亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        液液萃取-氣相色譜法測定發(fā)酵液中的有機酸與乙醇

        2018-11-24 01:29:10范桂芳李佩佩齊立松李十中
        農(nóng)業(yè)工程學報 2018年23期
        關(guān)鍵詞:檢測

        范桂芳,李佩佩,齊立松,李十中

        ?

        液液萃取-氣相色譜法測定發(fā)酵液中的有機酸與乙醇

        范桂芳,李佩佩,齊立松,李十中※

        (清華大學核能與新能源技術(shù)研究院;北京市生物燃料工程技術(shù)研究中心 北京 100084)

        嗜熱菌降解纖維素是第二代燃料乙醇發(fā)展的重要方向。測定發(fā)酵液中乙醇和有機酸組成的變化,對發(fā)酵過程控制具有重要意義。該文以正丙醇為內(nèi)標,建立了發(fā)酵液中乙醇、乙酸、丙酸和丁酸的氣相色譜檢測方法。該方法為:發(fā)酵液調(diào)節(jié)pH值、與內(nèi)標混合、添加氯化鈉至飽和、乙酸乙酯萃取,有機相進氣相色譜檢測。該方法下幾種化合物的檢出限范圍為10~45 mg/L,低、中和高3個水平的加標回收率范圍為80.65%~107.94%,相對標準偏差范圍為1.71%~4.98%,該方法能用于纖維素菌群降解體系有機酸與乙醇的檢測。該文還測算了20 ℃時乙醇、正丙醇、乙酸、丙酸和丁酸在乙酸乙酯和飽和氯化鈉溶液中的分配系數(shù),其值分別為0.28、1.64、1.37、2.51和3.29。該檢測方法還可以推廣應(yīng)用于其他水相體系中有機酸和乙醇的檢測,如廢水厭氧消化液中揮發(fā)性脂肪酸的檢測以及發(fā)酵醪中乙醇的檢測。

        乙醇;有機酸;發(fā)酵液;液液萃取;氣相色譜

        0 引 言

        2017年9月,國家發(fā)展和改革委員會、國家能源局等十五部門聯(lián)合印發(fā)《關(guān)于擴大生物燃料乙醇生產(chǎn)和推廣使用車用乙醇汽油的實施方案》,要求到2020年在全國范圍內(nèi)推廣使用車用乙醇汽油,并基本實現(xiàn)全覆蓋。利用嗜熱菌降解木質(zhì)纖維素可以同步耦合纖維素預處理工藝,降低纖維素乙醇成本,是第二代燃料乙醇發(fā)展的重要方向[1-3]。測定發(fā)酵液中乙醇和有機酸組成的變化,對控制發(fā)酵過程具有重要意義。

        高效液相色譜法[4-13]和氣相色譜法[14-29]廣泛用于發(fā)酵液中醇和酸類物質(zhì)的檢測。相比于液相色譜,氣相色譜具有儀器成本更低、分離能力更強、分離時間更短的特點。在氣相色譜檢測方法開發(fā)工作中,顧福權(quán)等[14]研究表明溶液的pH值對乙酸的實際檢出值有很大影響,應(yīng)控制溶液的pH值為3.5以下防止有機酸離解;采用合適的極性柱消除拖尾,以及添加甲酸作為吸附占據(jù)劑能促進有機酸的檢測。Lin等[15]利用等柱溫條件下的分離結(jié)果建立溫度與容量因子及保留時間的關(guān)系,預測不同溫度下的保留時間與容量因子,在設(shè)置升溫程序時,遵循每個峰的分辨率滿足分析要求和分析時間最短的原則,使分析時間由傳統(tǒng)的20 min縮短至10 min。Darwin等[16]開發(fā)了一種用無機酸將乳酸衍化為乙醛的預處理方法,使得氣相色譜可以檢測發(fā)酵液中不能揮發(fā)的乳酸。上述氣相色譜檢測方法的不足之處是:發(fā)酵液中溶解了一些不能揮發(fā)的無機鹽和糖,水相直接進樣將導致這些物質(zhì)殘留在進樣襯管里,襯管需頻繁更換。為了克服這個問題,F(xiàn)u等[25]開發(fā)了乙醇、丁醇和丙酮的頂空進樣法,一些文獻[26-29]采用有機溶劑萃取、氣相色譜檢測的方法分析了發(fā)酵液中的醇、酮和有機酸。針對有機溶劑萃取條件,Liu等[7]考察了不同有機溶劑(氯仿和乙酸乙酯)、萃取劑與溶液的體積比(0.5∶1~2∶1)、旋轉(zhuǎn)速度(80~ 260 r/min)和萃取溫度(10~40 ℃)對分析物萃取率的影響,結(jié)果表明有機溶劑為乙酸乙酯、萃取劑與溶液的體積比為0.5∶1、旋轉(zhuǎn)速度為260 r/min和萃取溫度10 ℃條件下萃取率最高,不同因素的重要次序為萃取溫度>體積比>旋轉(zhuǎn)速度>有機溶劑。采用有機溶劑萃取乙醇和有機酸,并對分析方法的精密度及加標回收率進行評價的論文還未檢索到。

