趙立新,張增輝,王成義,薦世春,劉 童,崔東云,丁筱玲
?
基于變距光電傳感器的小麥精播施肥一體機監(jiān)測系統(tǒng)設計
趙立新1,張增輝1,王成義2,薦世春3,劉 童1,崔東云1,丁筱玲1※
(1. 山東農(nóng)業(yè)大學機械與電子工程學院,泰安 271018; 2. 山東農(nóng)業(yè)大學信息科學與工程學院,泰安 271018; 3. 山東省農(nóng)業(yè)機械科學研究院,濟南 250100)
為實現(xiàn)小麥精播施肥過程的實時監(jiān)測,確保播種作業(yè)質量,該文設計了一種基于變距光電傳感器的小麥精播施肥一體機監(jiān)測系統(tǒng)。該監(jiān)測系統(tǒng)以STM32單片機硬件系統(tǒng)為下位機,通過反射式光電傳感器和旋轉編碼器分別獲取種肥流動與種肥軸轉動信息,判斷精播機運行狀態(tài),并通過Modbus通訊協(xié)議將信息傳輸至MCGS觸摸屏上位機人機交互界面實時顯示。下位機排種監(jiān)測電路仿真測試結果表明,放大電路對種管光電傳感器檢測距離的改變值為4~7 mm;上下位機通訊測試結果表明,數(shù)據(jù)傳輸內容準確率為100%;監(jiān)測系統(tǒng)樣機試驗測試結果表明,故障報警準確率≥92.5%,種肥缺失、堵塞、泄漏響應時間分別≤0.2、≤0.3、≤0.3 s。該監(jiān)測系統(tǒng)實現(xiàn)了對小麥精播施肥機作業(yè)的實時高精度監(jiān)測,有助于提高小麥精播機作業(yè)質量。
監(jiān)測;設計;傳感器;精播施肥機;變距;MCGS觸摸屏
精密播種已成為現(xiàn)代播種技術的主要發(fā)展方向[1],播種機作業(yè)質量會直接影響小麥的生長和產(chǎn)量。面對復雜的田間墑情、機器震動、嘈雜噪聲等不利因素以及種肥管的全封閉環(huán)境,僅采用視聽方式難以實時了解播種機的運行狀態(tài),當出現(xiàn)種肥管堵塞或種肥缺失等問題時會造成大面積缺苗斷垅的狀況從而導致減產(chǎn)[2-5],同時機具在地頭轉向過程中會因種肥掉落而造成浪費。因此研制與精播機配套的監(jiān)測系統(tǒng)具有重要的生產(chǎn)意義和經(jīng)濟效益。
目前,國外對精播機監(jiān)測系統(tǒng)進行了較多研究,美國Precision Planting公司設計的基于光電傳感器的MeterMAx試驗臺功能齊全,可迅速準確地檢測播種故障以及播種參數(shù),但該產(chǎn)品在國內使用時需配備專屬電源[6-7],該公司研制的WaveVision監(jiān)測器解決了排種過程中多粒種子同時通過導種管無法區(qū)分的問題,提高了排種性能監(jiān)測的可靠性及準確性[8]。Karayel等[9]設計的高速攝像系統(tǒng)實現(xiàn)了對小麥和大豆布種粒距與落種速度的檢測,但該系統(tǒng)圖像的處理過程無法做到在線監(jiān)測。Navid等[10]在Karayel的研究基礎之上增加圖像數(shù)量并結合MATLAB處理數(shù)據(jù)的方法獲取更加準確的監(jiān)測結果。美國John Deere公司基于光電傳感器研發(fā)的SeedStar系列監(jiān)測儀將播種監(jiān)測推向實用化,該公司的第二代產(chǎn)品還可實時進行播種參數(shù)設置[11-12]。國內對精播機監(jiān)測系統(tǒng)的研究起步較晚,但成果顯著[13],張繼成等[14-15]設計了一種基于光敏電阻的監(jiān)測裝置能夠實現(xiàn)大型精密播種施肥機在播種施肥作業(yè)過程中對每個作業(yè)單體的實時監(jiān)測;Lu等[16-20]基于對射式紅外檢測方法設計的播種質量監(jiān)測系統(tǒng)可對播種過程出現(xiàn)的故障情況發(fā)出聲光報警信號;丁幼春等[21-24]利用光纖傳感器法、聚偏氟乙烯(PVDF)壓電薄膜法以及時間間隔法分別對油菜等小粒徑排種器的排種性能監(jiān)測進行了研究;周利明等[25-26]基于電容器電容隨板間介質變化原理開發(fā)的電容式傳感器可對小麥、玉米的排種性能進行在線監(jiān)測;陳進等[27-28]運用高速攝像系統(tǒng)對精密排種器的種子排種過程進行圖像采集進而處理得到排種器性能的方法;胡少興等[29]提出了基于神經(jīng)網(wǎng)絡的種子位置智能檢測方法,該方法可全面監(jiān)測種子的運動情況。
