亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        A Note on a Theorem of T.J.Rivlin

        2019-01-05 02:34:42AbdullahMirAjazWaniandImtiazHussain
        Analysis in Theory and Applications 2018年4期

        Abdullah Mir,Ajaz Wani and Imtiaz Hussain

        Department of Mathematics,University of Kashmir,Srinagar,190006,India

        Abstract.In this paper,we obtain a result that improves the results of Govil and Nwaeze,Qazi and the classical result of Rivlin.

        Key Words:Polynomial,maximum modulus,zeros.

        1 Introduction and statement of results

        For an arbitrary entire function f(z),letFor a polynomial P(z)=of degree n,it is known that

        Inequality(1.1)is due to Varga[7]who attributed it to Zarantonello.

        It is noted that equality holds in(1.1)if and only if P(z)has all its zeros at the origin,so it is natural to seek improvement under appropriate assumption on the zeros of P(z).It was shown by Rivlin[6]that ifin|z|<1,then(1.1)can be replaced by

        As a generalization of(1.2),Govil[2]proved that if P(z)0 in|z|<1,then for 0

        In 1992,Qazi[4]generalized(1.3)in a different direction and proved that if P(z)=a0+is a polynomial of degree n not vanishing in|z|<1 then for 0

        More recently,Govil and Nwaeze[3]besides proving some other results,also proved the following generalization and refinement of(1.3).

        Theorem 1.1.Letin,then for 0

        Some more results related to inequalities that compares the growth of a polynomial on|z|=r and|z|=R,where r

        In this note,we present the following extension of Theorem 1.1.As we shall see our result provides refinements of(1.2),(1.3)and(1.4)as well.

        Theorem 1.2.Let1 ≤μ

        Remark 1.1.Forμ=1,Theorem 1.2 reduces to Theorem 1.1.Taking k=1 in Theorem 1.2 we get the following refinement of(1.4).

        Corollary 1.1.Let1≤μ

        If we take R=1 in Theorem 1.2,we get

        Corollary 1.2.Let1≤μ

        The following extension and refinement of inequality(1.2)due to Rivlin[6]immediately follows from Corollary 1.2 by taking k=1 in it.

        Corollary 1.3.Let1≤μ

        2 Lemmas

        For the proof of Theorem 1.2,we need the following lemmas.

        Lemma 2.1.Let1≤μ

        The above lemma is due to Pukhta[5].

        Lemma 2.2.Let1≤μ

        The above lemma is due to Bidkham and Dewan[1].

        3 Proof of the theorem

        Proof of Theorem 1.2.Let 0

        which implies

        Now for 0

        which implies on using Lemma 2.2,

        which gives for 0

        Hence from(3.2),we get

        which is equivalent to

        which is(1.6)and this completes the proof of Theorem 1.2.

        av少妇偷窃癖在线观看| 无码区a∨视频体验区30秒| 男女一边摸一边做爽爽的免费阅读| 国产精品扒开腿做爽爽爽视频| 久久久噜噜噜www成人网| 亚洲av成人一区二区三区在线观看| 国产久视频| 国产精品国产三级国产专区50| 成人欧美一区二区三区在线| 欧美日韩亚洲tv不卡久久| 亚洲嫩模高清在线视频| 国产伦精品一区二区三区| 98色婷婷在线| 日日碰狠狠丁香久燥| 亚洲色AV天天天天天天| 99青青草视频在线观看| 轻点好疼好大好爽视频| 亚洲欧美成人a∨| 毛片av中文字幕一区二区| 日本人视频国产一区二区三区| 国产真实强被迫伦姧女在线观看| 亚洲有码转帖| 久久se精品一区二区国产| 国产69精品麻豆久久| 国产激情综合在线观看| 国产精品二区在线观看| 国产精品毛片大尺度激情| 国产亚洲视频在线播放| 亚洲美腿丝袜 欧美另类| 在线观看精品国产福利片100 | 一级黄片草逼免费视频| 久久精品网站免费观看| 中文字幕一区二区三区精华液| 试看男女炮交视频一区二区三区| 激情乱码一区二区三区| 女人无遮挡裸交性做爰| 麻豆国产人妻欲求不满谁演的| 国产成人精品cao在线| 日韩肥臀人妻中文字幕一区| 一品二品三品中文字幕| 日本少妇按摩高潮玩弄|