安 靜 黎 芳 周春江 田曉莉,* 李召虎
?
增效縮節(jié)安化學(xué)封頂對(duì)棉花主莖生長(zhǎng)的影響及其相關(guān)機(jī)制
安 靜1黎 芳1周春江2田曉莉1,*李召虎1
1中國農(nóng)業(yè)大學(xué)農(nóng)學(xué)院 / 植物生長(zhǎng)調(diào)節(jié)劑教育部工程研究中心, 北京 100193;2北京市植物保護(hù)站, 北京 100029
縮節(jié)安(1,1-dimethyl piperidinium chloride, DPC)是棉花生產(chǎn)中廣泛應(yīng)用的植物生長(zhǎng)延緩劑。增效DPC (DPC+, 25%水劑)助劑中的成分能對(duì)植物幼嫩組織表面形成輕微傷害, 實(shí)踐證明其可實(shí)現(xiàn)棉花化學(xué)封頂、起到替代人工打頂?shù)淖饔?。為探究DPC+作用機(jī)制, 本試驗(yàn)于2015年在田間條件下研究了棉花盛花期后(7月24日)應(yīng)用DPC+(1125 mL hm–2)對(duì)棉花主莖生長(zhǎng)和頂芽解剖結(jié)構(gòu)、氧化還原狀態(tài)及相關(guān)基因表達(dá)的影響。結(jié)果表明, 與對(duì)照(同期噴施清水)相比, DPC+處理后棉花株高降低, 白花以上節(jié)位(nodes above the last white flower, NAWF)更早降到5; 處理后3 d即可觀察到主莖生長(zhǎng)點(diǎn)較對(duì)照扁平, 生長(zhǎng)點(diǎn)的縱橫比顯著低于對(duì)照; 處理后6 h棉花頂芽的O2?、H2O2和MDA含量高于對(duì)照, 而開花相關(guān)基因和及頂端分生組織相關(guān)基因的表達(dá)量則低于對(duì)照。化學(xué)封頂劑DPC+可引起棉株頂芽的短期氧化應(yīng)激反應(yīng), 降低與主莖生長(zhǎng)點(diǎn)發(fā)育和花芽分化相關(guān)基因的表達(dá)水平, 從而延緩棉株生長(zhǎng)和花芽的產(chǎn)生, 實(shí)現(xiàn)化學(xué)封頂。
棉花; 增效縮節(jié)安; 化學(xué)封頂; 頂芽解剖結(jié)構(gòu); 氧化還原; 基因表達(dá)
棉花打頂(或稱摘心、掐尖)是我國各棉區(qū)普遍采用的一項(xiàng)整枝技術(shù), 可控制棉株主莖生長(zhǎng), 避免出現(xiàn)無效果枝, 增加光合產(chǎn)物向果枝的運(yùn)輸[1], 還可防止倒伏、減輕蟲害和爛鈴[2-4]。目前棉花打頂仍以人工操作為主, 費(fèi)工費(fèi)時(shí)、勞動(dòng)效率低, 制約了棉花生產(chǎn)輕簡(jiǎn)化、規(guī)?;?、精準(zhǔn)化和機(jī)械化作業(yè)[5-6]。自20世紀(jì)60年代, 國內(nèi)逐漸開展棉花打頂機(jī)的相關(guān)研究, 但機(jī)械打頂對(duì)棉株的農(nóng)藝性狀、種植模式及整地質(zhì)量要求較高, 易出現(xiàn)過打或漏打現(xiàn)象[7]?;瘜W(xué)封頂是指利用植物生長(zhǎng)調(diào)節(jié)劑強(qiáng)力延緩或抑制棉花頂芽生長(zhǎng), 控制棉花頂端優(yōu)勢(shì), 從而達(dá)到調(diào)節(jié)營養(yǎng)生長(zhǎng)與生殖生長(zhǎng)的目的[5]。與人工打頂和機(jī)械打頂相比, 化學(xué)封頂簡(jiǎn)單方便、勞動(dòng)強(qiáng)度低, 且有效避免了人工打頂和機(jī)械打頂易出現(xiàn)的物理傷害、時(shí)間跨度大、漏打和重復(fù)打頂?shù)葐栴}[5]。
