王露蓉 黃嬋 顧彩彩 宋奇琦 楊麗濤 邢永秀 農(nóng)友業(yè) 李楊瑞
摘要:【目的】研究甘蔗蔗糖轉(zhuǎn)運(yùn)蛋白SoSUT5基因?qū)Ω收嶂饕r(nóng)藝性狀和相關(guān)生理生化特性的影響,為評(píng)價(jià)轉(zhuǎn)基因甘蔗的生長(zhǎng)情況及驗(yàn)證SoSUT5基因的功能提供參考?!痉椒ā客ㄟ^(guò)PCR擴(kuò)增和測(cè)序驗(yàn)證6個(gè)轉(zhuǎn)SoSUT5基因甘蔗品系(T1、T2、T3、T6、T9和T11),以野生型甘蔗B8植株為對(duì)照,在苗期、分蘗期、伸長(zhǎng)期和成熟期分別測(cè)定甘蔗的株高、莖徑、葉綠素相對(duì)含量和+1葉葉面積,成熟期時(shí)測(cè)定蔗莖的可溶性糖含量?!窘Y(jié)果】通過(guò)PCR擴(kuò)增測(cè)序獲得6個(gè)轉(zhuǎn)SoSUT5基因甘蔗品系的目的基因序列,表明導(dǎo)入的SoSUT5基因已整合到甘蔗基因組DNA中。除T6外,其他5個(gè)轉(zhuǎn)基因甘蔗品系的株高、莖徑和+1葉葉面積均高于對(duì)照,其中成熟期時(shí)5個(gè)轉(zhuǎn)基因甘蔗品系的莖徑和+1葉葉面積均顯著高于對(duì)照(P<0.05,下同),T1、T2和T9的株高及T1、T2和T11的葉綠素相對(duì)含量顯著高于對(duì)照。成熟期時(shí)6個(gè)轉(zhuǎn)SoSUT5基因甘蔗品系的可溶性總糖含量均高于對(duì)照,其中T2、T9和T11的可溶性總糖含量極顯著高于對(duì)照(P<0.01),分別比對(duì)照高40.3%、40.3%和33.4%。【結(jié)論】SoSUT5基因在甘蔗中過(guò)表達(dá)可促進(jìn)甘蔗生長(zhǎng),并可提高蔗莖的可溶性總糖含量。由此推測(cè),該基因可能與甘蔗節(jié)間糖分積累有關(guān),且對(duì)甘蔗生長(zhǎng)起促進(jìn)作用。
關(guān)鍵詞: 甘蔗;SoSUT5基因;農(nóng)藝性狀;可溶性總糖含量
中圖分類(lèi)號(hào): S566.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):2095-1191(2018)05-0857-06
Growth characteristics of SoSUT5 transgenic sugarcane
Abstract:【Objective】The present study was carried out to investigate the influence of sucrose transporter SoSUT5 gene on main agronomic traits and related physiological and biochemical characteristics of sugarcane, and provide refe-rences for evalua-ting growth of the transgenic sugarcane and verifying the function of six SoSUT5 genes. 【Method】The SoSUT5 transgenic sugarcane lines(T1, T2, T3, T6, T9 and T11) were verified by PCR amplification and sequencing. Taking wild sugarcane B8 plant as control, agronomic characters such as plant height,stem diameter, relative chlorophyll content and +1 leaf area were measured at seedling stage,tillering stage,elongation stage and mature stage respectively,and soluble sugar content in stem were determined at mature stage. 【Result】Six target gene sequence of SoSUT5 transge-nic sugarcane lines were obtained by PCR amplification and sequencing,indicating that the introduced SoSUT5 gene has been integrated into sugarcane genomic DNA. Except for line T6,the plant height,stem diameter and +1 leaf area in the other five lines were higher than those of control. Among them, the stem diameter and +1 leaf area of five transgenic su-garcane lines were significantly higher than those of control at mature stage(P<0.05, the same below), the plant height of T1, T2 and T9 and the relative chlorophyll content of T1, T2 and T11 were significantly higher than those of control. The soluble sugar content in the six transgenic lines were higher than the control at mature stage,among which, those of T2, T9 and T11 were extremely higher than that of control(P<0.01), and were 40.3%, 40.3% and 33.4% higher than that of control respectively. 【Conclusion】Overexpression of SoSUT5 gene in sugarcane can promote sugarcane growth and increase soluble sugar content. Therefore, it is inferred that this gene is related to sugar accumulation in the sugarcane internodes and may promote the growth of sugarcane.