實際應用中,圖像處理法雖可高精度監(jiān)測落種過程,但設備昂貴、數(shù)據(jù)量大,難以實現(xiàn)實時監(jiān)測;電容法和壓電感應法面對機具震動以及復雜的田間墑情難以保證精度;光電感應法成本低廉、便于維護,但傳統(tǒng)的對射式光電傳感器安裝對精度要求較高,易受機具震動影響。實驗室前期設計研究了電控寬幅小麥精播施肥機,達到了均勻播種的目的[30]。本研究在此基礎上設計了基于變距光電傳感器的小麥精播施肥一體機監(jiān)測系統(tǒng),該系統(tǒng)以反射式光電管為監(jiān)測傳感器,通過單片機控制傳感器根據(jù)需要改變檢測距離,結合通過MODBUS傳輸協(xié)議接收主控系統(tǒng)利用旋轉編碼器測取的種肥軸轉速,同時監(jiān)測排種施肥狀況,安裝方便、運行穩(wěn)定,實現(xiàn)了免耕精播施肥機在作業(yè)過程中對排種、排肥器單體的實時監(jiān)測。
監(jiān)測系統(tǒng)的結構分為下位機STM32F103硬件電路與上位機觸摸屏人機交流界面2部分。下位機硬件電路由OH-1021光電傳感器(日本ALEPH公司生產(chǎn),檢測距離2~30 mm)、信號整形放大電路、編碼器轉速采集模塊、通訊模塊、中央處理器及外圍電路組成。上位機人機交流部分采用MCGS觸摸屏,觸摸屏放置于駕駛室內便于駕駛員及時觀察機具運行狀況。系統(tǒng)結構如圖1所示。
圖1 小麥精播施肥一體機監(jiān)測系統(tǒng)結構示意圖
圖2為傳感器安裝及工作過程示意圖。監(jiān)測系統(tǒng)排種管與排肥管均采用PVC-U管,該管壁厚2 mm,外徑28 mm,該管內壁光滑,對流體阻力小,透光性強,不會因為內壁堆積少量的灰塵而影響紅外光線的透過性。排種與排肥監(jiān)測傳感器均采用OH-1021反射式光電傳感器,可通過改變傳感器供電電壓來改變探測距離,傳感器的檢測距離與供電電壓成正相關,如圖3所示。當有物體阻擋紅外光線時,傳感器輸出低電平;無物體阻擋紅外光線時,傳感器則輸出高電平。
排種管中小麥顆粒處于充滿狀態(tài),小麥顆粒經(jīng)排種管流入排種器(如圖4a所示)。設定排種傳感器的初始檢測距離為5 mm,即管壁厚度(2 mm)與單粒小麥短徑(3 mm)的總和。正常工作時,顆粒流動經(jīng)過光電傳感器監(jiān)測位置時反射紅外光線,傳感器輸出經(jīng)歷高電平-低電平-高電平的變化過程。
紅外光線照射于種管壁上2個顆粒之間的空隙時,故障類型無法區(qū)分。通過單片機控制IO口輸出電平控制三極管的導通,改變傳感器檢測距離。當單片機輸出高電平時,三極管導通,傳感器電壓提升,檢測距離增加,進而了解種管種子存量情況,確定故障類型。
肥料從排肥器排出后落入排肥管(如圖4b所示),肥料顆粒運動至光電傳感器監(jiān)測位置時反射紅外光線,傳感器輸出經(jīng)歷高電平-低電平-高電平的變化過程,單片機監(jiān)測傳感器的輸出狀態(tài)。具體故障判斷類型如表1所示。
圖2 傳感器安裝及工作過程示意圖
圖3 傳感器檢測距離與供電電壓關系
圖4 傳感器監(jiān)測示意圖
表1 故障監(jiān)測判斷
注:堵種:排種器故障造成堵轉;缺種:種箱中麥種缺失;漏種:因毛刷磨損造成的種子泄漏。堵肥:排肥器故障造成堵轉;缺肥:肥箱肥料缺失;漏肥:因排肥器毛刷磨損造成的肥料泄漏。
Note: Blocking wheat: Lock-rotor in case of seeding device fault; Lack wheat: lack of seeds in seed box; Leaking wheat: leaking of wheat in case of brush worn. blocking fertilizer: Lock-rotor in case of fertilizing device fault; lacking fertilizer: lack of fertilizer in fertilizer box; leaking fertilizer: leaking of fertilizer in case of brush worn.