縮節(jié)安(1,1-二甲基哌啶鎓; 1,1-dimethyl piperid-inium chloride, DPC)是在國內(nèi)外棉花生產(chǎn)中廣泛應(yīng)用的植物生長(zhǎng)延緩劑, 從種子萌發(fā)開始至打頂后多次施用DPC的“系統(tǒng)化控”技術(shù)是我國棉花生產(chǎn)的常規(guī)管理措施[1,8]。增效DPC (25% DPC水劑, 簡(jiǎn)稱DPC+)較普通DPC可溶性粉劑的有效期長(zhǎng), 并可借助助劑中的成分對(duì)幼嫩組織表面形成輕微傷害[9-11], 起到化學(xué)封頂?shù)淖饔肹9,12-14], 但其作用機(jī)制尚不清晰。
本文在DPC“系統(tǒng)化控”的基礎(chǔ)上應(yīng)用化學(xué)封頂劑DPC+, 研究其對(duì)棉花主莖生長(zhǎng)、頂芽解剖結(jié)構(gòu)、氧化還原狀態(tài)和開花等基因表達(dá)的影響, 旨在揭示DPC+化學(xué)封頂?shù)男螒B(tài)、生理和分子機(jī)制, 從而為該技術(shù)的合理應(yīng)用提供理論指導(dǎo)。
試驗(yàn)于2015年在北京市海淀區(qū)中國農(nóng)業(yè)大學(xué)上莊實(shí)驗(yàn)站(40°08¢N, 110°10¢E)進(jìn)行, 試驗(yàn)地土壤類型為潮土, 前茬作物為棉花。土壤基礎(chǔ)肥力情況: 有機(jī)質(zhì)6.96 g kg–1、pH 7.86、堿解氮21.10 mg kg–1、全氮0.46 g kg–1、速效磷6.96 mg kg–1、速效鉀53.47 mg kg–1。供試棉花品種為欣試17, 由河北省河間市國欣農(nóng)村技術(shù)服務(wù)總會(huì)提供。增效縮節(jié)安(DPC+)為25%水劑, 由北京市農(nóng)業(yè)技術(shù)推廣站和中國農(nóng)業(yè)大學(xué)植物生長(zhǎng)調(diào)節(jié)劑教育部工程研究中心共同研發(fā), 由新疆金棉科技有限責(zé)任公司生產(chǎn)并提供。普通DPC為98%的可溶性粉劑, 由江蘇潤澤農(nóng)化有限公司生產(chǎn)。
采用隨機(jī)區(qū)組設(shè)計(jì), 重復(fù)3次?;瘜W(xué)封頂處理于棉花盛花期后(7月24日)施用DPC+, 劑量為1125 mL hm–2; 對(duì)照小區(qū)噴施清水。處理和對(duì)照在生育期間均進(jìn)行常規(guī)DPC “系統(tǒng)化控”, DPC應(yīng)用時(shí)間和劑量為苗期(6月3日) 7.5 g hm–2、蕾期(6月21日) 15 g hm–2、初花期(7月13日) 75 g hm–2、化學(xué)封頂后7 d (7月31日) 150 g hm–2。6行區(qū), 行長(zhǎng)7 m, 行距0.9 m, 小區(qū)面積37.8 m2。
于2015年4月26日播種, 種植密度約6萬株 hm–2。播前施基肥, 包括有機(jī)肥3750.0 kg hm–2、N (尿素) 153.0 kg hm–2、P2O5(磷酸二銨) 82.8 kg hm–2和K2O (硫酸鉀) 135.0 kg hm–2。盛花期追施N (尿素) 138.0 kg hm–2和K2O (硫酸鉀) 120.0 kg hm–2。其他田間管理與當(dāng)?shù)卮筇锷a(chǎn)一致。
1.3.1 株高及白花以上節(jié)位(nodes above the last white flower, NAWF) 處理前在每小區(qū)掛牌標(biāo)記10株代表性植株, 處理后定期調(diào)查株高及NAWF。
