趙曉燕. 我國蔬菜采后加工產(chǎn)業(yè)現(xiàn)狀及展望[J]. 中國蔬菜,2013(3):1-5.
[142] Ftnon. Ftnon is a global leader in washing equipment [EB/OL]. [2018-5-22]. https://www.ftnon.com/processes/ washing/
[143] Alexander solia food processing. SWA 60.2[EB/OL]. [2018-5-22]. https://www.alexandersolia.de/
[144] Sormac. Washer pulstar[EB/OL]. [2018-5-22]. https://www. sormac.eu/en/machines/washer/
[145] 李佳偉,杜志龍,宋程. 我國蔬菜清洗技術(shù)及設(shè)備研究進展[J]. 包裝與食品機械,2017,35(3):46-51.
Li Jiawei, Du Zhilong. Developing status of vegetables cleaning techniques and equipments in China[J]. Packaging and Food Machinery, 2017, 35(3): 46-51.(in Chinese with English abstract)
[146] 科邁達. TS型臥式混流噴沖清洗機[EB/OL]. [2018-7-2]. http://www.colead.cc/Product/view/id/26.html
[147] 雷昊,謝晶. 新鮮蔬菜采后清洗、包裝處理研究進展[J]. 食品與機械,2016,32(6):215-219.
Lei Hao, Xie Jing. Progress on cleaning and packaging of postharvest fresh vegetables[J]. Food and Machinery, 2016, 32(6): 215-219.(in Chinese with English abstract)
[148] Major robotics investment cuts labour by 80 percent[EB/OL]. 2017-9-19[2018-5-22].http://www.fruitnet.com/fpj/article/173430/ robotics-investment-cuts-labour-by-80-per-cent.
[149] HortiBiz. Robots to assist in the packing of produce: [EB/OL]. 2016-10-06[2018-5-22]. http://www.hortibiz.com/ item/news/robots-to-assist-in-the-packing-of-produce/?tx_news_ pi1%5Bcontroller%5D=News&tx_news_pi1%5Baction%5D= detail&cHash=ab6a617f3c5a15c7958fafa31fdd85e7.
[150] Slash Gear. Ocado tests gentle robot hands for picking and packing fruit [EB/OL]. 2017-1-31[2018-5-22]. https://www. slashgear.com/ocado-tests-gentle-robot-hands-for-picking-and- packing-fruit-31473420/.
[151] Hortidaily.Netherlands: Packing robots greenhouse vegetables: automation and distinction [EB/OL]. 2014-4-10 [2018-5-22]. http://www.hortidaily.com/article/1710/Netherlands-Packing-robots-greenhouse-vegetables-automation-and-distinction.
[152] 機器人網(wǎng). 協(xié)作機器人推進包裝業(yè)實現(xiàn)自動化[EB/OL]. 2016-6-1. http://robot.ofweek.com/2016-06/ART-8321202- 8470-29103073.html
[153] Robots bringing huge benefits to farming[EB/OL]. 2016-12-12 [2018-5-22]. http://www.hortibiz.com/item/news/robots-are- bringing-huge-benefits-to-farming/.
[154] Fruit world media. Robots: Huge potential for robotics in the agriculture industry [EB/OL]. 2016-10-07[2018-5-22]. http:// fruitworldmedia.com/index.php/featured/robots-huge-potential- robotics-agriculture-industry/.
[155] Hortidaily.Naturipe berry growers invests in harvest CROO robotics[EB/OL]. 2016-10-14[2018-5-22]. http://www. hortidaily.com/article/29023/Naturipe-Berry-Growers-invests-in-Harvest-CROO-Robotics.
[156] 姚益平,蘇高利,羅衛(wèi)紅,等. 基于光熱資源的中國溫室氣候區(qū)劃與能耗估算系統(tǒng)建立[J]. 中國農(nóng)業(yè)科學(xué),2011(5):898-908.
Yao Yiping, Su Gaoli, Luo Weihong, et al. A photo-thermal resources based system for greenhouse climate zonation and energy consumption estimation in China[J]. Scientia Agricultura Sinica, 2011(5): 898-908.(in Chinese with English abstract)
[157] 郭金花. 典型設(shè)施蔬菜生產(chǎn)系統(tǒng)水肥、農(nóng)藥投入及環(huán)境影響的生命周期評價[D]. 北京:中國農(nóng)業(yè)大學(xué),2016.