Key words: sugarcane; SoSUT5 gene; agronomic trait; total soluble sugar content
0 引言
【研究意義】甘蔗是重要的糖料作物之一,在世界食糖總產(chǎn)量中,蔗糖約占75%,在我國(guó)則占90%以上(李楊瑞和楊麗濤,2009)。隨著分子生物技術(shù)的發(fā)展,轉(zhuǎn)基因技術(shù)將促進(jìn)甘蔗的改良和進(jìn)化(楊翠鳳等,2014)。有研究表明,位于細(xì)胞質(zhì)膜上的蔗糖轉(zhuǎn)運(yùn)蛋白(Sucorose transporter,SUT)在介導(dǎo)蔗糖向韌皮部裝載的過(guò)程中起重要作用(Eom et al.,2011;Payyavula et al.,2011)。SoSUT5基因編碼蛋白具有蔗糖轉(zhuǎn)運(yùn)活性,與蔗糖的積累密切相關(guān)(??∑娴龋?017)。因此,研究轉(zhuǎn)SoSUT5基因甘蔗的生長(zhǎng)特性,選育出性狀優(yōu)良的轉(zhuǎn)基因甘蔗,可為甘蔗高糖育種提供參考依據(jù)?!厩叭搜芯窟M(jìn)展】植物SUT蛋白結(jié)構(gòu)較保守,屬于12次跨膜的膜蛋白基因家族,前人對(duì)已完成基因組測(cè)序的8個(gè)單子葉和10個(gè)雙子葉植物的SUT基因進(jìn)行聚類(lèi)分析,結(jié)果表明,該基因家族可分為SUT1、SUT2、SUT3、SUT4和SUT5共5個(gè)亞族,其中SUT2和SUT4為單、雙子葉所共有的基因,SUT1為雙子葉特異基因,而SUT3和SUT5為單子葉特異基因(張清等,2016)。Riesmeier等(1992)將菠菜的cDNA導(dǎo)入不具轉(zhuǎn)運(yùn)蔗糖及轉(zhuǎn)化酶活性的酵母突變株,以蔗糖作為單一碳源培養(yǎng)基進(jìn)行培養(yǎng),發(fā)現(xiàn)該突變株可生長(zhǎng),首次證實(shí)植物體內(nèi)有SUT蛋白存在。隨后,又在諸多植物體內(nèi)發(fā)現(xiàn)SUT基因,如馬鈴薯(Riesmeier et al., 1993)、擬南芥(Sauer and Stolz, 1994)、水稻(Hirose et al.,1997)、胡蘿卜(Shakya and Sturm, 1998)和芹菜(Noiraud et al., 2000)等。Hirose等(1997)從水稻中克隆出第一個(gè)單子葉SUT基因(OsSUT1),其他4個(gè)水稻SUT基因(OsSUT2、OsSUT3、OsSUT4和OsSUT5)被相繼推定并得到驗(yàn)證(Aoki et al.,1999)。洪海強(qiáng)(2008)研究表明,OsSUT5在生殖器官等庫(kù)組織中的表達(dá)量相對(duì)其他組織器官較高,與作物產(chǎn)量形成有關(guān)。Sun等(2011)將OsSUT2和OsSUT5轉(zhuǎn)化至馬鈴薯后,發(fā)現(xiàn)轉(zhuǎn)基因植株的單株產(chǎn)量、塊莖數(shù)量及單株塊莖的糖和淀粉平均含量均高于對(duì)照。Ludwig等(2000)認(rèn)為AtSUC5不僅具有蔗糖轉(zhuǎn)運(yùn)功能,還可轉(zhuǎn)運(yùn)維生素H。Milne等(2013)發(fā)現(xiàn)高粱的SbSUT5基因在其莖中表達(dá)。牛俊奇(2015)從甘蔗中首次克隆獲得SoSUT5基因,基因全長(zhǎng)序列為1605 bp,編碼534個(gè)氨基酸,其編碼的蛋白分子質(zhì)量為56.40 kD,理論等電點(diǎn)(pI)為10.68;并初步發(fā)現(xiàn)SUT基因參與植物糖分的積累和代謝,進(jìn)而影響植物的生長(zhǎng)發(fā)育(牛俊奇等,2017)。