1.3.2 頂芽解剖結(jié)構(gòu) 于處理后0、3、6及11 d取樣。從每小區(qū)選5株代表性植株, 取下頂芽并剝?nèi)ネ鈬兹~, 將約0.5 cm長(zhǎng)的頂芽放入FAA固定液, 真空抽氣5 min。經(jīng)梯度乙醇脫水、二甲苯透明和石蠟包埋后, 利用Leica RM2235石蠟切片機(jī)(Germany)切片, 厚度8 μm, 經(jīng)粘片、脫蠟、番紅-固綠對(duì)染、中性樹脂封片等常規(guī)石蠟切片步驟制作成永久制片, 采用配備DP80 CCD的Olympus顯微鏡(Japan)觀察和拍照。利用ImageJ/Fiji軟件統(tǒng)計(jì)棉花頂芽生長(zhǎng)點(diǎn)的長(zhǎng)和高, 并計(jì)算其縱橫比。
1.3.3 氧化還原狀態(tài) 于處理后0、6、24、48、72和120 h取樣。從每小區(qū)選4株代表性植株, 取頂芽部位(包括剛展開的新葉), 液氮速凍后于–40℃保存?zhèn)溆谩?/p>
參照Sergiev方法[15]測(cè)定H2O2含量; 采用羥胺氧化的方法測(cè)定超氧陰離子自由基(O2?)含量; 利用與硫代巴比妥酸(TBA)顯色反應(yīng)測(cè)定丙二醛(MDA)含量[16]。
1.3.4 基因表達(dá) 于處理后0、6、24、48、72及120 h取樣。從每小區(qū)選代表性植株3株, 取頂芽部位(不包括剛展開的新葉), 液氮速凍后于-80℃保存?zhèn)溆谩?/p>
用植物RNA提取試劑盒(艾德萊, 北京)提取棉花葉片的總RNA, 用M-MLV反轉(zhuǎn)錄試劑盒(TaKaRa, Japan)合成cDNA。根據(jù)(GenBank登錄號(hào)為KJ622311.1)、(GenBank登錄號(hào)為GU929695)和(CottongenCotAD_04603)基因序列設(shè)計(jì)qRT-PCR特異性引物, 以(GenBank登錄號(hào)為AY305737.1)作為內(nèi)參, 引物序列見表1。用SYBR green II熒光染料試劑盒(TaKaRa, Japan)進(jìn)行qRT-PCR, 擴(kuò)增條件為95℃ 30 s; 95℃ 5 s, 60℃ 35 s, 40個(gè)循環(huán)。采用2–ΔΔCT對(duì)基因的相對(duì)表達(dá)量進(jìn)行分析。
應(yīng)用IBM SPSS Statistics 20軟件統(tǒng)計(jì)分析數(shù)據(jù), Microsoft Excel 2016軟件作圖。
表1 qRT-PCR引物序列
用化學(xué)封頂劑DPC+處理7 d后, 棉株生長(zhǎng)速度逐漸降低; 32 d后, 株高比對(duì)照低5.3 cm (圖1和圖2-A)。白花以上節(jié)位(nodes above the last white flower, NAWF)可以反映棉株生殖生長(zhǎng)與營養(yǎng)生長(zhǎng)的協(xié)調(diào)狀況和熟期[17-18]。一般情況下, NAWF在初花期最高, 之后逐漸下降。當(dāng)NAWF達(dá)到5.0時(shí), 棉株進(jìn)入生理成熟階段(physiological cutout), 即棉株不再形成有效花[19]。DPC+化學(xué)封頂處理后, 棉株NAWF更早降到5, 表明其較早進(jìn)入生理成熟期; 處理14 d和22 d后, NAWF分別為3.8和3.3, 同期對(duì)照的NAWF顯著高于處理, 分別為4.3和4.4 (圖2-B)。
圖1 化學(xué)封頂劑DPC+對(duì)棉花株高的影響
比例尺: 10 cm。Scale bar: 10 cm.
圖2 化學(xué)封頂劑DPC+對(duì)棉花株高(A)及白花以上節(jié)位(B)的影響
誤差線表示3次重復(fù)的標(biāo)準(zhǔn)誤, *< 0.05, ***< 0.001。
Error bars represent standard error,= 3 biological replicates, *< 0.05, ***< 0.001.