主控系統(tǒng)采用1 000線歐姆龍旋轉編碼器采集排種軸轉速和排肥軸轉速。系統(tǒng)驅動直流電機屬于感性負載,轉速突變的可能性較小,為最大程度降低監(jiān)測滯后性對監(jiān)測系統(tǒng)程序故障判斷過程造成的影響,主控系統(tǒng)以100 Hz頻率向監(jiān)控系統(tǒng)發(fā)送種肥軸轉速。
監(jiān)測系統(tǒng)硬件電路包括排種檢測變距電路、排肥監(jiān)測硬件電路、STM32F103微處理器最小系統(tǒng)和TTL轉485通訊模塊。排種故障監(jiān)測電路的放大器件選取9013NPN三極管,三極管基極連接單片機I/O口。傳感器監(jiān)測供電部分對于三極管放大電路屬于有源負載。單片機輸出低電平時,傳感器電壓和檢測距離均初始設置;單片機輸出高電平時,三極管處于放大狀態(tài),負載電壓提升,檢測距離增加;單片機再次輸出低電平時,負載電壓與監(jiān)測距離再次回到初始狀態(tài)。排種監(jiān)測電路如圖5a所示。
排肥監(jiān)測電路包括信號采集部分和電壓比較放大電路,如圖5b所示。為避免傳感器輸出電平與單片機輸入引腳電平不匹配,本研究采用日本Sonteen公司的LM339芯片對傳感器的輸出信號進行整形濾波,單片機采集比較器的輸出信號從而獲取排肥管中肥料下落情況。
圖5 下位機電路原理圖
該監(jiān)控系統(tǒng)的軟件由下位機監(jiān)測處理程序和上位機程序組成。下位機監(jiān)測處理程序采用C語言編寫,易于移植,可讀性強;上位機程序采用圖形化界面,用于顯示播種機排種和排肥的工作狀況。
下位機監(jiān)測處理程序采用時間間隔任務循環(huán)程序設計方法,以TIM2作為基準時間劃分任務時間片段,循環(huán)執(zhí)行數(shù)據(jù)采集和數(shù)據(jù)通信等任務。
排種管光電傳感器安裝于排種器上方,當紅外光線照射在緊貼管壁的2個小麥顆??障稌r,無法準確判定故障類型,此時啟動變距任務函數(shù)改變傳感器檢測距離,檢測排種管小麥顆粒數(shù)量,若有小麥剩余則傳感器輸出為低電平,此時排種管出現(xiàn)堵種故障;若無小麥剩余則傳感器輸出為高電平,此時為缺種故障。排種檢測處理算法流程如圖6a所示。
排肥光電傳感器安裝于排肥器下方,根據(jù)數(shù)據(jù)采集函數(shù)和排肥軸轉速判定排肥器的運行狀態(tài),排肥故障監(jiān)測流程如圖6b所示。
注:VS為排種軸轉速,r·min-1;VF為排肥軸轉速,r·min-1。
上位機觸摸屏人機交流界面的功能是幫助駕駛員實時了解播種施肥過程的種肥狀態(tài)信息,及時處理故障問題。
上位機的后臺數(shù)據(jù)更新采用循環(huán)策略中的ReadP(批量讀?。┟钜?00 Hz頻率向下位機發(fā)送機具運行狀態(tài)請求,界面腳本程序以500 Hz頻率刷新來自下位機的應答信號,保證下位機的數(shù)據(jù)能實時顯示在上位機報警界面。
本研究中樣機設計中排種器與排肥器各有8個,在報警界面中分別用8個指示燈代表各排種器和排肥器的工作狀態(tài),每個指示燈下方均有3個動畫標簽代表不同的故障類型(堵種,缺種,漏種;堵肥,缺肥,漏肥)。當指示燈顯示綠色時代表機具工作正常,當指示燈顯示紅色時代表有故障發(fā)生,同時具體故障類型顯示于指示燈下方。
為確定電路設計中2個電位器的最佳比例值,在試驗之前進行了電路仿真。
利用Multisim電路仿真軟件建立下位機電路模型,如圖7所示。開關S1初始狀態(tài)下連接GND(ground,大地)(即IO輸出低電平),電位器A的比例值為0,三極管處于截止狀態(tài)。調節(jié)電位器B的值,負載電壓即為變距前的傳感器電壓,結果表明負載電壓與電位器B的比例值呈正相關。根據(jù)傳感器供電電壓與檢測距離關系得知,當傳感器檢測距離為5 mm時,負載端電壓為2.646 V(如圖3點所示),此時電位器B的比例值為92%(如圖8a所示)。