        本文優(yōu)化了乙酸乙酯液液萃取-氣相色譜法檢測條件,并對該方法的精密度以及加標回收率進行系統(tǒng)評價,為氣相色譜法檢測發(fā)酵液中的醇和有機酸提供參考。

        1 材料與方法

        1.1 儀器與試劑

        7890A 安捷倫氣相色譜儀 (配火焰離子檢測器,CP-Wax-57CB型色譜柱);高速冷凍離心機(Legend Mach1. 6R 型,Thermo公司)。乙醇(純度為99.5%,美國MREDA公司)、乙酸(純度為99.5%,北京化工廠)、丁酸(純度為99.0%,北京化工廠)。硫酸(純度為99.5%,北京化工廠)、乙酸乙酯(純度為99.9%,美國Sigma公司)、氯化鈉(純度為99.5%,北京化工廠)。

        1.2 色譜條件

        載氣流速:1.6 mL/min;進樣口溫度:200 ℃;隔墊吹掃:3 mL/min;模式:分流模式;分流比:50∶1;進樣量:0.5L;程序升溫:40 ℃保持5 min,以10 ℃/min升到210 ℃保持3 min;檢測器溫度:230 ℃;氫氣:氮氣:空氣為30∶20∶300。

        1.3 標準溶液的配制

        用超純水配制了乙醇、乙酸、丙酸、丁酸幾種標準物質(zhì)的混合溶液,各組分的質(zhì)量濃度分別為0.050、0.100、0.200、0.500、1.000、1.500和2.000 g/L。配制2.000 g/L正丙醇的水溶液做為內(nèi)標液。加硫酸調(diào)節(jié)混合標準水溶液的pH值為2~3,按體積比1∶1與內(nèi)標混合,加入NaCl至飽和,按水相與有機相體積比2∶1混合,漩渦震蕩15 s,離心(6 000 r/min,2 min),取上層有機相進色譜檢測,數(shù)據(jù)用于繪制標準曲線。

        1.4 樣品預處理

        取2 mL發(fā)酵液,離心(10 000 r/min,5 min)。取1 mL上清液,加入8L濃硫酸調(diào)節(jié)pH值至2~3使待測液中的有機酸游離出來,按體積比1∶1與內(nèi)標混合,加入NaCl至飽和,按水相與有機相體積比2∶1混合,漩渦震蕩15 s,離心(6 000 r/min,2 min),取上層有機相進色譜檢測。

        1.5 萃取條件對萃取率與檢測精密度的影響

        為了對比加鹽以及溫度對萃取率與萃取標準偏差的影響,考察了3種萃取條件。1)常溫約20 ℃,不加鹽;2)常溫,加鹽;3)萃取前后樣品置于冰盒中,不加鹽。每種條件重復操作6次。

