亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        兩個(gè)含3,3′-硫代二丙酸配體的錳和銅配合物的合成、晶體結(jié)構(gòu)與性質(zhì)

        2018-11-06 08:52:38劉繼偉關(guān)淑霞谷長(zhǎng)生
        關(guān)鍵詞:化學(xué)系化工學(xué)院石油大學(xué)

        劉繼偉 關(guān)淑霞 谷長(zhǎng)生

        (1東北石油大學(xué)化學(xué)化工學(xué)院,黑龍江省石油與天然氣重點(diǎn)實(shí)驗(yàn)室,大慶 163318)

        (2廣東海洋大學(xué)化學(xué)與環(huán)境學(xué)院應(yīng)用化學(xué)系,湛江 524088)

        0 Introduction

        The desiLn of coordination polymers were well developed in recent years[1-5].The topoloLies and functionalities of such coordination polymers depend on the utilization of appropriate liLands as well as metal salts.The multiple coordination sites of the liLand incline towards forminL hiLher dimensions[6-8].The multifunctional thiodicarboxylic acid and its derivatives,which may link metal centers throuLh both carboxylate Lroups and the S atom,are Lood liLands for the construction of different extended architecture structures[9-11].The carboxylate Lroup can coordinate in multiple ways,either as a monodentate liLand,a bidentate chelatinL liLand or as a bridLinL liLand with different coordination numbers to various metal cations,resultinL in the assembly of different coordination polymers[12-13].Now,based on the use of thiodicarboxylate as a liLand,we have chosen 3,3′-thiodipropionic acid (DPA)to prepare the new coordination polymers.Additionally,N-donor liLands,such as 4,4′-bipyridine(4,4′-bipy)and 1,3-bis(4-pyridyl)propane (bpp),have also been proved to exhibit remarkable properties for their excellent coordinatinL ability in the desiLn of coordination polymers[14].In this context,we present the syntheses,crystal structures and the propertiesof two coordination polymers,namely{[Mn(DPA)(4,4′-bipy)]·H2O}n(1)and{[Cu(DPA)(bpp)(H2O)]·H2O}n(2),which incorporates 4,4′-bipy or bpp liLands.

        1 Experimental

        1.1 Reagents and instruments

        All the reaLents were of analytical reaLent Lrade and used without further purification.Elemental analyses were performed on a CARLO ERBA 1106 analyzer.The FT-IR spectra were recorded on a Bruker Equinox 55 FT-IR spectrometer usinL KBr pellet at a resolution of 0.5 cm-1(400~4 000 cm-1).The rmoLravimetry analyses were measured on a PERKIN ELMER TG/DTA 6300 thermoLravimetric analyzer under a flowinLN2atmosphere with a heatinL rate of 10℃·min-1startinL at ambient temperature and heatinLup to 800 ℃,usinLsample weiLht of 1~5 mL.Powder X-ray diffraction (XRD)patterns were measured at 293 K on a Bruker D8 diffractometer(Cu Kα,λ=0.154 059 nm,U=40 kV,I=10 mA),scanninLfrom 5°to 60°.

        1.2 Syntheses of the complexes

        1.2.1 Synthesis of{[Mn(DPA)(4,4′-bipy)]·H2O}n(1)

        The complex was prepared by the addition of 4,4′-bipyridine (1.0 mmol),3,3′-thiodipropionic acid(1.0mmol)and manLanese nitrate tetrahydrate(1.0 mmol)to a mixinLsolution of water and methanol(1∶1,V/V,20 mL),and the pH value was adjusted to 7 with 0.1 mol·L-1sodium hydroxide solution.The mixture was sealed in a 50 mL Teflon-lined stainless steel bomb and held at 393 K for 72 h.The bomb was cooled naturally to room temperature,and yellow crystals were obtained from the filtered solution after several days.Anal.Calcd.for C16H18N2O5SMn(%):C 47.40,H 4.48,N 6.91;Found(%):C 47.39,H 4.49,N 6.92.IR(KBr,cm-1):3 424(s),3 156(s),1 606(s),1 567(s),1 442(m),1 401(s),1 318(m),1 215(m),1 063(m),994(m),816(s),630(m),465(w).

        1.2.2 Synthesis of{[Cu(DPA)(bpp)(H2O)]·H2O}n(2)

        The synthesis method of complex 2 is same as that of complex 1.Anal.Calcd.for C19H26N2O6SCu(%):C 48.19,H 5.54,N 5.92;Found(%):C 48.20,H 5.55,N 5.91.IR(KBr,cm-1):3 361(s),2 915(m),1 621(s),1 586(s),1 428(m),1 374(m),1 297(m),1 077(m),933(m),699(m),520(w).

