梁 源,達新宇,徐瑞陽,倪 磊,劉慧軍,張 喆
(空軍工程大學(xué)信息與導(dǎo)航學(xué)院,西安 710077)
由于移動通信具體快速、高效、靈活的特點,一經(jīng)提出研制并投入商用就獲得用戶的廣泛青睞,給人們的通信與交流方式帶來了前所未有的快捷與便利。與此同時,隨著人們對于通信語音話質(zhì)需求的提高,并伴隨著圖片、視頻等業(yè)務(wù)類型多樣性需求,移動通信對于傳輸數(shù)據(jù)的帶寬、載體移動性、傳輸效率等方面提出了更高要求。特別是,目前正緊鑼密鼓研制中的5G移動通信,作為其三大基本定義場景之一的“增強移動寬帶”(EMBB,enhanced Mobile Broadband),對于數(shù)據(jù)速率及抗載體移動、抗信道多徑提出了更為嚴苛的要求[1]。
關(guān)于移動通信相關(guān)技術(shù)的研究,很重要的一點就是對于通信環(huán)境中信道的研究,結(jié)合具體的信道特點采用相應(yīng)的信道均衡技術(shù)來最大程度的減少信道干擾,提升通信系統(tǒng)的可行性。關(guān)于移動通信衰落場景,主要可以分為兩類:平均路徑衰落和陰影衰落引起的大尺度衰落,以及由多徑、多譜勒頻移引起的小尺度衰落[2]。大尺度衰落在一定的時間與地域具有相對穩(wěn)定的特點,其分析與計算過程基本保持不變,因而目前關(guān)于信道的研究多集中在以多徑、多譜勒引起的小尺度衰落上,并且在小地區(qū)與短時間范圍內(nèi)呈現(xiàn)了很大差異。針對由多徑引起的時延擴展,相應(yīng)表現(xiàn)為時間彌散特性;以及傳播過程各路徑中由于相對運動帶來的多譜勒擴展,相應(yīng)表現(xiàn)為頻域彌散特性。因而可以將上述小尺度的信道模型統(tǒng)稱為雙彌散信道模型。
文中旨在對移動雙彌散信道進行建模分析,并從頻域與基帶等效、卷積、濾波等數(shù)字信號處理的基本原理出發(fā),并對其Matlab中編程實現(xiàn)進行定性與定量的分析研究,提出通用的移動雙彌散信道建模與Matlab仿真技巧。
對于實際無線信道而言,由于建筑物、高山、叢林等的遮擋、散射、衍射,最終從發(fā)射機到接收機的信號實際上是由多條路徑組合而成的。通過分析多徑合成信號的包絡(luò)情況,并根據(jù)是否存在直視信號,將多徑衰落分為瑞利衰落和萊斯衰落,其中瑞利衰落對應(yīng)無直視信號的情況[3]。
而針對于多徑信道,常見的建模類型有抽頭時延線模型(tapped-delay line,TDL)模型和基擴展模型(basis expansion model,BEM)[4-5]。由于TDL模型與經(jīng)典的數(shù)字信號處理形式具有一致性,因此文中主要以TDL模型展開分析研究。圖1給出了可變時延間隔的TDL模型,[a1(t),a2(t),…,aK(t)]分別是時延[τ1,τ2,…,τK]對應(yīng)的復(fù)系數(shù)[3]。由al(t),l=1,2,…,K是關(guān)于時間t的函數(shù),因而一般情況下,認為抽頭系統(tǒng)都是時變的。
圖1 可變時延間隔TDL基本模型
圖1對應(yīng)信道瞬時沖激響應(yīng)c(τ,t)表達式為:
(1)
從而輸入信號x(t)經(jīng)過信道c(τ,t)得到輸出y(t)的表達式為:
(2)
由于實際過程中,時延[τ1,τ2,…,τK]對應(yīng)不一定是系統(tǒng)采樣周期的整數(shù)倍,因而在實際處理過程中必須進行相應(yīng)的等效處理來使得最終的抽頭時延等效在整數(shù)倍周期采樣點上。由文獻[6]可知,利用sinc函數(shù)的內(nèi)插處理可以實現(xiàn)這一目的。從而可以得到等效抽取系數(shù)gn(t)的表達式為:
(3)
此處,B為等效基帶信號帶寬,B=1/TS,sinc是采樣函數(shù),且sinc(·)=sin(π(·))/(π(·))。理論上,當(dāng)n取-∞至+∞范圍的整數(shù)時,gn(t)與ak(t)在實現(xiàn)功能上可以完全等效,但是考慮實際情況,只要在精度允許范圍內(nèi)??闪頽∈[-N1,N2],且n為整數(shù),gn(t)在n小于-N1或大于N2時取值足夠小即可。這樣圖1中的可變時延擴展模型就轉(zhuǎn)化成了圖2中的固定間隔周期采樣抽頭線模型。
圖2 等效固定時延間隔TDL基本模型
圖2中輸出y(t)與輸入x(t)的對應(yīng)關(guān)系式為:
(4)
式中:*表示卷積符號;(τ,t)為瞬時沖激響應(yīng),滿足如下表達式:
(5)
由上述關(guān)于雙彌散信道的基本模型及理論公式可知,關(guān)于雙彌散信道的研究重點在于對其沖激響應(yīng)的研究,而沖激響應(yīng)又與TDL時延系統(tǒng)直接相關(guān)。
通過上一節(jié)中關(guān)于TDL建模及輸入輸出的理論分析,特別是結(jié)合圖2與式(4)的研究分析可知,關(guān)于信道的實際處理過程可以對應(yīng)轉(zhuǎn)化為周期采樣點上數(shù)字信號的處理過程。下面通過實際的Matlab處理技巧,結(jié)合帶通與低通復(fù)等效過程、卷積定理在數(shù)字信號處理的具體實現(xiàn)兩方面,來進一步論證Matlab的仿真理論基礎(chǔ)。
令x(t)表示中心頻域為fc的頻帶信號,xbase(t)對應(yīng)為其等效基帶信號[7]。相應(yīng)根據(jù)帶通信號低通復(fù)等效原理,存在如下關(guān)系式:
(6)
從式(6)可知,除了載波參數(shù)fc以外,xbase(t)包含了x(t)中包括幅度、相位的全部有用信息。與信號復(fù)等效對應(yīng)的是系統(tǒng)復(fù)等效,如式(7)所示為輸入信號經(jīng)過沖激響應(yīng)為h(t)的系統(tǒng)得到輸出信號y(t)的過程[8]:
y(t)=x(t)*h(t)
(7)
x(t)、h(t)和y(t)分別是原始數(shù)據(jù)信號、信道沖擊響應(yīng)、經(jīng)過信道處理的輸出信號。頻帶卷積定理的等效基帶形式為[9]:
ybase(t)=xbase(t)*hbase(t)
(8)
式中:xbase(t)的表達式如式(6)所示;hbase(t)和ybase(t)的表達式如式(9)、式(10)所示:
(9)
(10)
且式(9)、式(10)中的希爾波特變換及載波形式及基本運算符號與式(6)中具有一致性。
上述關(guān)于頻帶信號與基帶信號的復(fù)等效及其卷積定理的復(fù)等效分析,說明了Matlab中基帶等效仿真是合理可行的。且在理想情況下,基帶處理與頻帶處理過程完全等效。
考慮到實際通信信號處理以離散信號處理為主,而卷積形式與有限沖激響應(yīng)(finite impulse response,FIR)濾波器具有一致性,并且可以利用Matlab中分母項為1,分子項為信道復(fù)系數(shù)的濾波器來等效實現(xiàn)[10]。filter的等效結(jié)構(gòu)如圖3所示。
圖3 數(shù)字濾波器結(jié)構(gòu)示意圖
從數(shù)字信號處理角度分析,對應(yīng)z變換域的輸入輸出關(guān)系式為:
(11)
其中,z為相應(yīng)變換域的基本符號,且滿足z=e(-j2π/N)。與FIR結(jié)構(gòu)相一致。
由圖1及圖2可知,相應(yīng)的實現(xiàn)過程實則為一特定情形的FIR濾波器,且濾波器的分母系數(shù)為1,則相應(yīng)的信道分析過程,對于輸入信號x經(jīng)過信道系數(shù)為chan的衰落信道,則可以利用filter(chan,x)來實現(xiàn)(此處調(diào)用filter,默認了分母項系數(shù)恒為1)。結(jié)合TDL模型結(jié)構(gòu)特點,且可以利用filter進行卷積處理。對于連續(xù)時間信號,結(jié)合式(7),由卷積定理可以得出相應(yīng)的頻域與表達式為:
Y(jω)=X(jω)H(jω)
(12)
其中,X(jω)、H(jω)和Y(jω)分別是x(t)、h(t)和y(t)的連續(xù)傅里葉變換。
而在實際的數(shù)字信號處理過程,卷積定理的描述為:“循環(huán)卷積對應(yīng)頻域相乘”[11],即具體實現(xiàn)如式(13)、式(14)所示:
(13)
式中:○N表示N點循環(huán)FFT變換符號;(·)〈N〉表示數(shù)據(jù)的N點循環(huán)右移。
Y(k)=X(k)H(k)
(14)
由式(12)與式(14)的形式可知,時域上的卷積對應(yīng)頻域上的相乘,這說明頻域上進行信道均衡可以將復(fù)雜的卷積形式利用乘法來等效實際。卷積定理的提出及使用,為信道均衡提供了一種簡單易行的實現(xiàn)方案,在第3部分的試驗3中予以詳細的仿真測試論證。同時,該方案也為信道估計提供了一種簡單易行的解決方案。