        1.6 分配系數(shù)計算

        配一份含各待測物和內(nèi)標的飽和氯化鈉溶液,分別在水相與有機相體積比為1∶1與2∶1時進行萃取試驗,聯(lián)立方程求各待測物與內(nèi)標物在乙酸乙酯與飽和鹽溶液兩相中的分配系數(shù)。

        1.7 實際樣品重復性與加標回收率

        取發(fā)酵初始液1份,按低、中和高3個水平進行加標回收率試驗,加標量分別為0.200,1.000和2.000 g/L,每個加標水平重復6次。

        取發(fā)酵3 d樣品1份,重復測樣5次,考察樣品檢測精密度。

        2 結(jié)果與分析

        2.1 萃取條件優(yōu)化

        表1為3種萃取條件對萃取率與相對標準偏差RSD(relative standard deviation)的影響。由表1數(shù)據(jù)可知,水相用氯化鈉溶解至飽和提高了乙醇在乙酸乙酯中的分配比例,降低了乙酸、丙酸和丁酸在乙酸乙酯中的分配比例。溫度為0 存放降低了乙醇在乙酸乙酯中的分配比例,提高了乙酸、丙酸和丁酸在乙酸乙酯中的分配比例。 20 ℃加鹽萃取產(chǎn)生了最低的RSD,冰盒存放可能由于操作時需在0和20 ℃下切換引入了更多的不確定性,產(chǎn)生了較大的RSD。乙醇在乙酸乙酯中的溶解度比水小,較有機酸不易被乙酸乙酯萃取,加鹽能提高乙醇的萃取率,乙醇是發(fā)酵的重要產(chǎn)物,為保證乙醇在實際樣品中的檢測精度與有機酸一樣在可以接受(RSD<5%)的水平上,確定20 ℃加鹽萃取為本文的萃取條件。

        表1 萃取條件對萃取率與檢測精密度的影響

        注:RSD為標準偏差,下同。

        Note: RSD is standard deviation, same as below.

        2.2 分配系數(shù)K的計算

        分配系數(shù)由式(1)~(4)計算。

        式中化合物(乙酸乙酯)、化合物(水)分別為化合物在乙酸乙酯、水中的濃度,g/L;化合物為化合物的質(zhì)量,g;水為水的體積,L;乙酸乙酯為乙酸乙酯的體積,L;化合物2(乙酸乙酯)和化合物1(乙酸乙酯)分別為水相與有機相萃取體積比為2∶1和1∶1時化合物在乙酸乙酯中的濃 度,g/L。因為標準曲線過原點,并且萃取體積比1∶1比2∶1條件下乙酸乙酯中的分析物濃度更小,沒有超出標準曲線的濃度范圍0.050~2.000g/L,可以認為峰面積比與物質(zhì)濃度比成正比,以色譜峰面積比代替濃度比進行分配系數(shù)的計算。為消除進樣體積誤差對峰面積的影響,用溶劑乙酸乙酯的峰面積對化合物的峰面積進行校正。將式(1)代入式(2),并聯(lián)立2種萃取條件下的方程得式(4)。表2顯示了水相與有機相萃取體積比為1∶1時化合物與乙酸乙酯的峰面積比1和水相與有機相萃取體積比為2∶1時化合物與乙酸乙酯的峰面積比2,1和2為2次檢測的平均值。經(jīng)計算乙醇、正丙醇、乙酸、丙酸和丁酸在乙酸乙酯與飽和鹽溶液中的分配系數(shù)分別為0.28、1.64、1.37、2.51和3.29。

        表2 化合物在乙酸乙酯與飽和鹽溶液中的分配系數(shù)

        注:1∶1,2∶1為水相與有機相萃取體積比。

        Note: 1∶1, 2∶1 refer to volumetric ratio between aqueous phase and organic phase when extracting.