趙文慧(2016)通過(guò)農(nóng)桿菌轉(zhuǎn)化法將SoSUT5基因轉(zhuǎn)入甘蔗中,經(jīng)過(guò)PPT抗性篩選和PCR檢測(cè),獲得了轉(zhuǎn)SoSUT5基因陽(yáng)性植株。【本研究切入點(diǎn)】本課題組已獲得的轉(zhuǎn)SoSUT5基因陽(yáng)性甘蔗植株有待進(jìn)一步驗(yàn)證,尤其是所轉(zhuǎn)基因能否正常表達(dá)及其對(duì)甘蔗生長(zhǎng)和糖分積累的影響尚不清楚?!緮M解決的關(guān)鍵問(wèn)題】通過(guò)PCR檢測(cè)和測(cè)序驗(yàn)證SoSUT5基因在甘蔗中的表達(dá)及其對(duì)甘蔗主要農(nóng)藝性狀和相關(guān)生理生化特性的影響,為研究轉(zhuǎn)基因甘蔗的生長(zhǎng)和驗(yàn)證SoSUT5基因的功能提供參考。
1 材料與方法
1. 1 試驗(yàn)材料
供試材料為T(mén)0代轉(zhuǎn)SoSUT5基因甘蔗,由本課題組經(jīng)農(nóng)桿菌轉(zhuǎn)化法將該基因克隆轉(zhuǎn)化到甘蔗品種B8中并經(jīng)PPT抗性篩選獲得。T0代轉(zhuǎn)基因甘蔗共有6個(gè)品系(T1、T2、T3、T6、T9和T11),對(duì)照為野生型B8植株(WT),經(jīng)種莖沙培育苗,再移栽至溫室大棚。
1. 2 試驗(yàn)方法
于2017年在廣西大學(xué)甘蔗研究所玻璃溫室內(nèi)進(jìn)行試驗(yàn)。每個(gè)品系和對(duì)照各種植10株,同行排列,3次重復(fù)。每處理隨機(jī)選取6株甘蔗,每2株的平均值為1次重復(fù),分別在苗期(6月4日)、分蘗期(7月20日)、伸長(zhǎng)期(9月5日)和成熟期(10月23日)測(cè)定株高、莖徑、+1葉(最高可見(jiàn)肥厚帶)的葉綠素相對(duì)含量(SPAD值)及葉面積,在成熟期測(cè)定蔗莖的可溶性總糖含量。
1. 3 轉(zhuǎn)基因甘蔗鑒定
1. 3. 1 甘蔗基因組DNA提取 甘蔗移栽成活后,采集葉片,按DNA提取試劑盒(NuClean Plant Genomic DNA Kit,北京康為世紀(jì)生物科技有限公司)說(shuō)明提取總DNA,用1.0%瓊脂糖凝膠電泳檢測(cè)DNA完整性。
1. 3. 2 PCR檢測(cè) 根據(jù)pUBTC載體上的選擇標(biāo)記bar基因設(shè)計(jì)一對(duì)引物,分別為bar F(5'-CGGATGAGCCCAGAACGACGCCC-3')和bar R(5'-CGG
TCAGATCTCGGTGACGGGCAG-3'),擴(kuò)增產(chǎn)物長(zhǎng)度549 bp。以提取的DNA為模板進(jìn)行PCR擴(kuò)增,設(shè)pUBTC-SoSUT5為陽(yáng)性對(duì)照,非轉(zhuǎn)基因B8植株DNA為陰性對(duì)照,用0.8%瓊脂糖凝膠電泳進(jìn)行檢測(cè)。利用膠回收試劑盒(Biospin Gel Extraction Kit,BioFlux公司)回收PCR產(chǎn)物,并送至生工生物工程(上海)股份有限公司測(cè)序。
1. 4 測(cè)定項(xiàng)目及方法
1. 4. 1 農(nóng)藝性狀測(cè)定 株高為從地面至蔗株+1葉葉基的距離,用卷尺測(cè)量;莖徑為蔗莖中部的粗度,用游標(biāo)卡尺測(cè)量;葉片SPAD值使用SPAD-520型葉綠素含量測(cè)定儀(柯尼卡美能達(dá)公司)測(cè)定;葉面積使用CI-203激光葉面積儀(美國(guó)CID公司)測(cè)定。