[158] The Irish Times. Robots on the farm-and they’re environment friendly[EB/OL]. 2017-8-16[2018-5-22]. https://www.irishtimes. com/news/environment/robots-on-the-farm-and-they-re- environment-friendly-1.3139001.
[159] Euronews. Flora Robotica: The team of European scientists putting plants and machines together to construct the buildings of the future[EB/OL]. 2018-1-22[2018-5-22]. http:// www.euronews.com/2018/01/22/flora-robotica-the-team-of- european-scientists-putting-plants-and-machines.
[160] Hortidaily. Robots as builders in sustainable plant architecture [EB/OL]. 2016-11-18[2018-5-22]. http://www.hortidaily. com/article/30367/Robots-as-builders-in-sustainable-plant- architecture.
[161] 路甬祥. 走向綠色和智能制造——中國制造發(fā)展之路[J]. 中國機械工程,2010(4):379-386.
[162] 伍曉榕,張樹有,裘樂淼,等. 面向綠色制造的加工工藝參數(shù)決策方法及應(yīng)用[J]. 機械工程學(xué)報,2013(7):91-100.
Wu Xiaorong, Zhang Shuyou, Qiu Lemiao, et al. Decision making method of process parameter selection for green manufacturing based on a DEMATEL-VIKOR algorithm[J]. Chinese Journal of Mechanical Engineering, 2013(7): 91-100.(in Chinese with English abstract)
[163] 邢杰,趙鍵,孫毅瑩,等. 溫室作業(yè)人群長期農(nóng)藥暴露相關(guān)生物學(xué)標志物研究[J]. 環(huán)境與健康雜志,2014,31(8):710-712.
Xing Jie, Zhao Jian, Sun Yiying, et al. Biomarkers for greenhouse workers with long-term exposure to pesticides[J]. Journal of Environment and Health, 2014, 31(8): 710-712.(in Chinese with English abstract)
[164] HortiBiz. US: Nursery saves costs through robots [EB/OL]. 2016-10-07[2018-5-22].http://www.hortibiz.com/item/news/us-nursery-saves-costs-through-robots/?tx_news_pi1%5Bcontroller%5D=News&tx_news_pi1%5Baction%5D=detail&cHash=906db60bddd89d87733be5f625c63905.
[165] Priva. Tomato growers convinced of robotics-three growers take a head start with the Priva Deleafing Robot[EB/OL]. 2016-10-11[2018-5-22].http://www.priva-international.com/ en/stay-informed/news-archive/tomato-growers-convinced- of-robotics-%E2%80%93-three-growers-take-a-head-start- with-the-priva-deleafing-robot/.
[166] Produce growing. Robotic weeder makes its debut [EB/OL]. 2016-10-06[2018-5-22]. http://www.growingproduce.com/ vegetables/robotic-weeder-makes-its-debut/.
[167] The salt: NPR. Robots aretrying to pick strawberries. So far, they're not very good at it [EB/OL]. 2018-3-20 [2018-5-22]. https://www.npr.org/sections/thesalt/2018/03/20/ 592857197/robots-are-trying-to-pick-strawberries-so-far-theyre- not-very-good-at-it.
[168] My suncoast. A robot picking strawberries [EB/OL]. 2018-4-19 [2018-5-22]. http://www.mysuncoast.com/news/a-robot-picking- strawberries/article_cf226e26-441e-11e8-84d7-2b9dbf7ff706. html.
[169] Fruit world media. Sweet-pepper harvesting robot Sweeper ready for testing[EB/OL]. 2016-10-07[2018-5-22]. http:// fruitworldmedia.com/index.php/featured/1800/.
[170] Tomato-harvesting robot to be marketed: HortiBiz[EB/OL]. 2017-02-28[2018-5-22].http://www.hortibiz.com/item/news/tomato-harvesting-robot-to-be-commercialized/.
[171] HortiBiz. Scout robot predicts crop stress devt. [EB/OL]. 2018-5-9[2018-5-22].http://www.hortibiz.com/item/news/scout-robot-predicts-crop-stress-devt/?e=qf2008%40188.com.
[172] Fruit world media. Robot detects plant damage before you do[EB/OL]. 2016-10-06[2018-5-22]. http://fruitworldmedia. com/index.php/featured/robot-detects-plant-damage/.
[173] Fruit Net.eurofruit. Staay confirms vertical farm plan [EB/OL]. 2018-4-26[2018-5-22]. http://www.fruitnet. com/ /article/175419/staay-confirms-vertical-farm-plan.