        2.3 標準曲線的繪制

        以化合物與正丙醇的峰面積比R對化合物與正丙醇的質(zhì)量濃度比R進行線性回歸,結(jié)果見表3。以10倍色譜峰信噪比S/N (signal/noise) 確定檢出限LOD (limit of detection) ,各組分的檢出限見表3。由表3數(shù)據(jù)可知,乙醇、乙酸、丙酸和丁酸標準曲線的相關(guān)系數(shù)范圍為0.999 0~0.999 9,檢出限的范圍為10~45 mg/L。標準曲線見圖1。

        2.4 重復性和回收率

        取發(fā)酵初始液1份,對其進行低、中、高3個加標水平的回收試驗。發(fā)酵初始液中乙醇、乙酸、丙酸和丁酸質(zhì)量濃度分別為0.24、0.17、0和0 g/L,3個加標水平下檢測到的回收率與RSD值見表4。由表4可知,3個加標水平下的回收率范圍為80.65%~107.94%,RSD值范圍為1.71%~4.98%。

        表3 化合物的標準曲線與檢出限

        注:A為化合物與正丙醇峰面積比,C為化合物與正丙醇質(zhì)量濃度比。下同。

        Note:Aisratio of peak area of compound to n-propyl alcohol,Cis ratio of mass concentration of compound to n-propyl alcohol. Same as below.

        圖1 化合物的標準曲線

        2.5 實際樣品檢測結(jié)果

        取發(fā)酵3 d的實際樣品,檢測得乙醇、乙酸和丁酸質(zhì)量濃度分別為0.49、0.94和0.06 g/L,對應(yīng)RSD分別為2.55%、1.69%和4.62%,未檢出丙酸。

        2.6 本文方法用于甜高粱發(fā)酵物料中乙醇檢測結(jié)果

        傳統(tǒng)甜高粱發(fā)酵物料中乙醇的檢測方法為:取50 g固態(tài)發(fā)酵料于500 mL蒸餾瓶中,加入200 mL去離子水進行簡單蒸餾,準確收集前100 mL餾出液,用氣相色譜測定乙醇含量[30]。為檢測發(fā)酵物料中可溶性糖的含量,發(fā)酵物料中的可溶性物質(zhì)已采用固液萃取方法轉(zhuǎn)移至水相,再用該文所述液液萃取-氣相色譜法檢測乙醇含量。2種方法檢測得到的乙醇質(zhì)量濃度結(jié)果見表5。由表5數(shù)據(jù)可知,2種方法檢測所得數(shù)據(jù)差異較小,小于該文報道方法的相對誤差。用液液萃取操作可以省去較為繁瑣的蒸餾操作。

        表4 3個加標水平的回收率與標準偏差

        液液萃取方法還可以替代蒸餾提取法應(yīng)用于固體發(fā)酵物料[30-31]中乙醇的檢測。該檢測方法亦可用于廢水厭氧發(fā)酵[14,24]中有機酸的檢測。

        表5 2種方法檢測的甜高粱稈渣乙醇質(zhì)量濃度對比

        3 結(jié) 論

        本文以正丙醇為內(nèi)標建立了乙醇、乙酸、丙酸和丁酸的氣相色譜檢測方法。該方法為:發(fā)酵液調(diào)節(jié)pH值、與內(nèi)標混合、用氯化鈉溶解至飽和、乙酸乙酯萃取,有機相進氣相色譜檢測。該方法下幾種化合物的檢出限范圍為10~45 mg/L,低、中和高3個水平的加標回收率范圍為80.65%~107.94%,相對標準偏差范圍為1.71%~4.98%,該方法可用于纖維素降解菌群發(fā)酵液中乙酸、丙酸、丁酸及乙醇的測定。本文還測算了20 ℃下乙醇、正丙醇、乙酸、丙酸和丁酸在乙酸乙酯和飽和氯化鈉溶液中的分配系數(shù),其值分別為0.28、1.64、1.37、2.51和3.29。

        使用該方法需要注意的是,溶液的pH值、氯化鈉濃度、操作溫度都會影響分析物在有機相和水相中的分配系數(shù),檢測時應(yīng)該保持操作條件一致。有機相進樣比水相進樣的另一個優(yōu)點是可以防止進樣針被酸腐蝕。

        [1] Lynd L R, Liang X Y, Biddy M J, et al. Cellulosic ethanol: Status and innovation[J]. Current Opinion in Biotechnology, 2017, 45: 202-211.