1. 4. 2 可溶性總糖含量測(cè)定 成熟期取甘蔗成熟莖(蔗莖中部),將甘蔗節(jié)間去皮并切成小塊,用液氮磨成均勻粉末,參照牛俊奇(2015)的方法提取糖分,采用硫酸蒽酮法測(cè)定樣品中的可溶性總糖含量(李合生等,2000)。
1. 5 統(tǒng)計(jì)分析
試驗(yàn)數(shù)據(jù)采用SPSS 18.0和 Excel 2013進(jìn)行統(tǒng)計(jì)分析及制圖。
2 結(jié)果與分析
2. 1 甘蔗總DNA提取結(jié)果
瓊脂糖凝膠電泳檢測(cè)結(jié)果(圖1)顯示,6個(gè)轉(zhuǎn)基因甘蔗品系及野生型甘蔗的電泳條帶清晰,說(shuō)明提取的DNA無(wú)雜帶和降解,可用于后續(xù)試驗(yàn)。
2. 2 PCR檢測(cè)結(jié)果
由圖2可看出,6個(gè)轉(zhuǎn)基因甘蔗品系擴(kuò)增獲得的條帶均與陽(yáng)性對(duì)照條帶一致,而陰性對(duì)照的條帶呈彌散狀,水的條帶與陽(yáng)性對(duì)照不一致,可能是引物二聚體。6個(gè)轉(zhuǎn)基因甘蔗品系的擴(kuò)增產(chǎn)物經(jīng)膠回收純化后進(jìn)行測(cè)序,并將測(cè)序結(jié)果在NCBI上進(jìn)行序列比對(duì)分析,結(jié)果顯示擴(kuò)增片段的序列與目的基因序列一致,說(shuō)明6個(gè)甘蔗品系均為轉(zhuǎn)SoSUT5基因甘蔗。
2. 3 轉(zhuǎn)基因甘蔗在不同生長(zhǎng)期的農(nóng)藝性狀表現(xiàn)
2. 3. 1 轉(zhuǎn)基因甘蔗的株高 由圖3可看出,隨著甘蔗生長(zhǎng)期的推移,轉(zhuǎn)SoSUT5基因甘蔗品系和對(duì)照野生型甘蔗的株高均不斷增加。苗期時(shí),T9的株高顯著高于對(duì)照(P<0.05,下同),其余5個(gè)轉(zhuǎn)基因甘蔗品系的株高與對(duì)照無(wú)顯著差異(P>0.05,下同)。分蘗期時(shí),T1、T3和T9的株高顯著高于對(duì)照,T2、T6和T11的株高與對(duì)照無(wú)顯著差異。T1、T2和T9的株高在伸長(zhǎng)期和成熟期時(shí)分別比對(duì)照高27.1%、21.9%、25.8%和43.0%、36.1%、26.7%,差異均達(dá)顯著水平;其余3個(gè)轉(zhuǎn)基因甘蔗品系的株高與對(duì)照差異不顯著。T6的株高在整個(gè)生長(zhǎng)發(fā)育階段均低于對(duì)照。
2. 3. 2 轉(zhuǎn)基因甘蔗的莖徑 由圖4可看出,除T6外,其余5個(gè)轉(zhuǎn)基因甘蔗品系的莖徑在各生長(zhǎng)期均高于對(duì)照,其中T9與對(duì)照間差異達(dá)極顯著水平(P<0.01,下同)。T1、T2和T3的莖徑在分蘗期和伸長(zhǎng)期較對(duì)照粗,但差異不顯著,在成熟期時(shí)差異達(dá)顯著水平,分別比對(duì)照高21.62%、17.27%和20.35%;T11的莖徑在伸長(zhǎng)期和成熟期時(shí)分別顯著高于對(duì)照12.01%和16.06%。
2. 3. 3 轉(zhuǎn)基因甘蔗的SPAD值 由圖5可看出,隨著甘蔗生長(zhǎng)期的推移,T3的SPAD值逐漸降低,其他5個(gè)轉(zhuǎn)基因甘蔗品系的SPAD值呈增加—降低—增加的變化趨勢(shì)。苗期時(shí),T3的SPAD值極顯著高于對(duì)照;分蘗期時(shí),T1的SPAD值顯著高于對(duì)照;伸長(zhǎng)期時(shí),T2和T6的SPAD值顯著低于對(duì)照;成熟期時(shí),T1、T2和T11的SPAD值顯著高于對(duì)照;其他品系與對(duì)照差異均不顯著。
