王 慶, 丁久東, 劉海彬,3, 肖建民, 沈 剛
(1. 武漢大學電氣工程學院, 湖北省武漢市 430072; 2. 南京南瑞繼保電氣有限公司, 江蘇省南京市 211102; 3. 南瑞集團 (國網(wǎng)電力科學研究院) 有限公司, 江蘇省南京市 211106)
柔性直流輸電是一種新型的直流輸電技術(shù),其特點是采用基于全控型器件的電壓源型換流器和脈寬調(diào)制技術(shù)提高直流輸電性能[1-2]。柔性直流輸電很適合應用于可再生能源并網(wǎng)、分布式電源并網(wǎng)、孤島供電、城市電網(wǎng)供電、異步交流電網(wǎng)互聯(lián)等領域[3-8]。換流器是柔性直流技術(shù)的核心裝備,模塊化多電平換流器(MMC)因其具有模塊化設計、開關(guān)頻率低、諧波性能好等優(yōu)點而成為當前柔性直流工程的首選方案。
隨著柔性直流的輸送容量越來越大,例如國內(nèi)新建的張北柔性直流電網(wǎng)最大換流站的額定容量高達3 000 MW,在不考慮橋臂環(huán)流的情況下,橋臂電流有效值高達1 943 A,橋臂電流峰值高達3 355 A。而相應絕緣柵雙極型晶體管(IGBT)的額定通流能力并沒有成比例上升,目前市面上IGBT的最大額定電流有效值為3 000 A,瞬時值為6 000 A,且只有個別供應商供貨。因此IGBT的電流安全裕度越來越小,不利于柔性直流輸電系統(tǒng)的安全穩(wěn)定運行。由此可見,IGBT器件已經(jīng)成為制約柔性直流輸電向高壓大容量方向發(fā)展的一個重要因素。在現(xiàn)有條件下,只有通過對控制保護策略的優(yōu)化來降低橋臂電流有效值及峰值,國內(nèi)外學者對三次諧波注入調(diào)制策略在MMC中的應用開展了廣泛研究。文獻[9]從橋臂電流大小、換流閥損耗等幾個方面研究了三次諧波注入策略在基于模塊化多電平換流器的柔性直流(MMC-HVDC)輸電系統(tǒng)中的應用,但是沒有考慮對子模塊電壓的影響;文獻[10-11]通過向橋臂電流中注入環(huán)流來減小子模塊電壓波動,但是環(huán)流注入后會增大橋臂電流有效值,導致IGBT的有效值裕度進一步減小,并且會導致?lián)Q流閥通態(tài)損耗增大。文獻[12]研究了通過向橋臂電流中注入環(huán)流,向調(diào)制波中注入零序電壓來減小子模塊電壓波動,增加換流器功率區(qū)間,但是該文獻側(cè)重于展示試驗結(jié)果,缺少必要的理論推導。此外,柔性直流輸電場合所用的MMC換流器的接地方式對換流器的特性影響較大,柔性直流輸電常見的接地方式可以有交流側(cè)接地方式和直流側(cè)接地方式兩種,如交流側(cè)接地方式的南澳工程、舟山工程[13],直流側(cè)接地方式的廈門工程、張北工程,三次諧波注入調(diào)制策略是否適用于這兩種常見的接地方式目前未見相關(guān)報道,亟待研究。
本文從理論上分析了三次諧波注入策略對換流器接地方式的要求,分析了三次諧波注入調(diào)制策略對子模塊電容電壓波動特性、橋臂電流的有效值和峰值特性的影響,最后通過仿真驗證了理論分析的正確性。
MMC主電路等效電路圖如圖1所示,圖中uvx(x=a,b,c,下同)為換流變閥側(cè)電壓,其中ivx為換流變閥側(cè)電流,uvpx為上橋臂橋臂電抗器閥側(cè)電壓,uvnx為下橋臂橋臂電抗器閥側(cè)電壓,upx為上橋臂輸出電壓,unx為下橋臂輸出電壓,ipx為上橋臂電流,inx為下橋臂電流,L為橋臂電抗器的電感值,Idc為直流電流,udp為直流正極對地電壓,udn為直流負極對地電壓,Udc為直流正負極電壓差。通過控制每個橋臂的輸出電壓就可以控制交流電壓和直流電壓[14-19],從而控制換流器輸出的有功功率和無功功率。
圖1 MMC等效電路Fig.1 Equivalent circuit of MMC
urefx=uref1x-uref3
(1)
(2)