        [2] Jiang Y J, Xin F X, Lu J S, et al. State of the art review of biofuels production from lignocellulose by thermophilic bacteria[J]. Bioresource Technology, 2017, 245: 1498-1506.

        [3] Du R, Yan J B, Li S Z, et al. Cellulosic ethanol production by natural bacterial consortia is enhanced by[J]. Biotechnology for Biofuels, 2015, 8: 10.

        [4] 姜艷,范桂芳,杜然,等. 高效液相色譜法測定菌群降解纖維素產(chǎn)物中的糖、有機酸和醇[J]. 色譜,2015,33(8):805-808 Jiang Yan, Fan Guifang, Du Ran, et al. Determination of sugars, organic acids and alcohols in microbial consortium fermentation broth from cellulose using high performance liquid chromatography[J]. Chinese Journal of Chromatography, 2015, 33(8): 805-808. (in Chinese with English abstract).

        [5] 姜岷,雷丹,陳可泉,等. 纖維素水解液厭氧發(fā)酵產(chǎn)丁二酸發(fā)酵液中有機酸和混合單糖的測定[J]. 分析化學,2009,37(4):605-608. Jiang Min, Lei Dan, Chen Kequan, et al. Determination of organic acids and monomeric sugars in fermentation broth of succinic acid production with lignocellulose hydrolysate[J]. Chinese Journal of Analytical Chemistry, 2009, 37(4): 605-608. (in Chinese with English abstract).

        [6] Eiteman M A, Chastain M J. Optimization of the ion-exchange analysis of organic acids from fermentation[J]. Analytica Chimica Acta, 1997, 338: 69-75.

        [7] Liu Y L, Chen T, Yang M H, et al. Analysis of mixtures of fatty acids and fatty alcohols in fermentation broth[J]. Journal of Chromatography A, 2014, 1323: 66-72.

        [8] 袁文杰,孔亮,孜力汗,等. 高效液相色譜法測定克魯維酵母菊芋發(fā)酵液中的乙醇,糖和有機酸類代謝成分[J]. 分析化學,2009,37(6):850-854. Yuan Wenjie, Kong Liang, Zi Lihan, et al. Simultaneous determination of ethanol, sugar and organic acids inbroth by high performance liquid chromatography-ultraviolet/refractive index detector[J]. Chinese Journal of Analytical Chemistry, 2009, 37(6): 850-854. (in Chinese with English abstract).

        [9] 王元好,董悅生,修志龍. 梯度洗脫高效液相色譜法快速測定1,3-丙二醇發(fā)酵液中有機酸[J]. 食品與發(fā)酵工業(yè),2010,36(1):126-130. Wang Yuanhao, Dong Yuesheng, Xiu Zhilong. Rapid determination of organic acids in 1,3-propanediol fermentation broth with gradient elution-high performance liquid chromatography[J]. Food and Fermentation Industries, 2010, 36(1): 126-130. (in Chinese with English abstract).

        [10] Kumar M, Saini S, Gayen K. Acetone-butanol-ethanol fermentation analysis using only high performance liquid chromatography[J]. Analytical Methods, 2014, 6(3): 774-781.

        [11] Carver S M, Münster U, Tuovinen O H. A solid phase extraction technique for HPLC analysis of short chain fatty acid fluxes during microbial degradation of plant polymers [J]. Journal of Liquid Chromatography & Related Technologies, 2011, 34(15): 1546-55.