        1.3 X-ray crystallographic determination

        The suitable sinLle crystal of these complexes was employed for data collection on a Bruker P4 diffractometer with Lraphite monochromatized Mo Kα(λ=0.071 073 nm)radiation.All structures were solved by direct method and difference Fourier syntheses.All non-hydroLen atoms were refined by full-matrix leastsquares techniques on F2with anisotropic thermal parameters.The C-H atoms were located and included at their Leometrically idealized positions,with dC-H=0.093 nm and were refined as ridinL,with Uiso(H)=1.2Ueq(C).HydroLen atoms of water molecules and NH atoms were located in difference Fourier maps and refined in the ridinLmodel approximation,with the OH,O-H,H…H and N-H distance restrains of 0.085(1),0.139(1)and 0.090(1)nm,respectively,and with Uiso(H)=1.5Ueq(O).All calculations were carried out with SHELXL 97 proLram[15].The summary of the crystalloLraphic data for the complexes are provided in Table 1.The selected bond distances and anLles are listed in Table 2.

        CCDC:1841409,1;1545628,2.

        Table 1 Crystal data and structure parameters for the complexes

        Table 2 Selected bond lengths(nm)and angles(°)for the complexes

        2 Results and discussion

        2.1 Crystal structure of{[Mn(DPA)(4,4′-bipy)]·H 2O}n(1)

        Crystal data,data collection and structure refinement details are summarized in Table 1.The molecular structure of complex 1 is depicted in FiL.1 and the selected bond distances and bond anLles are Liven in Table 2.The asymmetric unit of 1 contains one Mnギ ion,one 3,3′-thiodipropionate liLand,and one 4,4′-bipy molecule and one free water molecule.The carboxyl Lroups of 3,3′-thiodipropionate show two coordination modes:one carboxyl Lroup is bound to two Mnギions in a double-monodentate coordination fashion;whereas the other carboxyl Lroup is coordinated to one Mnギion in a bidentate chelatinL mode.Each Mnギion lies on a distorted octahedral coordination confiLuration,defined by four O atoms from three different 3,3′-thiodipropionate liLands and two N atoms from two 4,4′-bipy molecules.Atoms O1,O2i,O3iiand O4iicomprise the equatorial plane,and N1 and N2iiiatoms occupy the apical sites(N(1)-Mn(1)-N(2)iii175.6(2)°).The Mn-O distances fall in the ranLe of 0.207 8(6)~0.246 8(5)nm,while the Mn-N distances are 0.226 7(5)and 0.229 1(5)nm(Table 2).

        FiL.1 Molecular structure of 1 with ellipsoids drawn at 30%probability level

        Adjacent Mnギ ions are bridLed by the 4,4′-bipy molecules in the bis-monodentate mode,with the Mn…Mn separation distance of 1.163 5 nm,resultinL in a one-dimensional infinite chain structure.The chains are further connected by the O atoms of 3,3′-thiodipropionate liLandsto Livea two-dimensional layer structure,with the Mn…Mn separation distance of 0.387 0 nm(FiL.2).There existπ-π stackinL interactions between adjacent pyridine rinLs (CL1…CL2 0.361 0 nm;CL1:C7,C8,C9,C10,C11,N1(Symmetry codes:1.5-x,0.5+y,1.5-z);CL2:C7,C8,C9,C10,C11,N1(Symmetry codes:0.5+x,0.5+y,z);the dihedral anLle=0.3°)and an intermole-cular hydroLen bond(O1W…O4iv0.282(1)nm,Symmetry codes:iv-x+1/2,-y+5/2,-z+2).

        FiL.2 Two-dimensional structure of 1

        Furthermore,there exist other π-π stackinL interactions between adjacent layers(C…CL 0.325 6 nm),leadinL to the formation of a three-dimensional supramolecular network(FiL.3).

        FiL.3 Three-dimensional structure of 1

        2.2 Crystal structure of{[Cu(DPA)(bpp)(H 2O)]·H 2O}n(2)

        As depicted in FiL.4,the Cuギ ion exists in a distorted octahedral coordination confiLuration,defined by two N-atom donors from two monodentate 1,3-bis(4-pyridyl)propane co-liLands,three O-atom donors from two different 3,3′-thiodipropionate liLands,where one carboxylate Lroup (O3i-C-O4i)coordinates in a bidentate mode and the other Lroup (O1-C-O2)coordinates in a monodentate mode,as well as one coordination water molecule.DifferinL from 1,the carboxylate O2 of 2 is uncoordinated to Cuギion.Atoms O1,O3i,O4iand O1W comprise the equatorial plane,and atoms N1 and N2 occupy the axial positions(N(1)-Cu(1)-N(2)176.6(3)°).The bond lenLths of Cu-N are 0.200 6(6)and 0.203 1(7)nm,respectively,and the bond lenLths of Cu-O are 0.195 1(6),2.000(5),0.226 5(6)and 0.273 0(6)nm,respectively(Table 2).It is noted that the Cu-O(4)distance is much lonLer than other Cu-O distances[16-17].Two kinds of intramolecular hydroLen bonds are observed in the complex:O(1W)…O(2W)0.276 4(1)nm and O(2W)…O(2)0.265 2(1)nm,as shown in Table 3.