注:2N2222A代表實際電路的9013NPN三極管;開關S1模擬單片機輸出電平狀態(tài);XMM1、XMM2與XMM3為電壓表;Key=A和Key=B分別表示通過鍵盤A和B調整電位器比例值。
調節(jié)電位器A的比例值,分別記錄不同比例值時開關1連接3.3 V電源和GND(I/O輸出高低電平)時的負載電壓,電位器A比例值與負載電壓關系如圖8b所示,由圖8b可知電位器A的比例值為84%時負載壓差最大,此時可最大程度改變探測距離。
注:V1為開關S1連接至3.3 V電源時負載電壓;V2為開關S1連接至GND(Ground)時負載電壓;V3為V1與V2的電壓差值;V4為開關S1連接至3.3 V電源時負載電壓;V5為開關S1連接至GND時負載電壓;V6為V4與V5的電壓差值;L1為開關S1連接至3.3V電源時傳感器檢測距離;L2為開關S1連接至GND時傳感器檢測距離;L3為L1與L2的距離差值。
設定電位器A的比例值為84%,微調電位器B的比例值,對比開關S1分別連接GND與3.3V電源時的負載電壓。仿真結果如圖8c所示,電壓差值為0.413~0.646 V,可使光電傳感器檢測距離增加4~7 mm(如圖8d所示,即圖3中點到點的變化),此壓差的變化足以解決紅外光線位于管壁上2個顆粒之間的空隙時,無法判定故障的問題。
為檢測精播施肥一體機監(jiān)測系統(tǒng)的技術指標與可靠性,在課題組前期研制的寬幅小麥免耕精播施肥一體機的基礎上,安裝了基于變距光電傳感器的監(jiān)測系統(tǒng)。于2016年10月在山東大華機械有限公司試驗田內進行監(jiān)測系統(tǒng)的檢測試驗。試驗所用小麥品種為“濟麥17”,其含水率為11.8%;肥料選取齊商化肥廠生產(chǎn)的控釋摻混肥料。圖9為試驗現(xiàn)場。
圖9 試驗現(xiàn)場
1)種肥缺失監(jiān)測試驗
在種肥箱內分別放置0.5 kg麥種與5 kg復合肥料,啟動播種機進行播種施肥試驗,當出現(xiàn)種肥缺失時,人為添加同等質量種肥顆粒,持續(xù)播種。拖拉機帶動機具以不同速度向前行進,使用毫秒計時器記錄各排種器和排肥器種肥實際缺失到系統(tǒng)種肥缺失報警的時間間隔,并統(tǒng)計報警次數(shù),測試重復5次。
2)種肥堵塞監(jiān)測試驗
種肥堵塞監(jiān)測試驗采用塑料袋堵塞落種口和落肥口的方式進行。啟動播種機進行播種試驗,使用毫秒計時器記錄各排種器和排肥器種肥實際堵塞到系統(tǒng)種肥堵塞報警的時間間隔,并統(tǒng)計報警次數(shù),機具以不同速度進行測試,試驗重復5次。
3)種肥泄漏監(jiān)測試驗
種肥泄漏監(jiān)測試驗采用人為制造種肥泄漏故障的方式進行,將種肥管與排種器和排肥器分離,模擬種肥泄漏灑落過程。啟動監(jiān)測系統(tǒng),使用毫秒計時器記錄各排種器和排肥器種肥實際泄漏到系統(tǒng)泄漏報警的時間間隔,并統(tǒng)計報警次數(shù),模擬不同種肥泄漏流速,試驗重復5次。
試驗結果如表2所示,由試驗數(shù)據(jù)得知,種肥缺失報警監(jiān)測準確率均≥95%,響應時間均≤0.2 s;監(jiān)測系統(tǒng)種肥堵塞監(jiān)測準確率均≥95%,響應時間均≤0.3 s;監(jiān)測系統(tǒng)種肥泄漏監(jiān)測準確率均≥92.5%,響應時間均≤0.3 s,系統(tǒng)能夠迅速準確的對各種運行故障進行報警。
注:監(jiān)測精度=系統(tǒng)檢測次數(shù)/人工統(tǒng)計次數(shù)×100%,即系統(tǒng)監(jiān)測準確率。
Note: Check =Check by system/Check by artificial ×100%, that is, the system check accuracy.