2. 3. 4 轉(zhuǎn)基因甘蔗的+1葉葉面積 由圖6可看出,從苗期到伸長(zhǎng)期,轉(zhuǎn)SoSUT5基因甘蔗和對(duì)照的+1葉葉面積均不斷增大;到成熟期時(shí),T2、T3、T6和對(duì)照的+1葉葉面積有所減小,分別較伸長(zhǎng)期時(shí)減小1.26%、2.62%、2.95%和4.89%,轉(zhuǎn)SoSUT5基因甘蔗的減小程度均低于對(duì)照。苗期時(shí),T9的葉面積顯著大于對(duì)照,其余5個(gè)轉(zhuǎn)基因甘蔗品系與對(duì)照無(wú)顯著差異。至伸長(zhǎng)期和成熟期時(shí),6個(gè)轉(zhuǎn)SoSUT5基因甘蔗品系的葉面積均顯著或極顯著大于對(duì)照,其中以T9的+1葉葉面積最大,T6的最小。
2. 3. 5 成熟期轉(zhuǎn)基因甘蔗的可溶性總糖含量 由圖7可看出,轉(zhuǎn)SoSUT5基因甘蔗的可溶性總糖含量均高于野生型對(duì)照,其中,T2、T9和T11的蔗莖可溶性總糖含量分別比對(duì)照高40.3%、40.3%和33.4%,差異極顯著;T1、T3和T6的可溶性總糖含量也略高于對(duì)照,但差異不顯著。
3 討論
本研究利用單子葉植物表達(dá)載體pUBTC-So-SUT5通過(guò)農(nóng)桿菌轉(zhuǎn)化法導(dǎo)入甘蔗。由于SoSUT5為甘蔗內(nèi)源基因,pUBTC載體具有選擇標(biāo)記基因bar,因此對(duì)標(biāo)記基因進(jìn)行PCR擴(kuò)增并測(cè)序,檢測(cè)目的基因是否已整合到甘蔗基因組DNA中。
SUT基因?qū)χ参锏纳L(zhǎng)發(fā)育起著重要作用。Kühn等(1996)研究表明,用RNA干擾技術(shù)抑制StSUT1基因的表達(dá),可使馬鈴薯植株生長(zhǎng)受限,導(dǎo)致塊莖鮮重降低。Shakya和Sturm(1998)研究發(fā)現(xiàn),胡蘿卜的DoSUT1基因在葉片中表達(dá),在韌皮部中起裝載作用,DoSUT2基因則在庫(kù)組織的韌皮部中表達(dá)。Hackel等(2006)通過(guò)反義RNA技術(shù)抑制LeSUT1和LeSUT2基因的表達(dá),獲得的番茄植株均不結(jié)果實(shí),表明SUT基因的沉默嚴(yán)重影響植物的生長(zhǎng)。張君武等(2014)研究發(fā)現(xiàn),水稻OsSUT5基因表達(dá)受抑制時(shí),愈傷組織誘導(dǎo)再生植株率顯著降低,表明在水稻組織培養(yǎng)中OsSUT5基因可影響外植體對(duì)蔗糖的吸收和轉(zhuǎn)運(yùn)。本研究中,過(guò)表達(dá)SoSUT5基因,除T6外,其余5個(gè)轉(zhuǎn)SoSUT5基因甘蔗品系的株高均高于野生型對(duì)照,T1、T2和T9在分蘗期和成熟期時(shí)顯著高于對(duì)照;這5個(gè)轉(zhuǎn)基因甘蔗品系的莖徑也均大于對(duì)照,且在成熟期時(shí)表現(xiàn)出顯著差異。Zhang等(2013)研究發(fā)現(xiàn),在果實(shí)膨大期梨的PbSUT1基因表達(dá)量最高,且果實(shí)的蔗糖含量增加。閆甜甜等(2014)利用基因工程技術(shù)將葡萄的VvSUC11和VvSUC12基因?qū)胩鸩藟K根中,發(fā)現(xiàn)轉(zhuǎn)基因甜菜葉面積增大、塊莖糖分增加。本研究中,T3在苗期、T1在分蘗期及T1、T2、T9在成熟期時(shí)的葉綠素相對(duì)含量均顯著高于對(duì)照,且6個(gè)轉(zhuǎn)SoSUT5基因甘蔗品系的+1葉葉面積均高于對(duì)照??梢?jiàn),SoSUT5基因的過(guò)量表達(dá)可增加甘蔗的株高和莖徑,促進(jìn)甘蔗生長(zhǎng)及葉片的葉綠素含量和葉面積增加,有利于光合作用。