[174] Greenhouse Canada. The new wave of farming guelph vertical farm brings leafy green production to industrial property[EB/OL]. 2017-11-1[2018-5-22]. https://www.greenhousecanada.com/structures-equipment/greenhouses/technology-issues-%E2%80%93-the-new-wave-of-farming-32204.
[175] Nwosisi S, Nandwani D, Chowdhury S. Organic vertical gardening for urban communities[C]//VI International Conference on Landscape and Urban Horticulture 1189. 2016: 399-402.
[176] Nicole C C S, Charalambous F, Martinakos S, et al. Lettuce growth and quality optimization in a plant factory[C]//VIII International Symposium on Light in Horticulture 1134. 2016: 231-238.
[177] HortiBiz. Robots meet indoor farming [EB/OL]. 2017-02-28 [2018-5-22].http://www.hortibiz.com/item/news/robots-meet-indoor-farming/.
[178] Okada H, Tada M, Sakai Y. Necessity of the Automation in a Large-Scale Greenhouse (plant factory)[J]. Shokubutsu Kojo Gakkaishi, 2011, 23(2): 44-51.
[179] Shao Y, Heath T, Zhu Y. Developing an economic estimation system for vertical farms[J]. International Journal of Agricultural & Environmental Information Systems, 2017, 7(2): 26-51.
[180]Harbick K, Albright L D. Comparison of energy consumption: greenhouses and plant factories[C]//VIII International Symposium on Light in Horticulture 1134. 2016: 285-292.
[181] 新華網(wǎng):我國設(shè)施園藝面積達370萬公頃居世界首位[EB/OL]. 2017-8-21[2018-7-2]. http://www.xinhuanet.com/ politics/2017-08/21/c_1121517077.htm
Development of intelligent equipment for protected horticulture in world and enlightenment to China
Qi Fei1,2, Li Kai1,2, Li Shao1,2, He Fen1,2, Zhou Xinqun1
(1.100125; 2.100125,)
Intelligentprotected horticulture is the advanced production form of digitization, refinement and automation in the whole process of horticultural products seeding and transplanting, cultivation management, environmental controlling, monitoring and early warning, harvesting and inner logistic etc. It is the hotspot of research and development and also the focus of agriculture upgrading both in China and overseas. In order to locate the development path of China and guide the research and development of the intelligent equipment of Chinese protected horticulture, it is necessary to study and analyze the current status and trend of the world's development in this field. Based on the individuals’, enterprises’ and institutes’ main research in intelligent technology and equipment, the status and prospect of theintelligent equipment are analyzed. Intelligent seed production has been preliminarily realized in sowing and transplanting. The development of intelligent crop production in the aspects of plant adjustment, pollination, plant protection and harvest is speeding up. Some intelligent equipment such as leaf cutting and inspection has entered commercialized trial. Intelligent storage logistics has been continuously improved continuously in internal transportation, classification separation, cleaning, packaging and so on. The intelligent seedbed conveying and transportation robot has been widely applied, and research for high-speed sorting and packaging robots are accelerating research and development. It is found that the demand for intelligent equipment in the world protected horticulture is growing rapidly, the direction of research and development is gradually focused, green and safety are concerned more, commercialization of single machine is accelerating, and the systematic integrated intelligent production facilities are beginning to emerge.The research and analysis results have important reference for the scientific and technological strategy and industrial policy formulation, scientific research projectapproval, achievement evaluation, international cooperation and equipment research and development forintelligent protected horticulture in China.
equipment; greenhouses; agriculture; protected horticulture; intelligence; status; prospect
10.11975/j.issn.1002-6819.2019.02.024
S26; TU261
A
1002-6819(2019)-02-0183-13
2018-05-25
2018-11-05
國家重點研發(fā)計劃項目(2017YFD0701500)
齊 飛,總工程師、研究員,主要從事溫室結(jié)構(gòu)、設(shè)備、材料和產(chǎn)業(yè)發(fā)展方面的研究。Email:qf2008@188.com
齊 飛,李 愷,李 邵,何 芬,周新群. 世界設(shè)施園藝智能化裝備發(fā)展對中國的啟示研究[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(2):183-195. doi:10.11975/j.issn.1002-6819.2019.02.024 http://www.tcsae.org
Qi Fei, Li Kai, Li Shao, He Fen, Zhou Xinqun. Development of intelligent equipment for protected horticulture in world and enlightenment to China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(2): 183-195. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.02.024 http://www.tcsae.org