亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Certain Integral Transforms of Generalized k-Bessel Function

        2018-09-05 09:10:22KottakkaranSooppyNisarWaseemAhmadKhanandMohdGhayasuddin
        Analysis in Theory and Applications 2018年2期

        Kottakkaran Sooppy Nisar,Waseem Ahmad Khan and Mohd Ghayasuddin

        1Department of Mathematics,College of Arts and Science-Wadi Aldawaser,Prince Sattam bin Abdulaziz University,11991,Alkharj,Kingdom of Saudi Arabia

        2Department of Mathematics,Faculty of Science,Integral University,Lucknow-226026,India

        Abstract.The objective of this note is to provide some(potentially useful)integral transforms(for example,Euler,Laplace,Whittaker etc.)associated with the generalized k-Bessel function defined by Saiful and Nisar[3].We have also discussed some other transforms as special cases of our main results.

        Key Words:Gamma function,k-Bessel function,generalized k-Bessel function,integral transforms.

        1 Introduction

        The Bessel function of fist kind has the power series representation of the form[4]:

        Romero et al.[16]introduced the k-Bessel function of the first kind defined by the series

        where k∈R;α,λ,γ,υ∈C;<(λ)>0 and<(υ)>0.

        Very recently,Saiful and Nisar[3]gave a new generalization of k-Bessel function called the generalized k-Bessel function of the first kind defined for k∈R;σ,γ,υ,c,b∈C;<(σ)>0,<(υ)>0 as:

        where the k-Pochhammer symbol(γ)n,kis defined by[1]:

        and the k-gamma function has the relation

        such that Γk(z)→Γ(z)if k→1.

        The generalized hypergeometric function represented as follows[6]:

        provided p≤q,p=q+1 and|z|<1 and(α)nis well known Pochhammer symbol(see[6]).The Fox-Wright generalizationpΨq(z)of hypergeometric functionpFqis given by(c.f.[7–9,15]):

        where Aj>0(j=1,2,···,p);Bj>0(j=1,2,···,q)and

        for suitably bounded value of|z|.

        The generalized k-Wright function introduced in[10]as:For k∈R+;z∈C,αi,βj∈and

        Also,we recall here the following definitions:

        Definition 1.1.Euler Transform:Let α,β∈C and<(α),<(β)>0,then the Euler transform of the function f(t)is defined by

        Definition 1.2.Laplace Transform:The Laplace transform of the function f(t)is defined as

        Definition 1.3.K-Transform:The K-transform with p as a complex parameter defined by

        Also,we need the following formula(see[13,page 78])

        Definition 1.4.Whittaker Transform:The integral transform

        where Wλ,μis the Whittaker function[12].

        2 Main results

        In this section,we give some integral transforms(for example,Euler,Laplace,Whittaker etc.)of generalized k-Bessel function given in(1.3).

        where2Ψ3is the Wright hypergeometric function defined by(1.7).

        Proof.In order to derive(2.1),we denote the L.H.S.of(2.1)by I1and then by using the definition of generalized k-Bessel function given in(1.3),we have

        Interchanging the integration and summation with suitable convergence conditions,we get

        which upon using the definition of Beta function gives

        Now using(1.4)and(1.5),we get

        In view of the definition of(1.7)we get the desired result.

        Corollary 2.1.If we take k=1,in Theorem 2.1,then we have the following integral transform

        Proof.Let I2denoted by the left hand side of Theorem 2.2.Applying(1.3)on the L.H.S.of(2.2),to get

        Interchanging the integration and summation allow us to write,

        In view of the definition of Laplace transform,we get

        Now by applying(1.5)in the above equation,we have

        which by using the definition(1.7),gives our desired result.

        Corollary 2.2.For k=1 in Theorem 2.2,we have

        Proof.Let I3denoted by the left hand side of Theorem 2.3.Applying(1.3)on the L.H.S.of(2.3),to get

        Interchanging the integration and summation allow us to write,

        Using the formula given in(1.12)in the above expression,we get

        By applying(1.5),we have

        In view of definition(1.7),we get the desired result.

        Corollary 2.3.For k=1 in Theorem 2.3,we get the following interesting integral transform

        In the following theorem,we derive the Whittaker transform of generalized k-Bessel function.Here,we recall the following results:

        where the Whittaker function Wλ,μ(t)is given in[12](also see[14]),and

        where Mλ,μ(t)is defined as

        Theorem 2.4.If k∈R+,λ,μ,β,b,c,γ,λ∈C,0,min{<(δ),<(λ)}>0,<(ρ?λ0)>0,then

        where Wλ0,μis the Whittaker function of second kind(see[1]).

        Proof.Let pt=v,then

        Interchanging the integration and summation allow us to write

        Using the formula for Whittaker transform(2.4),we get

        Applying(1.4)and(1.5),to get

        In view of(1.7),we get the desired result.

        Corollary 2.4.For k=1 in Theorem 2.4,we get

        Theorem 2.5.If k∈R+,λ,μ,β,b,c,γ,λ∈C,and,then

        Proof.Let pt=v,then

        Interchanging the integration and summation allow us to write

        On using(2.5),we get

        By applying(1.4)and(1.5),we obtain

        In view of(1.7),we get the desired result.

        Corollary 2.5.For k=1 in Theorem 2.5,we get

        Acknowledgements

        The authors would like to thank reviewer’s valuable comments and suggestions.

        亚洲av国产av综合av卡| 国产成人高清精品亚洲一区| 亚洲国产av综合一区| 五月天激情电影| 亚洲啪啪综合av一区| 亚洲熟妇大图综合色区| 国产福利一区二区三区在线观看| 亚洲成av人综合在线观看| 性生交大片免费看淑女出招| 亚洲电影中文字幕| 亚洲综合中文一区二区| 少妇无码av无码专线区大牛影院| 成人免费看吃奶视频网站| av无码天堂一区二区三区| 亚洲一区二区三区18| 日韩精品无码一区二区三区四区 | 长腿丝袜在线观看国产| 无码精品国产一区二区三区免费 | 东北女人一级内射黄片| 欧洲熟妇色xxxx欧美老妇多毛| 国产剧情福利AV一区二区| 久久精品成人一区二区三区蜜臀| 在线免费观看一区二区| 好屌草这里只有精品| 亚洲AV成人无码久久精品在| 白色白在线观看免费2| 久久久久亚洲av成人片| 国产欧美一区二区精品性色| 日韩av在线不卡一区二区三区| 成人自拍一二在线观看| 亚洲av无码久久精品狠狠爱浪潮| 亚洲AV秘 无码一区二p区三区| 亚洲精品综合一区二区| 日韩精品人妻中文字幕有码| 丰满少妇被猛男猛烈进入久久| 人妻系列无码专区久久五月天| 国产av剧情久久精品久久| 中国丰满人妻videoshd| 国产夫妻av| 国产一区二区视频在线看| 中国无码人妻丰满熟妇啪啪软件|