可溶性糖不僅為植物的生長(zhǎng)發(fā)育提供能量,還是調(diào)控基因表達(dá)和調(diào)節(jié)植物生長(zhǎng)發(fā)育的重要信號(hào)因子,因此提高可溶性糖含量可促進(jìn)植物生長(zhǎng)(王嘉佳和唐中華,2014)。趙婷婷等(2012)從甘蔗中克隆出ShSUT4、ShSUT3、ShSUT2A和ShSUT2B 4個(gè)基因,發(fā)現(xiàn)其可促進(jìn)甘蔗莖稈蔗糖的積累。??∑妫?015)首次克隆出SoSUT2、SoSUT3和SoSUT5基因,且發(fā)現(xiàn)SoSUT2基因表達(dá)量與節(jié)間蔗糖含量呈正相關(guān),推測(cè)該基因可能參與調(diào)控甘蔗節(jié)間蔗糖的積累(牛俊奇等,2017)。本研究結(jié)果表明,轉(zhuǎn)SoSUT5基因甘蔗品系的可溶性總糖均高于對(duì)照,其中T2、T9和T11顯著高于對(duì)照??梢?jiàn),SoSUT5基因的過(guò)表達(dá)可提高甘蔗節(jié)間的可溶性糖分,其表達(dá)可能直接影響甘蔗糖分運(yùn)輸和積累。
本研究中,不同的轉(zhuǎn)基因甘蔗品系在表現(xiàn)型上有明顯差異,可能與SoSUT5基因整合到甘蔗中的拷貝數(shù)有關(guān),也可能是因?yàn)镾oSUT5基因的表達(dá)受蔗糖調(diào)控(Matsukura et al.,2000;Ransom-Hodgkins et al.,2003)。在今后的研究中,應(yīng)測(cè)定不同轉(zhuǎn)SoSUT5基因甘蔗品系不同部位的SoSUT5基因表達(dá)量和糖分含量,進(jìn)一步確定SoSUT5基因的表達(dá)部位與糖分積累的相關(guān)性。
4 結(jié)論
SoSUT5基因在甘蔗中過(guò)表達(dá)可促進(jìn)甘蔗生長(zhǎng),并可提高蔗莖的可溶性總糖含量。由此推測(cè),該基因可能與甘蔗節(jié)間糖分積累有關(guān),且對(duì)甘蔗的生長(zhǎng)起促進(jìn)作用。
參考文獻(xiàn):
洪海強(qiáng). 2008. 過(guò)表達(dá)OsSUT2和OsSUT5秈稻的灌漿生理[D]. 福州:福建農(nóng)林大學(xué). [Hong H Q. 2008. Physiolo-gical traits of transgenic indica rice(Oryza sativa L.)with over-expressed OsSUT2/OsSUT5 during grain filling period[D]. Fuzhou:Fujian Agriculture and Forestry University.]
李合生,孫群,趙世杰. 2000. 植物生理生化實(shí)驗(yàn)原理和技術(shù)[M]. 北京:高等教育出版社. [Li H S,Sun Q,Zhao S J. 2000. Principles and Techniques of Plant Physiology and Biochemistry Experiments[M]. Beijing:Higher Education Press.]
李楊瑞,楊麗濤. 2009. 20世紀(jì)90年代以來(lái)我國(guó)甘蔗產(chǎn)業(yè)和科技的新發(fā)展[J]. 西南農(nóng)業(yè)學(xué)報(bào),22(5):1469-1476. [Li Y R,Yang L T. 2009. New developments in sugarcane industry and technologies in China since 1990s[J]. Southwest China Journal of Agricultural Sciences,22(5):1469-1476.]