式中:Uac為基波調(diào)制波的幅值;ω為基波角頻率;θx為各相初始相位。假設a相初始相位為0,基波幅值等于1,那么注入三次諧波后的調(diào)制波見圖2。
上、下橋臂的調(diào)制波可以表示為式(3)和式(4):
(3)
(4)
經(jīng)過調(diào)制后,橋臂的輸出電壓在低頻范圍內(nèi)等于對應的調(diào)制波。
圖2 三次諧波注入調(diào)制策略Fig.2 Modulation strategy with third harmonic injection
柔性直流常見的接地方式包括交流側(cè)接地方式和直流側(cè)接地方式,無論哪種接地方式,以下的電壓電流關(guān)系始終成立。
(5)
交流側(cè)接地方式適用于對稱單極拓撲,對稱單極拓撲的換流器的等值電路如附錄A圖 A1所示,由于接地點在換流變閥側(cè),換流變閥側(cè)交流相電壓uvx由系統(tǒng)電壓us決定,正常情況下uvx只含有基波分量,在橋臂環(huán)流得到抑制的前提下,橋臂電抗器的壓降Ldipx/dt和Ldinx/dt只含有基波分量,采用三次諧波注入調(diào)制策略時橋臂輸出電壓upx和unx含有三次諧波,根據(jù)式(5),直流側(cè)對地電壓中含有三次諧波,這樣一方面提高了直流側(cè)對地的絕緣要求,另一方面由于該三次諧波的幅值和相位與調(diào)制波基波的關(guān)系如式(2)所示,而根據(jù)功角理論,調(diào)制波的幅值和相位與系統(tǒng)電壓和有功、無功功率相關(guān),在雙端或者多端柔性直流系統(tǒng)中,各端直流電壓中的三次諧波并不能保證幅值相等、相位相同,會在直流線路中引入不受控的三次諧波電流。因此,三次諧波注入調(diào)制策略并不適用于交流側(cè)接地方式的柔性直流輸電系統(tǒng)。
直流側(cè)接地方式用于對稱雙極拓撲,對稱雙極拓撲的正極換流器的等值電路如附錄 A圖 A2所示,由于接地點在直流側(cè),換流器的直流側(cè)對地電壓分別等于Udc和0。在橋臂環(huán)流得到抑制的前提下,橋臂電抗器的壓降Ldipx/dt和Ldinx/dt只含有基波分量,采用三次諧波調(diào)制策略時橋臂輸出電壓upx和unx含有三次諧波,根據(jù)公式(5),換流變閥側(cè)交流相電壓uvx中含有直流分量和三次諧波,由于換流變壓器具體隔離直流分量和三次諧波的作用,直流分量和三次諧波并不能傳導到交流系統(tǒng)中去,通過控制換流變閥側(cè)交流相電壓uvx基波分量的幅值和相位就可以控制有功功率和無功功率,因此三次諧波注入策略適用于直流側(cè)接地方式的柔性直流輸電系統(tǒng)。
理論上,在低頻范圍內(nèi)橋臂輸出電壓等于橋臂調(diào)制波,因此橋臂輸出電壓近似表示為式(6)和式(7),其中K=1/6:
(6)
(7)
6個橋臂的參數(shù)完全相同,因此直流電流在三個相單元中平分,換流變閥側(cè)電流在上、下橋臂中平分[4],在橋臂環(huán)流得到抑制的前提下,橋臂電流可以表示為:
(8)
(9)
式中:Iac為換流變閥側(cè)電流峰值;φ為功率因數(shù)角。
為方便起見,定義電壓調(diào)制比和電流調(diào)制比:
(10)
(11)
假設a相初始相位為0,以a相為例求出a相上、下橋臂的瞬時功率為:
(12)
(13)
由于采用了子模塊電容電壓均衡算法,子模塊電容電壓偏差較小,因此可以用平均電壓uavgpx和uavgpx代替每個子模塊電容電壓。
忽略子模塊的損耗,每個橋臂的瞬時功率由對應橋臂的所有子模塊電容來吸納和釋放,因此所有子模塊能量對時間的微分就等于對應橋臂的瞬時功率。
(14)
式中:N為每個橋臂子模塊數(shù)量;C為子模塊電容。
由于柔性直流輸電工程在設計之初就要求子模塊電容電壓波動與額定電壓Ucrate的比值較小(不大于10%),因此上述公式可以改寫為:
(15)
(16)