棉花的主莖頂端分生組織為近乎扁平的圓丘狀, 棉株地上部的各類器官均由此分化發(fā)育形成[1,20]。由圖3可知, 化學(xué)封頂劑DPC+處理后3 d, 棉株主莖生長(zhǎng)點(diǎn)較對(duì)照趨于平緩, 生長(zhǎng)點(diǎn)的縱橫比與對(duì)照相比顯著降低。此后對(duì)照棉株的生長(zhǎng)點(diǎn)也較之前平緩、縱橫比也開始下降, 這是棉株自身營養(yǎng)生長(zhǎng)勢(shì)減弱和DPC“系統(tǒng)化控”最后一次(化學(xué)封頂后7 d)施藥共同作用的結(jié)果。但同期DPC+化學(xué)封頂生長(zhǎng)點(diǎn)的形態(tài)仍較對(duì)照更扁平、縱橫比仍低于對(duì)照, 其中處理后11 d差異顯著。
圖3 化學(xué)封頂劑DPC+對(duì)棉花頂芽生長(zhǎng)點(diǎn)解剖結(jié)構(gòu)的影響
誤差線表示3次重復(fù)的標(biāo)準(zhǔn)誤, *<0.05。比例尺: 100 μm。
Error bars represent standard error,= 3 biological replicates, *<0.05. Scale bar: 100 μm.
化學(xué)封頂處理后, 對(duì)照棉株頂芽中的O2?含量逐漸下降(圖4-A), 但H2O2和MDA總體變化不大(圖4-B, C)。與對(duì)照相比, DPC+化學(xué)封頂后6 h棉株頂芽的兩種活性氧(reactive oxygen species, ROS)組份和MDA均升高, 其中O2?顯著升高, 提示化學(xué)封頂導(dǎo)致棉株頂芽出現(xiàn)了短期的氧化脅迫。
GhSPL3是一種轉(zhuǎn)錄因子, 在棉花花芽分化、生長(zhǎng)階段的轉(zhuǎn)變和花器官的形成上起著重要作用[21]。GhV1屬于B3類轉(zhuǎn)錄因子, 在棉花頂芽部位特異表達(dá), 可能參與棉花花芽起始[22]。GhREV3屬于HD-Zip III轉(zhuǎn)錄因子, 與REVOLUTA (REV)同源性最高, 該轉(zhuǎn)錄因子正調(diào)控植物頂芽分生組織、側(cè)芽分生組織和花芽分生組織的起始及維持[23-26]。化學(xué)封頂后棉花頂芽中的表達(dá)量與對(duì)照相比降低, 其中在封頂后6 h和120 h顯著低于對(duì)照(圖5-A);和的表達(dá)量在處理后6 h也顯著低于對(duì)照(圖5-B, C), 之后幾天與對(duì)照差異不大。
活性氧(ROS)是一類具有氧化能力的分子、離子和自由基, 包括超氧陰離子(O2?)、羥基自由基(?OH)、過氧化氫(H2O2)、單線態(tài)氧(1O2)等, 可參與調(diào)控植物的生長(zhǎng)發(fā)育以及各種脅迫反應(yīng)[27-29]。MDA是植物膜脂過氧化的產(chǎn)物, 其含量可以反映植物遭受逆境傷害的程度[16]。化學(xué)封頂劑DPC+中的助劑可對(duì)棉株頂芽造成輕微傷害[9-11], 這一方面可提高DPC的吸收速度、加大DPC的吸收量, 另一方面?zhèn)Ρ旧硪部裳泳徶仓甑纳L(zhǎng)。本研究中DPC+處理后6 h, 棉株頂芽的O2?、H2O2和MDA含量均高于對(duì)照, 表明DPC+化學(xué)封頂對(duì)棉株頂芽產(chǎn)生了短時(shí)的氧化刺激。這種刺激可能會(huì)影響棉花頂芽發(fā)育和開花等生長(zhǎng)發(fā)育過程。
圖4 化學(xué)封頂劑DPC+對(duì)棉花頂芽氧化還原狀態(tài)的影響
誤差線表示3次重復(fù)的標(biāo)準(zhǔn)誤, *< 0.05。
Error bars represent standard error,= 3 biological replicates, *< 0.05.