牛俊奇. 2015. 甘蔗蔗糖轉(zhuǎn)化和轉(zhuǎn)運(yùn)相關(guān)基因的克隆、表達(dá)及其與蔗糖積累相關(guān)性的研究[D]. 南寧:廣西大學(xué). [Niu J Q. 2015. Cloning expression analysis of sucrose conversion and transporters related genes and their relationships with sucrose accumulation in sugarcane[D]. Nanning:Guangxi University.]
??∑妫跽?,楊麗濤,李楊瑞. 2017. 甘蔗蔗糖轉(zhuǎn)運(yùn)蛋白So-SUT2基因克隆和表達(dá)分析[J]. 中國(guó)農(nóng)業(yè)大學(xué)學(xué)報(bào),22(6):32-40. [Niu J Q,Wang Z,Yang L T,Li Y R. 2017. Cloning and expression analysis of sucrose transporter gene(SoSUT2)in sugarcane[J]. Journal of China Agricultural University,22(6):32-40.]
王嘉佳,唐中華. 2014. 可溶性糖對(duì)植物生長(zhǎng)發(fā)育調(diào)控作用的研究進(jìn)展[J]. 植物學(xué)研究,(3):71-76. [Wang J J,Tang Z H. 2014. The regulation of soluble sugars in the growth and development of plants[J]. Botanical Research,(3):71-76.]
楊翠鳳,楊麗濤,李楊瑞. 2014. 甘蔗的起源和進(jìn)化[J]. 南方農(nóng)業(yè)學(xué)報(bào),45(1):1744-1750. [Yang C F,Yang L T,Li Y R. 2014. Origins and evolution of sugarcane[J]. Journal of Southern Agriculture,45(1):1744-1750.]
閆甜甜,郭新勇,向本春,祝建波. 2014. 蔗糖轉(zhuǎn)運(yùn)蛋白VvSUC11和VvSUC12累加作用對(duì)提高轉(zhuǎn)基因甜菜含糖量的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué),47(12):2455-2464. [Yan T T,Guo X Y,Xiang B C,Zhu J B. 2014. Improvement of the saccharinity by additive action of sucrose transpor-ters VvSUC11 and VvSUC12 in transgenic sugar beet[J]. Scientia Agriculture Sinica,47(12):2455-2464.]
張君武,管其龍,付艷萍,蘇軍. 2014. 反義抑制水稻蔗糖轉(zhuǎn)運(yùn)蛋白基因(OsSUT5)的表達(dá)降低其愈傷組織誘導(dǎo)和植株再生頻率[J]. 農(nóng)業(yè)生物技術(shù)學(xué)報(bào),22(7):825-831. [Zhang J W,Guan Q L,F(xiàn)u Y P,Su J. 2014. Antisense suppression expression of rice(Oryza sativa L.)sucrosetransporter gene(OsSUT5) leads to reducing callus induction andplantlet regeneration[J]. Journal of Agriculture Biotechnology,22(7):825-831.]
張清,胡偉長(zhǎng),張積森. 2016. 植物蔗糖轉(zhuǎn)運(yùn)蛋白研究進(jìn)展[J]. 熱帶作物學(xué)報(bào),37(1):193-202. [Zhang Q,Hu W C,Zhang J S. 2016. Sucrose transporters in plants[J]. Chinese Journal of Tropical Crops,37(1):193-202.]
趙婷婷,王俊剛,馮翠蓮,蔡文偉,王文治,熊?chē)?guó)如,伍蘇然,楊本鵬,張樹(shù)珍. 2012. 甘蔗蔗糖轉(zhuǎn)運(yùn)蛋白ShSUT4基因克隆及表達(dá)分析[J]. 熱帶作物學(xué)報(bào),33(2):310-315. [Zhao T T,Wang J G,F(xiàn)eng C L,Cai W W,Wang W Z,Xiong G Z,Wu S R,Yang B P,Zhang S Z. 2012. The cloning and expression analysis of sucrose transporter gene ShSUT4 in sugarcane[J]. Chinese Journal of Tropical Crops,33(2):310-315.]
趙文慧. 2016. 蔗糖轉(zhuǎn)運(yùn)蛋白基因SoSUT5的遺傳轉(zhuǎn)化[D]. 南寧:廣西大學(xué). [Zhao W H. 2016. Genetic transformation of sugarcane sucrose transporter gene SoSUT5[D]. Nanning:Guangxi University.]