        [12] Geng X M, Zhang S F, Wang Q, et al. Determination of organic acids in the presence of inorganic anions by ion chromatography with suppressed conductivity detection[J]. Journal of Chromatography A, 2008, 1192(1): 187-190.

        [13] Rahayu F, Kawai Y, Iwasaki Y, et al. Thermophilic ethanol fermentation from lignocellulose hydrolysate by genetically engineered[J]. Bioresource Technology, 2017, 245: 1393-1399.

        [14] 顧福權(quán),徐紅娟,柳展飛,等. 氣相色譜法測定廢水中6種揮發(fā)性脂肪酸含量[J]. 能源環(huán)境保護,2014,28(3): 62-64. Gu Fuquan, Xu Hongjuan, Liu Zhanfei, et al. Content of 6 volatile fatty acid of wastewater by gas chromatography[J]. Energy Environmental Protection, 2014, 28(3): 62-64. (in Chinese with English abstract).

        [15] Lin X Q, Fan J S, Wen Q S, et al. Optimization and validation of a GC-FID method for the determination of acetone-butanol-ethanol fermentation products[J]. Journal of Chromatographic Science, 2014, 52: 264-270.

        [16] Darwin W, Cord-Ruwisch R. Concurrent lactic and volatile fatty acid analysis of microbial fermentation samples by gas chromatography with heat pre-treatment[J]. Journal of Chromatographic Science, 2018, 56: 1-5.

        [17] Diamantis V, Melidis P, Aivasidis A. Continuous determinationof volatile products in anaerobic fermenters by on-line capillary gas chromatography[J]. Analytica Chimica Acta, 2006, 573: 189-194.

        [18] 朱靈峰,張楠,蘇彩麗,等. 氣相色譜法測定厭氧發(fā)酵產(chǎn)氫過程中產(chǎn)生的揮發(fā)性脂肪酸[J]. 江蘇農(nóng)業(yè)科學,2012,40(6):296-297.

        [19] 趙興濤,徐桂轉(zhuǎn),劉杰博,等. 氣相色譜法測定厭氧發(fā)酵液中揮發(fā)性脂肪酸的研究[J]. 河南農(nóng)業(yè)大學學報,2013,47(5):584-586,591. Zhao Xingtao, Xu Guizhuan, Liu Jiebo, et al. Study on VFAs content in the anaerobic fermentation liquid by gas chromatography[J]. Journal of Henan Agricultural University, 2013, 47(5): 584-586, 591. (in Chinese with English abstract).

        [20] 馬蕙,儀宏,王麗麗. 氣相色譜法測定發(fā)酵液中丙酸和乙酸的含量[J]. 飼料工業(yè),2008(9):48-50.

        [21] 杜然,李十中,章曉慶,等. 兼性厭氧復合菌群H纖維素降解和產(chǎn)乙醇能力及生態(tài)組成初探[J]. 生物工程學報,2010,26(7):960-965. Du Ran, Li Shizhong, Zhang Xiaoqing, et al. Cellulose hydrolysis and ethanol production by a facultative anaerobe bacteria consortium H and its identification[J]. Chinese Journal of Biotechnology, 2010, 26(7): 960-965. (in Chinese with English abstract).

        [22] Jiang Y J, Guo D, Lu J S, et al. Consolidated bioprocessing of butanol production from xylan by a thermophilic and butanologenicsp. M5[J]. Biotechnology for Biofuels, 2018, 11: 268.

        [23] Tsuey L S, Bin Ariff A, Mohamad R, et al. Improvements of GC and HPLC analyses in solvent (acetone-butanol-ethanol) fermentation byusing a mixture of starch and glycerol as carbon source[J]. Biotechnology and Bioprocess Engineering, 2006, 11(4): 293-298.

        [24] Chen Y, Jiang X, Xiao K, et al. Enhanced volatile fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH increase-Investigation on dissolved organic matter transformation and microbial community shift[J]. Water Research, 2017, 112: 261-268.