從式(15)和式(16)可以看出,每個橋臂瞬時功率的直流分量必然等于0,否則隨著時間的推移,子模塊電容電壓將過壓或者欠壓,即
(17)
將式(12)和式(13)分別代入式(15)和式(16),可以得到式(18)和式(19)。
(18)
(19)
從式(18)和式(19)可以看出子模塊電壓具有如下特性。
1)子模塊電容電壓含有五種分量,即直流分量、基波、2次諧波、3次諧波和4次諧波,其中穩(wěn)態(tài)時的直流分量等于Ucrate。
2)每個相單元的上、下橋臂的子模塊平均電壓的直流分量、2次諧波和4次諧波相等,基波和3次諧波相反。
3)投入3次諧波注入功能后,在子模塊平均電壓中引入了較小的3次諧波和4次諧波,3次諧波和4次諧波的幅值與K成正比。
4)投入3次諧波注入功能后在子模塊平均電壓的2次諧波有所變化,2次諧波幅值跟功率因數(shù)角φ有關(guān),根據(jù)式(18)和式(19)可知當功率因數(shù)角φ為0時,2次諧波幅值變小,減小為原來的|-1/2+K/2|/|-1/2|≈0.83。
5)投入3次諧波注入功能后,電壓調(diào)制比增加,由式(17)可知當功率因素角φ為0時電流調(diào)制比減小,根據(jù)式(18)和式(19)可知基波幅值與原來的比值為(mi,new-mu,new)/(mi,old-mu,old)<1,其中mi,new和mu,new為投入3次諧波注入功能后的電流調(diào)制比和電壓調(diào)制比,mi,old和mu,old為退出3次諧波注入功能后的電流調(diào)制比和電壓調(diào)制比。
綜上所述,子模塊平均電壓的2次諧波、3次諧波、4次諧波等相對基波含量較小,波動范圍主要受基波幅值影響,因此在投入3次諧波注入功能后子模塊平均電壓波動范圍有所減小,從而換流閥的電壓安全裕度有所提高。
根據(jù)上述結(jié)論,子模塊平均電壓可以用式(20)和式(21)表示。
uavgpx=Ucrate(1+Uc1cos(ωt+φ1x)+
Uc2cos(2ωt+φ2x)+Uc3cos(3ωt+φ3x)+
Uc4cos(4ωt+φ4x))
(20)
uavgnx=Ucrate(1-Uc1cos(ωt+φ1x)+
Uc2cos(2ωt+φ2x)-Uc3cos(3ωt+φ3x)+
Uc4cos(4ωt+φ4x))
(21)
式中:Uc1,Uc2,Uc3,Uc4分別為子模塊平均電壓基波、2次諧波、3次諧波和4次諧波的幅值與子模塊額定電壓之比;φ1x,φ2x,φ3x,φ4x分別為子模塊平均電壓基波、2次諧波、3次諧波和4次諧波的初始相位。
換流器直流側(cè)等效電路如圖3所示。
圖3 MMC直流側(cè)等效電路Fig.3 Equivalent circuit of MMC DC side
相單元總電壓usumx等于上、下橋臂輸出電壓之和,以a相為例計算相單元電壓和。
(22)
對式(22)進行化簡,得到式(23)。
(23)
從式(23)可見,相單元電壓和至少含有四種分量,即直流分量、2次諧波、4次諧波和6次諧波,其中6次諧波幅值足夠小,可以忽略不計。三個相單元的電壓和瞬時值并不相等,其中2倍頻負序電壓施加在橋臂電抗器上產(chǎn)生2倍頻負序環(huán)流,4倍頻正序電壓施加在橋臂電抗器上產(chǎn)生4倍頻正序環(huán)流。
投入3次諧波注入策略后,在直流電壓不變的情況下,可以抬高換流器輸出交流線電壓的有效值,在輸送容量和直流電壓不變的情況下,可以降低交流電流的有效值和峰值,也可以降低電流調(diào)制比。
將式(11)代入式(8)和式(9)并進行化簡,得到橋臂電流的有效值與峰值的表達式為:
(24)
根據(jù)式(24)可以發(fā)現(xiàn),橋臂電流有效值和峰值都隨著電流調(diào)制比的降低而減小,從而提高了換流閥的電流安全裕度。