圖5 化學(xué)封頂劑DPC+對(duì)棉花頂芽中3種基因表達(dá)水平的影響
誤差線表示3次重復(fù)的標(biāo)準(zhǔn)誤, *< 0.05。
Error bars represent standard error,= 3 biological replicates, *< 0.05.
基因在棉花頂芽和花中表達(dá)量最高[21], 在擬南芥中超表達(dá), 轉(zhuǎn)基因株系花期顯著提前, 蓮座葉數(shù)目顯著降低, 莖生葉數(shù)目顯著增加, 表明其參與了側(cè)枝和花芽的分化[30]。GbHB1是海島棉(L.)的一個(gè)HD-Zip III轉(zhuǎn)錄因子家族成員, 與擬南芥REV同源,基因在胚珠和莖中的表達(dá)量最高, 推測(cè)其可能參與棉花纖維發(fā)育的調(diào)控[31]。本課題組已克隆了陸地棉(L.)的基因, 并應(yīng)用VIGS (Virus-Induced Gene Silencing)技術(shù)證明該基因沉默后棉花頂芽發(fā)育逐漸停止(未發(fā)表數(shù)據(jù))。本研究中, DPC+化學(xué)封頂后6 h, 棉株頂芽中參與花芽分化()、花芽起始()和頂端分生組織維持()的基因表達(dá)量下降, 提示棉株生長(zhǎng)速度和花芽分化活性將減弱。
植株生理和分子水分上的改變, 通常引起形態(tài)變化。已有研究表明, DPC+化學(xué)封頂與對(duì)照相比, 上部主莖節(jié)間和果枝均明顯縮短, 葉片也明顯減小[10-11,32-33]。本研究發(fā)現(xiàn), DPC+化學(xué)封頂后, 棉株高度低于對(duì)照, 且較對(duì)照更早進(jìn)入生理成熟期。
上述結(jié)果在已有研究的基礎(chǔ)上進(jìn)一步揭示了棉花DPC+化學(xué)封頂?shù)淖饔眉捌錂C(jī)制, 這有助于深化對(duì)該技術(shù)的理解, 也展現(xiàn)了其應(yīng)用潛力。
應(yīng)用DPC+(增效DPC)進(jìn)行棉花化學(xué)封頂使頂芽在短時(shí)間內(nèi)(6 h)內(nèi)出現(xiàn)氧化應(yīng)激反應(yīng), 并降低了控制主莖生長(zhǎng)點(diǎn)發(fā)育和花芽分化基因的表達(dá), 從而延緩了棉株的生長(zhǎng)和花芽的產(chǎn)生, 實(shí)現(xiàn)了化學(xué)封頂。
[1] 中國農(nóng)業(yè)科學(xué)院棉花研究所. 中國棉花栽培學(xué). 上海: 上??茖W(xué)技術(shù)出版社, 2013. pp 115–816 Cotton Research Institute, Chinese Academy of Agricultural Sciences. Cotton Farming in China. Shanghai: Shanghai Scientific and Technical Publishers, 2013. pp 115–816 (in Chinese)
[2] Renou A, Téréta I, Togola M. Manual topping decreases bollworm infestations in cotton cultivation in Mali., 2011, 30: 1370–1375
[3] Obasi M O, Msaakpa T S. Influence of topping, side branch pruning and hill spacing on growth and development of cotton (L.) in the Southern Guinea Savanna location of Nigeria.p, 2005, 106: 155–165
[4] Bennett O L, Ashley D A, Doss B D, Scarsbrook C E. Influence of topping and side pruning on cotton yield and other characteristics., 1965, 57: 25–27
[5] 鄒茜, 劉愛玉, 王欣悅, 向鳳玲. 棉花打頂技術(shù)的研究現(xiàn)狀與展望. 作物研究, 2014, 28: 570–574 Zou X, Liu A Y, Wang X Y, Xiang F L. Research progress and prospect on topping techniques in cotton., 2014, 28: 570–574 (in Chinese with English abstract)
[6] 毛樹春. 我國棉花種植技術(shù)的現(xiàn)代化問題——兼論“十二五”棉花栽培相關(guān)研究. 中國棉花, 2010, 37(3): 2–6 Mao S C. On modernization of cotton planting in China–Related research on cotton cultivation from 2010 to 2015., 2010, 37(3): 2–6 (in Chinese)
[7] 牛巧魚. 我國棉花機(jī)械打頂研究進(jìn)展. 中國棉花, 2013, 40(11): 23–24 Niu Q Y. Research progress of cotton topping machinery in China., 2013, 40(11): 23–24 (in Chinese)
[8] 李丕明, 何鐘佩, 李召虎. 棉花應(yīng)用縮節(jié)安(DPC)化控技術(shù)研究概況與進(jìn)展. 作物雜志, 1991, (2): 1–3 Li P M, He Z P, Li Z H. Outline and progression about the study of DPC chemical control on cotton., 1991, (2): 1–3 (in Chinese)