        [25] Fu C Y, Liu H, Fu S Y, et al. Rapid and simultaneous determination of acetone, butanol and ethanol in butanol fermentation broth by full evaporation headspace gas chromatography[J]. Cellulose Chemistry and Technology, 2015, 49(9/10), 813-818.

        [26] 儀宏,侯建革,張華峰,等. 毛細管氣相色譜法測定發(fā)酵液中丙酸的含量[J]. 飼料工業(yè),2003(6):37-39.

        [27] Dellomonaco C, Clomburg J M, Miller E N, et al. Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals[J]. Nature, 2011, 476: 355-359.

        [28] Steen E J, Kang Y S, Bokinsky G, et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass[J]. Nature, 2010, 463: 559-562.

        [29] Xiao Z J, Wang X M, Huang Y L, et al. Thermophilic fermentation of acetoin and 2, 3-butanediol by a novelstrain[J]. Biotechnology for Biofuels, 2012, 5: 88. Doi: 10.118611754-6834-5-88.

        [30] 韓冰,范桂芳,李十中,等. 不同糖質(zhì)原料和菌株固態(tài)發(fā)酵制取乙醇的特性比較[J]. 農(nóng)業(yè)工程學報,2012,28(5):201-206.Han Bing, Fan Guifang, Li Shizhong, et al. Comparison of ethanol production from different sugar feedstocks by solid state fermentation with two yeast strains[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(5): 201-206. (in Chinese with English abstract)

        [31] 范桂芳,李佩佩,齊立松,等. 固體發(fā)酵物料可溶性糖和乙醇檢測方法研究進展[J]. 生物產(chǎn)業(yè)技術(shù),2018(3):50-54. Fan Guifang, Li Peipei, Qi Lisong, et al. Progress on soluble sugars and ethanol determination in solid state fermentation material[J]. Biotechnology & Business, 2018(3): 50-54. (in Chinese with English abstract).

        Determination of organic acids and ethanol in fermentation broth by liquid-liquid extraction and gas chromatography

        Fan Guifang, Li Peipei, Qi Lisong, Li Shizhong※

        (100084,)

        The degradation of cellulose by thermophilic bacteria is a growing trend in the 2nd generation bioethanol. The determination of the contents of ethanol and organic acids in the fermentation broth is of great significance to the control of the fermentation process. A gas chromatographic method for the determination of ethanol, acetic acid, propionic acid, and butyric acid contents in fermentation broth was established, using n-propanol as internal standard. The pH value of the aqueous phase was adjusted to 3 to prevent the dissociation of organic acids. Mixed with internal standard, the compounds were then extracted into the organic phase using ethyl acetate, and the organic phase was injected to the inlet of gas chromatograph. The mass concentration range of the standard curve was 0.050-2.000 g/L, the correlation coefficients were in the range of 0.999 0-0.999 9, the detection limits of analytes in this method were in the range of 10-45 mg/L, the recovery rates at 3 spiking levels were in the range of 80.65%-107.94%, and the relative standard deviation (RSD) of spiked sample were in the range of 1.71%-4.98%, the RSD of the actual sample was less than 5%. The method could be used for the detection of organic acids and ethanol in fermentation broth. The effects of temperature (0 or 20 ℃) and ion intensity (saturated with sodium chloride or not) on the variability of the extraction efficiency were investigated. The results showed that saturated with sodium chloride increased the partition ratio of ethanol in ethyl acetate and decreased the partition ratio of acetic acid, propionic acid and butyric acid in ethyl acetate; lower temperature decreased the partition ratio of ethanol in ethyl acetate and increased the partition ratio of acetic acid, propionic acid and butyric acid in ethyl acetate. The minimum extraction variability was obtained at 20 ℃ and sodium chloride saturated solution, so this condition was set as the extraction condition. The liquid-liquid extraction experiments were carried out under the conditions of the volumetric ratio of aqueous phase to organic phase being 2:1 and 1:1. Ratios of peak area under the two conditions were used to calculate the partition coefficients of the compounds. The partition coefficients of ethanol, n-propanol, acetic acid, propionic acid, and butyric acid in ethyl acetate and sodium chloride saturated solution at 20 ℃ were measured and calculated to be 0.28, 1.64, 1.37, 2.51, and 3.29, respectively. The ethanol content of the extract solution of fermented sweet sorghum bagasse was determined by this method. The detection value was compared to that of the traditional distillation-gas chromatography method. The differences between two methods were less than the RSD of actual samples in this method. The pretreating process could be simplified by using liquid-liquid extraction instead of distillation. The detection method can also be used in the detection of organic acids and ethanol in other aqueous systems, such as detecting volatile fatty acids in anaerobic digestion waste water and detecting ethanol in fermented liquors. The injection of organic phase instead of aqueous phase can prevent the corrosion of the syringe by acid.