基于RTDS建立了仿真系統(tǒng),換流站基于對稱雙極拓撲(接地點在直流側(cè)),每極的換流器為基于半橋子模塊的模塊化多電平換流器,具體技術(shù)參數(shù)如下:N=218;Udc=500 kV;Ucrate=2 300 V;S=1 500 MVA;C=15 mF;L=50 mH。換流變壓器閥側(cè)交流電壓(線電壓有效值)Ul,rms在退出三次諧波注入調(diào)制策略時為260 kV,在投入三次諧波注入調(diào)制策略時為300 kV。
基于上述仿真系統(tǒng),采用最近電平逼近調(diào)制策略,默認投入環(huán)流抑制功能,然后分別退出和投入3次諧波注入調(diào)制策略,開展子模塊平均電壓和橋臂電流的特性研究。
圖4(a)是退出3次諧波注入功能的波形,圖4(b)是投入3次諧波注入功能的波形,兩組試驗中有功功率都等于1 500 MW,功率因數(shù)角都等于0。從圖4(b)可以看出換流器運行穩(wěn)定,3次諧波注入策略適用于直流側(cè)接地方式的柔性直流換流器。
圖4 子模塊平均電壓、橋臂電流、調(diào)制波波形Fig.4 Curves of sub-module’s average voltage, bridge current and modulation wave
如附錄A圖A3所示,對子模塊平均電壓的波形進行對比分析,在投入3次諧波注入功能后其3次和4次的幅值有所增加,這與理論分析吻合;其2次幅值從50 V減小為43.2 V,減小為原來的0.86,這與理論分析的0.83相近;基波幅值從173 V減小為140 V,減小為原來的0.81,實測的mi,new=2.235,mu,new=0.896,mi,old=2.485,mu,old=0.820,根據(jù)理論分析的結(jié)果可以計算得到基波幅值變?yōu)樵瓉淼?.81,實驗結(jié)果與理論分析吻合;投入3次諧波注入功能后峰峰值從386 V減小到323 V,子模塊的電壓安全裕度有所提高,這與理論分析吻合。
對橋臂電流進行傅里葉分解,由于投入環(huán)流抑制功能,橋臂電流的總諧波失真(THD)可以控制在0.3%以下,橋臂電流的主要成分是直流分量和基波分量。對橋臂電流有效值和峰值進行對比分析,如附錄A圖A4所示,投入3次諧波注入功能后橋臂電流有效值從1 943 A降低到1 756 A,降低了大約9.6%,峰值從3 355 A降低到3 041 A,降低了大約9.4%,提高了子模塊的電流安全裕度,這與理論分析部分的式(22)吻合。
本文理論分析了3次諧波注入調(diào)制策略對換流器接地方式的要求,理論分析了3次諧波注入調(diào)制策略對子模塊電容電壓波動以及橋臂電流有效值和峰值的影響,最后組建了RTDS仿真模型并驗證了理論分析的正確性并形成以下結(jié)論。
1)該調(diào)制策略只適用于直流側(cè)接地方式的柔性直流換流器。
2)該調(diào)制策略會在子模塊電壓中引入4次諧波,但是波動范圍變小,有利于提高換流閥電壓安全裕度。
3)該調(diào)制策略可以降低橋臂電流有效值和峰值,有利于提高換流閥電流安全裕度。
但是本文并沒有理論分析3次諧波注入調(diào)制策略對換流器損耗的影響,另外由于RTDS仿真模型對IGBT開關(guān)損耗僅做近似處理,本文在仿真中也未涉及換流器損耗,而損耗問題一直是學術(shù)界和工程界關(guān)心的問題,后續(xù)可以在實際換流閥和閥控系統(tǒng)上開展3次諧波注入調(diào)制策略對換流器損耗影響的研究。
附錄見本刊網(wǎng)絡版(http://www.aeps-info.com/aeps/ch/index.aspx)。
王 慶(1980—),男,碩士,主要研究方向:特高壓直流輸電及柔性直流輸電。
丁久東(1985—),男,通信作者,碩士,工程師,主要研究方向:柔性直流輸電及柔性交流輸電。E-mail: dingjd@nrec.com
劉海彬(1978—),男,碩士,高級工程師,主要研究方向:直流輸電及柔性交流輸電。E-mail: liuhb@nrec.com