[9] 黎芳, 王希, 王香茹, 杜明偉, 周春江, 尹曉芳, 徐東永, 盧懷玉, 田曉莉, 李召虎. 黃河流域北部棉區(qū)棉花縮節(jié)胺化學(xué)封頂技術(shù). 中國農(nóng)業(yè)科學(xué), 2016, 49: 2497–2510 Li F, Wang X, Wang X R, Du M W, Zhou C J, Yin X F, Xu D Y, Lu H Y, Tian X L, Li Z H. Cotton chemical topping with mepiquat chloride application in the north of Yellow River Valley of China., 2016, 49: 2497–2510 (in Chinese with English abstract)
[10] 趙強(qiáng), 周春江, 張巨松, 李松林, 惲友蘭, 田曉莉. 化學(xué)打頂對(duì)南疆棉花農(nóng)藝和經(jīng)濟(jì)性狀的影響. 棉花學(xué)報(bào), 2011, 23: 329–333 Zhao Q, Zhou C J, Zhang J S, Li S L, Yun Y L, Tian X L. Effect of chemical detopping on the canopy and yield of cotton (L.) in south Xinjiang., 2011, 23: 329–333 (in Chinese with English abstract)
[11] 趙強(qiáng), 張巨松, 周春江, 惲友蘭, 李松林, 田曉莉. 化學(xué)打頂對(duì)棉花群體容量的拓展效應(yīng). 棉花學(xué)報(bào), 2011, 23: 401–407 Zhao Q, Zhang J S, Zhou C J, Yun Y L, Li S L, Tian X L. Chemical detopping increases the optimum plant density in cotton (L.)., 2011, 23: 401–407 (in Chinese with English abstract)
[12] 潘明琪, 張建平, 齊文亮. 化學(xué)打頂劑在棉花上的應(yīng)用效果試驗(yàn). 農(nóng)村科技, 2011, (12): 10–11 Pan M Q, Zhang J P, Qi W L. Study the application effect of chemical topping agent on cotton., 2011, (12): 10–11 (in Chinese)
[13] 易正炳, 陳忠良, 劉海燕. 化學(xué)打頂整枝劑在棉花上的應(yīng)用效果研究. 中國農(nóng)技推廣, 2013, 29(5): 32–33 Yi Z B, Chen Z L, Liu H Y. Study the application effect of chemical topping and pruning agent on cotton., 2013, 29(5): 32–33 (in Chinese)
[14] 吳葛, 劉向暉, 趙強(qiáng), 易正炳. 對(duì)瑪納斯縣棉花化學(xué)打頂技術(shù)的調(diào)查與分析. 棉花科學(xué), 2015, 37(3): 42–45 Wu G, Liu X H, Zhao Q, Yi Z B. Investigation and analysis of the cotton topping in chemical technology in Manasi county., 2015, 37(3): 42–45 (in Chinese with English abstract)
[15] Sergiev I, Alexieva V, Karanov E. Effect of spermine, atrazine and combination between them on some endogenous protective systems and stress markers in plants., 1997, 51: 121–124
[16] 周祖富, 黎兆安. 植物生理學(xué)實(shí)驗(yàn)指導(dǎo). 北京: 中國農(nóng)業(yè)出版社, 2005. pp 114–123 Zhou Z F, Li Z A. Plant Physiology Experiment Instruction. Beijing: China Agriculture Press, 2005. pp 114–123 (in Chinese)
[17] Bondada B R, Oosterhuis D M. Canopy photosynthesis, specific leaf weight, and yield components of cotton under varying nitrogen supply., 2001, 24: 469–477
[18] Bourland F M, Benson N R, Vories E D, Tugwell N P, Danforth D M. Measuring maturity of cotton using nodes above white flower., 2001, 5: 1–8
[19] 刁玉鵬, 謝方靈. NAWF在美國棉花生產(chǎn)上的應(yīng)用. 棉花學(xué)報(bào), 1997, 9: 110–112 Diao Y P, Xie F L. Application NAWF in cotton production in USA., 1997, 9: 110–112 (in Chinese)
[20] 李正理. 棉花形態(tài)學(xué). 北京: 科學(xué)出版社, 1979. pp 55–69 Li Z L. Morphology of Cotton. Beijing: Science Press, 1979. pp 55–69 (in Chinese)
[21] 李潔, 范術(shù)麗, 宋美珍, 龐朝友, 喻樹迅. 陸地棉基因的克隆、亞細(xì)胞定位及表達(dá)分析. 棉花學(xué)報(bào), 2012, 24: 414–419 Li J, Fan S L, Song M Z, Pang C Y, Yu S X. Cloning, subcellular localization and expression analysis ofgene inL., 2012, 24: 414–419 (in Chinese with English abstract)