Aoki N,Hirose T,Takahashi S,Ono K,Ishimaru K,Ohsugi R. 1999. Molecular cloning and expression analysis of a gene for a sucrose transporter in maize(Zea mays L.)[J]. Plant & Cell Physiology,40(10):1072-1078.
Eom J S,Cho J I,Reinders A,Lee S W,Yoo Y,Tuan P Q,Choi S B,Bang G,Park Y I,Cho M H,Bhoo S H,An G,Hahn T R,Ward J M,Jeon J S. 2011. Impaired function of the tonoplast-localized sucrose transporter in rice,OsSUT2,limits the transport of vacuolar reserve sucrose and affects plant growth[J]. Plant Physiology,157(1):109-119.
Hackel A,Schauer N,Carrari F,F(xiàn)ernie A R,Grimm B,Kühn C. 2006. Sucrose transporter LeSUT1 and LeSUT1 inhibition affects tomato fruit development in different ways[J]. The Plant Journal,45(2):180-192.
Hirose T,Imaizumi N,Scofield G N,F(xiàn)urbank R T,Ohsugi R. 1997. cDNA cloning and tissue specific expression of a gene for sucrose transporter from rice(Oryza sativa L.)[J]. Plant and Cell Physiology,38(12):1389-1396.
Kühn C,Quick W P,Schulz A,Riesmeier J W,Sonnewald U,F(xiàn)rommer W B. 1996. Companion cell-specific inhibition of the potato sucrose transporter SUT1[J]. Plant Cell & Environment,19(10):1115-1123.
Ludwig A,Stolz J,Sauer N. 2000. Plant sucrose-H+ symporters mediate the transport of vitamin H[J]. The Plant Journal,24(4):503-509.
Matsukura C,Saitoh T,Hirose T,Ohsugi R,Perata P,Yamaguchi J. 2000. Sugar uptake and transport in rice embryo. Expression of companion cell specific sucrose transporter(OsSUT1)induced by sugar and light[J]. Plant Physiology,124(1):85-94.
Milne R J,Byrt C S,Patrick J W,Grof C P L. 2013. Are sucrose transporter expression profiles linked with patterns of biomass partitioning in Sorghum phenotypes?[J]. Frontiers in Plant Science,4(2):223.
Noiraud N, Delrot S, Lemoine R. 2000. The sucrose transporter of celery. Identification and expression during salt stress[J]. Plant Physiology,122(4):1447-1455.
Payyavula R S,Tay K H C,Tsai C J,Harding S A. 2011. The sucrose transporter family in populus:The importance of a tonoplast PtaSUT4 to biomass and carbon partitioning[J]. The Plant Journal,65(5):757-770.
Ranson-Hodgkins W D,Vaughn M W,Bush D R. 2003. Protein phosphorylation plays a key role in sucrose-mediated transcriptional regulation of a phloem-specific proton-sucrose symporter[J]. Planta,217(3):483-489.
Riesmeier J W,Willmitzer L,F(xiàn)rommer W B. 1992. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast[J]. Embo Journal,11(13):4705-4713.
Riesmeier J W,Hirner B,F(xiàn)rommer W B. 1993. Potato sucrose transporter expression in minor veins indicates a role in phloem loading[J]. The Plant Cell,5(11):1591-1598.
Sauer N,Stolz J. 1994. SUC1 and SUC2:Two sucrose transporters from arabidopsis thaliana; expression and characterization in bakers yeast and identification of the histidine-tagged protein[J]. The Plant Journal,6(1):67-77.
Shakya R,Sturm A. 1998. Characterization of source and sink specific sucrose/H+ symporters from carrot[J]. Plant Phy-siology,118(4):1473-1480.
Sun A J,Dai Y,Zhang X S,Li C M,Meng K,Xu H L,Wei X L,Xiao G F,Ouwerkerk P B F,Wang M,Zhu Z. 2011. A transgenic study on affecting potato tuber yield by expressing the rice sucrose transporter genes OsSUT2M and OsSUT5M[J]. Journal of Integrative Plant Biology,53(7):586-595.
Zhang H P,Zhang S J,Qin G H,Wang L F,Wu T,Qi K J,Zhang S L. 2013. Molecular cloning and expression ana-lysis of a gene for sucrose transporter from pear(Pyrus bretschneideri Rehd.) fruit[J]. Plant Physiology and Biochemistry,73:63-69.
(責(zé)任編輯 王 暉)