綜合上述關(guān)于帶通與低通復(fù)等效的關(guān)系,以及FIR濾波器與卷積及卷積定理的定量關(guān)系式,可以推知利用Matlab進行信道衰落及性能分析的基本處理思路。由于Matlab自帶的模塊化編程工具Simulink與Matlab代碼編程具有一致性,只是在Simulink中用戶能夠更加直觀而簡便的調(diào)用各種接口與參數(shù)而已[12-13]。因此,下面僅從Matlab代碼層面以rayleighchan代表的瑞利信道闡明仿真測試分析基本思路:
1)信道復(fù)系數(shù)的設(shè)計
結(jié)合雙彌散信道的具體時延向量tau(以s為單位)及延時功率分布特點得出的時延對應(yīng)信號功率pdb(以dB為單位),并結(jié)合實際通信系統(tǒng)中最大多譜勒時延fd、系統(tǒng)采樣周期ts,最終利用函數(shù)h=rayleighchan(ts,fd,tau,pdb)來產(chǎn)生與tau維數(shù)相一致的多徑系數(shù)。需要注意的是,此處產(chǎn)生的系數(shù)是與式(2)中ak(t)相對應(yīng)的系數(shù)。pdb一般由時延功率譜決定,且以指數(shù)或者均勻分布的最為常見[14]。
2)對輸入信號x進行衰落處理
y=filter(h,x),此處調(diào)用filter函數(shù),默認產(chǎn)生的復(fù)系數(shù)h作為FIR濾波器(如式(11)所示)的分子項系數(shù),而分母項系數(shù)默認只有a(1),且a(1)=1。
3)結(jié)合卷積定理進行信道估計及均衡處理
利用式(13)與式(14)對應(yīng)的處理技巧,對于衰落進行估計,從而完成信道估計及進行后續(xù)的信道均衡等操作。
為了驗證圖中時延采樣模型及等效基帶復(fù)處理,以及Matlab中利用filter及卷積定理進行相關(guān)的仿真處理的正確性,結(jié)合第2部分關(guān)于雙彌散信道的具體處理思路,進行了如下3個仿真實驗。下面3個仿真實驗都以瑞利衰落為通信場景,且默認采用jakes的功率譜分布形式。
試驗1抽頭系數(shù)等效變換
仿真條件:
數(shù)據(jù)速率:50 Kbit/s,最大多譜勒頻移:80 Hz,單次測試數(shù)據(jù)長度為500,基帶調(diào)制方式為2PSK。令多徑時延不為采樣間隔整數(shù)周期倍,對應(yīng)的時延與衰落因子分別是:[0 2.3e-5]s,[-3 -3]dB,則信道具體函數(shù)形式為:
c1=rayleighchan(5e+4,80,[0 2.3e-5],[-3 -3])
結(jié)果分析:
利用Matlab自帶的圖形用戶接口(graphical user interface,GUI)工具進行信道性能測試分析[15],圖4給出了相應(yīng)沖擊響應(yīng)(impulse response,IR)幅度的分布圖。由于此時多徑時延不為采樣間隔整數(shù)周期倍,因而在帶限情況下的等效點取值是實際IR點對應(yīng)的sinc函數(shù)內(nèi)插求和[16],其中求和的長度為實際IR點數(shù)(此處為2),內(nèi)插sinc的范圍是帶限等效點數(shù)(此處為10)。
為了進一步論證圖4結(jié)果的正確性,對試驗1的c1處理數(shù)據(jù)前后的結(jié)果進行定量分析。表1與c1對應(yīng),并對x、y分別對應(yīng)c1信道處理前后的數(shù)據(jù),分別取28、29個數(shù)據(jù)點對應(yīng)的信道IR參數(shù),得到的信道IR點組分別為[h1(28)h2(28)]、[h1(29)h2(29)]。g(27)、g(28)是[h1(28)h2(28)]、[h1(29)h2(29)]分別對應(yīng)的帶限等效點取值,此時g(27)、g(28)都是包含10個元素的數(shù)組。利用式(13)中卷積運算來求解等效的輸出:
圖4 信道沖激響應(yīng)幅度譜
(15)
表1 時延為整數(shù)倍周期采樣時衰落處理結(jié)果
試驗2理論衰落特性驗證
仿真條件:
利用Matlab自帶的berfading調(diào)用2DPSK基本模式進行理論衰落信道曲線性能測試,而其仿真的前提是認為兩個符號之間的衰落變化很微小,即相應(yīng)信道復(fù)系數(shù)變化不大[14]。為了使得單個處理符號內(nèi)的數(shù)據(jù)滿足準(zhǔn)靜態(tài)過程,即令1/(fd×100×bitRate)始終為1,從而令數(shù)據(jù)速率為bitRate=20 Kbit/s,最大多譜勒頻移fd=200 Hz,進而準(zhǔn)靜態(tài)過程維持在一個符號間隔內(nèi),此處,信噪比取值范圍是:EbN0=[0∶2∶20]dB。
結(jié)果分析:
相應(yīng)仿真結(jié)果如圖5所示,由于1/(100×fd)=1/(20 000)時間內(nèi)對應(yīng)系統(tǒng)的準(zhǔn)靜態(tài)過程,而信號傳輸?shù)姆柭蕿?0 000 bit/s,這樣相應(yīng)的兩個符號內(nèi)可以認為衰落變化非常緩慢,從而滿足Matlab中berawgn關(guān)于2DPSK“兩個符號之間的衰落變化很微小”的前提假設(shè),從而圖5中實測得到的誤比特率(bit error rate,BER)性能與理論的性能基本一致。
圖5 2DPSK衰落性能對比圖
試驗3OFDM雙彌散信道估計與頻域均衡
仿真條件:
采用文獻[17]中的典型城市(typical urban,TU)衰落場景,時延向量為tau=[0 0.2 0.4 0.6 0.8 1.2 1.4 1.8 2.4 3.0 3.2 5.0]×10-6s,延時功率譜向量為pdB=[-4 -3 0 -2 -3 -5 -7 -5 -6 -9 -11 -10]dB;仿真幀數(shù)Nfrm=10 000,信噪比EbN0=[0∶2∶30]dB。一個OFDM符號長度為64(即IFFT變換長度為64),循環(huán)前綴(cyclic prefix,CP)長度為16,其總長度為80。在單次循環(huán)中每6個OFDM符號前面插入一訓(xùn)練符號(為相應(yīng)的頻域信號形式)用于進行信道估計,同樣相應(yīng)添加長度為16的循環(huán)前綴。循環(huán)前綴一方面是為了克服OFDM符號間的干擾,另一方面為了使得卷積變成循環(huán)卷積。OFDM符號速率為10 000幀/s;則相應(yīng)的系統(tǒng)采樣周期為:1/(80×10 000)=(1.25e-6)s。通過分析可知該情況下,循環(huán)前綴的總時間長度大于多徑的最大時延長度。對于解調(diào)過程的均衡采用最小均方誤差(MMSE,minimum mean square error)方式?;鶐д{(diào)制方式選用QPSK和16QAM。
結(jié)果分析:
為了分析多譜勒頻移對于確定信道模型下系統(tǒng)接收性能的影響,分別取多譜勒頻移fd=[10 60]Hz,得到最終的接收性能如圖6所示。從圖6結(jié)果可知,對于不同的基帶調(diào)制方式,在相同的通信場景下,QPSK的抗雙彌散干擾性能要優(yōu)于16QAM,這主要是因為從基帶星座圖角度考慮可知,16QAM星座點間的等效距離要大于QPSK,因而16QAM具有的抗噪聲及干擾能力更差。
圖6 OFDM均衡接收性能對比圖
同時對比圖6(a)、圖6(b)中不同fd情況下系統(tǒng)BER性能可知,當(dāng)fd大于60 Hz時,對應(yīng)的BER性能已經(jīng)出現(xiàn)10-2的誤碼平層,這主要是由于仿真2中提及的準(zhǔn)靜態(tài)過程所引起。由于fd變大,通信系統(tǒng)相應(yīng)的準(zhǔn)靜態(tài)過程不斷變小,而試驗測試中的基本前提假設(shè)是6個OFDM符號對應(yīng)時間內(nèi)信道特性基本保證不變。因而,當(dāng)fd增大時,使得系統(tǒng)信道出現(xiàn)較快的衰落波動,原始的信道估計必然不能實時準(zhǔn)確地反映出通信系統(tǒng)真實的信道衰落情況,因而最終的頻域均衡效果并不理想。
文中通過對移動雙彌散信道的模型構(gòu)建,結(jié)合復(fù)等效處理、卷積及濾波等相關(guān)數(shù)字信號處理理論,提出了雙彌散信道Matlab仿真的基本思路。該處理思路去除復(fù)雜的相關(guān)時間、相關(guān)帶寬概念,建立了實際信道在Matlab仿真的對應(yīng)技巧。仿真結(jié)果表明處理思路的正確性,能為通用的雙彌散信道建模與仿真提供重要參考。下一步工作計劃是對于信道的fd、多徑數(shù)以及復(fù)雜的延時功率分布綜合考慮,來更加定量化地分析雙選信道,從而實現(xiàn)通信系統(tǒng)性能最優(yōu)化。