[22] Wu M, Li J, Fan S L, Song M Z, Pang C Y, Wei J H, Yu J W, Zhang J F, Yu S X. Gene expression profiling in shoot apical meristem of., 2015, 62: 684–694
[23] Turchi L, Baima S, Morelli G, Ruberti I. Interplay of HD-Zip II and III transcription factors in auxin-regulated plant development., 2015, 66: 5043–5053
[24] Talbert P B, Adler H T, Parks D W, Comai L. The REVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of, 1995, 121: 2723–2735
[25] Shi B H, Zhang C, Tian C H, Wang J, Wang Q, Xu T F, Xu Y, Ohno C, Sablowski R, Heisler M G, Theres K, Wang Y, Jiao Y L. Two-step regulation of a meristematic cell population acting in shoot branching in Arabidopsis., 2016, 12: e1006168
[26] 朱瑩瑩, 于亮亮, 汪杏芬, 李來庚. HD-Zip III轉(zhuǎn)錄因子家族與植物細(xì)胞分化. 植物學(xué)報(bào), 2013, 48: 199–209 Zhu Y Y, Yu L L, Wang X F, Li L G. HD-Zip III transcription factor and cell differentiation in plants., 2013, 48: 199–209 (in Chinese with English abstract)
[27] Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants., 2010, 48: 909–930
[28] 王寧, 田曉莉, 段留生, 嚴(yán)根土, 黃群, 李召虎. 縮節(jié)胺浸種提高棉花幼苗根系活力中的活性氧代謝. 作物學(xué)報(bào), 2014, 40: 1220–1226 Wang N, Tian X L, Duan L S, Yan G T, Huang Q, Li Z H. Metabolism of reactive oxygen species involved in increasing root vigour of cotton seedlings by soaking seeds with mepiquat chloride., 2014, 40: 1220–1226 (in Chinese with English abstract)
[29] 薛鑫, 張芊, 吳金霞. 植物體內(nèi)活性氧的研究及其在植物抗逆方面的應(yīng)用. 生物技術(shù)通報(bào), 2013, (10): 6–11 Xue X, Zhang Q, Wu J X. Research of reactive oxygen species in plants and its application on stress tolerance., 2013, (10): 6–11 (in Chinese with English abstract)
[30] Zhang X H, Dou L L, Pang C Y, Song M Z, Wei H L, Fan S L, Wang C S, Yu S X. Genomic organization, differential expression, and functional analysis of thegene family in., 2015, 290: 115–126
[31] Qiu C X, Zuo K J, Qin J, Zhao J Y, Ling H, Tang K X. Isolation and characterization of a class III homeodomain-leucine zipper-like gene from., 2006, 17: 334–341
[32] 婁善偉, 趙強(qiáng), 朱北京, 魏歡. 棉花化學(xué)封頂對(duì)植株上部枝葉形態(tài)變化的影響. 西北農(nóng)業(yè)學(xué)報(bào), 2015, 24(8): 62–67 Lou S W, Zhao Q, Zhu B J, Wei H. Effect of chemical topping on morphologic changes of leaves and branches in upper part of cotton., 2015, 24(8): 62–67 (in Chinese with English abstract)
[33] 楊成勛, 張旺鋒, 徐守振, 隨龍龍, 梁福斌, 董恒義. 噴施化學(xué)打頂劑對(duì)棉花冠層結(jié)構(gòu)及群體光合生產(chǎn)的影響. 中國農(nóng)業(yè)科學(xué), 2016, 49: 1672–1684Yang C X, Zhang W F, Xu S Z, Sui L L, Liang F B, Dong H Y. Effects of spraying chemical topping agents on canopy structure and canopy photosynthetic production in cotton., 2016, 49: 1672–1684 (in Chinese with English abstract)
Morpho-physiological Responses of Cotton Shoot Apex to the Chemical Topping with Fortified Mepiquat Chloride