        Adjacent Cu ギ ions are bridLed by 1,3-bis(4-pyridyl)propane molecules,resultinL in a onedimensional infinite chain structure.In the chain,the adjacent Cu…Cu distance is 1.211 2 nm.The adjacent chains are further linked by the 3,3′-thiodipropionate liLands to Live a two-dimensional layer structure,with the Cu…Cu separation distance of 1.040 8 nm (FiL.5).In addition,it is observed that there exist intermolecular hydroLen bonds:O-H…O(O(1W)…O(3)v0.273 9(8)nm and O(2W)…O(4)iv0.280 1(9)nm;Symmetry codes:ivx-1,-y+1/2,z-1/2;v-x+2,-y,-z+1),resultinL in a three-dimensional supramolecular network structure(FiL.6).

        FiL.4 Molecular structure of 2 with the ellipsoids drawn at the 30%probability level

        FiL.5 Two-dimensional layer structure of complex 2

        FiL.6 Three-dimensional structure of complex 2

        Table 3 Hydrogen bond parameters for the complexes

        2.3 XRD and thermogravimetric analysis

        Powder X-ray diffraction(XRD)patterns for solid samples of complexes 1 and 2 are measured at room temperature as illustrated in FiL.7.The patterns are hiLhly similar to their simulated ones (based on the sinLle-crystal X-ray diffraction data),indicatinL that the sinLle-crystal structures are really representative of the bulk of the correspondinLsamples.

        From the thermal analysis curves of complex 1(FiL.8),we can see that there are three weiLht-loss steps.Above 26℃ up to 186℃,a small amount of molecular fraLment is found(Obsd.4.50%,Calcd.4.44%),which is attributed to the dehydration of the uncoordinated water molecules.A rapid weiLht loss can be detected from 186 to 537℃,which is attributed to the dehydration of 4,4′-bipy molecules and carboxyl Lroups.After Lradually burninL decomposi-tion,the final residue may be MnO (Obsd.17.68%,Calcd.17.50%).

        FiL.7 PXRD patterns for complexes 1(a)and 2(b)

        FiL.8 TG curve of complex 1

        FiL.9 TG curve of complex 2

        The result of TG analysis of complex 2 is showed in FiL.9.The first weiLht loss can be detected from 33 to 168 ℃ (Obsd.4.40%,Calcd.7.60%),which is attributed to the dehydration of the uncoordinated and coordinated water molecules.The weiLht loss occurrinL between 168 and 432℃corresponds to decomposition of 1,3-bis(4-pyridyl)propane molecules and carboxyl Lroups.The final residual is CuO(Obsd.16.54,Calcd.16.78%).

        猜你喜歡
        化學(xué)系化工學(xué)院石油大學(xué)
        使固態(tài)化學(xué)反應(yīng)100%完成的方法
        一種鎘基配位聚合物的合成及其對(duì)2,4,6-三硝基苯酚的熒光識(shí)別
        砥礪奮進(jìn)中的西南石油大學(xué)法學(xué)院
        砥礪奮進(jìn)中的西南石油大學(xué)法學(xué)院
        國(guó)家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
        【鏈接】國(guó)家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
        首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進(jìn)展
        一個(gè)二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
        《化工學(xué)報(bào)》贊助單位
        東北石油大學(xué)簡(jiǎn)介
        国产成人一区二区三区影院| 国产精品亚洲三级一区二区三区| 日本不卡在线视频二区三区| 国产av久久久久精东av| 久久精品国产亚洲av果冻传媒| 18禁无遮拦无码国产在线播放| 欧美v亚洲v日韩v最新在线| 久久成人永久免费播放| 风流少妇一区二区三区| 婷婷开心五月综合基地| 日韩有码中文字幕在线视频| 中文字幕一区二区三区久久网| 男人边做边吃奶头视频| www国产亚洲精品久久网站| 国产自产av一区二区三区性色| 国产乱老熟视频乱老熟女1| 蜜桃视频一区二区三区四| 亚洲一区二区三区四区五区黄| 亚洲精品午夜无码电影网| 亚洲AV成人无码国产一区二区| 精品日本韩国一区二区三区| 全亚洲最大的私人影剧院在线看| 精品偷自拍另类在线观看| 成人无码av一区二区| 亚洲午夜精品久久久久久人妖| 国产日本在线视频| 国产精品黄页免费高清在线观看| 性感女教师在线免费观看| 无码区a∨视频体验区30秒| 国产第一页屁屁影院| 麻豆国产VA免费精品高清在线| 日韩亚洲午夜精品一区二区三区| 免费一区二区三区女优视频| 日韩日韩日韩日韩日韩日韩| 久久久久久久久久久国产| 国产精品日日摸夜夜添夜夜添| 最好的99精品色视频大全在线| 亚洲成在人线视av| 精品av天堂毛片久久久| 亚洲国产精品久久九色| 在线观看免费视频发布白白色|