        ethanol; organic acids; fermentation broth; liquid-liquid extraction; gas chromatography

        范桂芳,李佩佩,齊立松,李十中.液液萃取-氣相色譜法測定發(fā)酵液中的有機酸與乙醇[J]. 農(nóng)業(yè)工程學報,2018,34(23):227-231. doi:10.11975/j.issn.1002-6819.2018.23.029 http://www.tcsae.org

        Fan Guifang, Li Peipei, Qi Lisong, Li Shizhong.Determination of organic acids and ethanol in fermentation broth by liquid-liquid extraction and gas chromatography[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(23): 227-231. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.23.029 http://www.tcsae.org

        2018-06-29

        2018-10-08

        國家重點研發(fā)計劃項目(No. 2016YFE0108500)和國家自然科學基金項目(No. 31600067)聯(lián)合資助

        范桂芳,工程師。Email:fanguifang@mail.tsinghua.edu.cn

        李十中,研究員,博士,博士生導師。Email:szli@tsinghua.edu.cn

        10.11975/j.issn.1002-6819.2018.23.029

        S216;O661;TQ353

        A

        1002-6819(2018)-23-0227-05

        猜你喜歡
        檢測
        QC 檢測
        “不等式”檢測題
        “一元一次不等式”檢測題
        “一元一次不等式組”檢測題
        “幾何圖形”檢測題
        “角”檢測題
        “有理數(shù)的乘除法”檢測題
        “有理數(shù)”檢測題
        “角”檢測題
        “幾何圖形”檢測題
        婷婷第四色| 全部孕妇毛片| 激情在线一区二区三区视频| 男女主共患难日久生情的古言 | 成人午夜视频精品一区 | 超清无码AV丝袜片在线观看| 亚洲中文字幕人妻诱惑| 激情视频在线播放一区二区三区| 色噜噜亚洲精品中文字幕| 男性av天堂一区二区| 日韩精品视频久久一区二区| 欧美成人猛片aaaaaaa| 香港台湾经典三级a视频| 人妻在卧室被老板疯狂进入国产| 在线不卡av天堂| 99国产精品无码专区| 国产亚洲激情av一区二区| 青青草免费在线视频久草| 亚洲中文字幕在线一区| 国产做无码视频在线观看| 忘忧草社区www日本高清| 欧美gv在线观看| 99热在线精品播放| 娇柔白嫩呻吟人妻尤物| av在线免费播放网站| 中文字幕精品一区二区三区| 蜜桃久久精品成人无码av| 亚洲国产美女精品久久久久| 国产 中文 制服丝袜 另类| 激情人妻网址| 国产少妇露脸精品自拍网站| 刚出嫁新婚少妇很紧很爽| 亚洲av无码日韩av无码网站冲 | 成人做爰69片免费看网站| 久久精品国产亚洲不av麻豆| 国产精品区二区东京在线| 国产tv不卡免费在线观看| 97精品人人妻人人| 国产精品无码a∨精品影院| 国产AV无码专区亚洲AⅤ| 亚洲精品一区网站在线观看|