AN Jing1, LI Fang1, ZHOU Chun-Jiang2, TIAN Xiao-Li1,*, and LI Zhao-Hu1
1College of Agronomy and Biotechnology, China Agricultural University / Engineering Research Center of Plant Growth Regulator, Ministry of Education, Beijing 100193, China;2Beijing Plant Protection Station, Beijing 100029, China
The plant growth regulator mepiquat chloride (1,1-dimethyl piperidinium chloride, DPC) has been successfully and worldwide used in cotton production. Fortified mepiquat chloride is a type of aqueous formulation containing 25% DPC (referred to DPC+hereafter), whichcan slightly damage young tissues of epidermis. DPC+has shown potential in cotton chemical topping in China, and may replace the conventional manual topping in future. In order to investigate the mechanism of cotton chemical topping with DPC+, this field study was conducted in 2015. DPC+(1125 mL ha–1) was applied after peak blooming stage on 24 July, with water as a control (CK). DPC+application significantly decreased plant height and reduced the nodes above the last white flower (NAWF) as compared with CK. After three days of DPC+treatment, cotton shoot apical meristem (SAM) became flatter than CK, and the ratio of height/length of SAM was significantly less than that of CK. With respect to redox status at shoot apex, O2?production rate, H2O2generation and MDA content were significantly increased at six hours after DPC+application. In addition, the expression of(a SPL transcription factor, which might play an important role in bud differentiation, the transition of growth phase and flower formation),(a B3-domain containing transcription factor, which potentially involved in floral initiation), and(a class III homeodomain-leucine zipper transcription factors, which has key roles in meristem and organ development) were down-regulated by DPC+also at six hours after application. In conclusion, DPC+application during later flowering period can implement cotton chemical topping by inducing short-time oxidative stress at cotton apex, down-regulating genes involved in SAM development, flower bud differentiation, and reducing cotton shoot growth.
cotton; fortified mepiquat chloride; chemical topping; anatomy of shoot apical meristem; redox status; gene expression
2018-05-06;
2018-08-20;
2018-09-19.
10.3724/SP.J.1006.2018.01837
通信作者(Corresponding author): 田曉莉, E-mail: tianxl@cau.edu.cn, Tel: 010-62734550
E-mail: ahananjing@126.com, Tel: 010-62733453
本研究由國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-18-18)和國家自然科學(xué)基金項(xiàng)目(31571588)資助。
This study was supported by the China Agricultural Research System (CARS-18-18) and the National Natural Science Foundation of China (31571588).
URL:http://kns.cnki.net/kcms/detail/11.1809.s.20180917.1521.002.html