1)該研究設計了一種基于變距光電傳感器的小麥精播施肥一體機監(jiān)測系統(tǒng),該系統(tǒng)下位機采用反射式光電傳感器和旋轉編碼器分別獲取種肥流動與種肥軸轉動信息,判斷精播機運行狀態(tài)(正常、堵塞、缺失和泄漏),并通過Modbus通訊協(xié)議將狀態(tài)信息傳輸至人機界面顯示,實現(xiàn)精播施肥一體機作業(yè)過程的實時監(jiān)測。
2)運用Multisim對監(jiān)控系統(tǒng)排種監(jiān)測電路進行仿真與試驗測試,結果表明:放大電路對排種管光電傳感器檢測距離的改變值為4~7 mm,該距離能有效調整傳感器檢測距離。
3)對監(jiān)控系統(tǒng)進行樣機故障模擬測試,結果表明:系統(tǒng)報警響應準確,故障監(jiān)測準確率≥92.5%;報警響應速度快,種肥缺失、堵塞、泄漏響應時間分別≤0.2、≤0.3、≤0.3 s。
田間試驗過程中,偶爾會出現(xiàn)漏種(漏肥)的誤報、響應延遲等現(xiàn)象,分析原因:1)外界環(huán)境噪聲干擾了數(shù)據(jù)的傳輸;2)機器振動影響了反射式光電傳感器的固定位置。因此后續(xù)工作主要為研究噪聲干擾濾除算法、設計具有防震功能的傳感器固定裝置進而提高系統(tǒng)監(jiān)測準確率。
[1] 李潔,趙立新,畢建杰,等. 小麥雙線精播智能控制系統(tǒng)的設計[J]. 農(nóng)業(yè)工程學報,2012,28(增刊1):134-140.
Li Jie, Zhao Lixin, Bi Jianjie, et al. Design of intelligent control system for two-row precise seeding of wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(Supp.1): 134-140. (in Chinese with English abstract)
[2] 劉翔宇,叢錦玲,坎雜,等. 基于反射式光電感應的精量播種機漏播監(jiān)測系統(tǒng)研究[J]. 江蘇農(nóng)業(yè)科學,2017,45(11):164-167.
[3] 張曉輝,趙秀珍,李法德,等. 精密播種機工況自動監(jiān)控及播量數(shù)顯系統(tǒng)的研制[J]. 農(nóng)業(yè)工程學報,1997,13(2):169-172.
Zhang Xiaohui, Zhao Xiuzhen, Li Fade, et al. Development of automatic monitor and digital seed rate display system of precision drill[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 1997, 13(2): 169-172. (in Chinese with English abstract)
[4] 張錫智,李敏,孟臣. 精密播種機智能監(jiān)測控制系統(tǒng)的研制[J]. 黑龍江八一農(nóng)墾大學學報,2002,14(4):28-31.
Zhang Xizhi, Li Min, Meng Chen. Research on aptitude watch and control system for precision seeder[J]. Journal of Heilongjiang Bayi Agricultural University, 2002, 14(4): 28-31. (in Chinese with English abstract)
[5] 張錫志,李敏,孟臣. 精密播種智能監(jiān)測儀的研制[J]. 農(nóng)業(yè)工程學報,2004,20(2):136-139.
Zhang Xizhi, Li Min, Meng Chen. Research and development of precision seeding intelligent monitor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(2): 136-139. (in Chinese with English abstract)
[6] 和賢桃,郝永亮,趙東岳,等. 玉米精量排種器排種質量自動檢測儀設計與試驗[J]. 農(nóng)業(yè)機械學報,2016,47(10):19-27.
He Xiantao, Hao Yongliang, Zhao Dongyue, et al. Design and experiment of testing instrument for maize precision seed meter’s performance detection[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(10): 19-27. (in Chinese with English abstract)
[7] 劉廣玉,胡和興,楊麗娜,等. MeterMax精密排種器試驗臺簡介[J]. 農(nóng)業(yè)機械,2011(17):102-104.
[8] 丁幼春,王雪玲,廖慶喜. 基于時變窗口的油菜精量排種器漏播實時檢測方法[J]. 農(nóng)業(yè)工程學報,2014,30(24):11-21. Ding Youchun, Wang Xueling, Liao Qingxi. Method of real-time loss sowing detection for rapeseed precision metering device based on time changed window[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(24): 11-21. (in Chinese with English abstract)
[9] Karayel D, Wiesehoff M, Ozmerzi A, et al. Laboratory measurement of seed drill seed spacing and velocity of fall of seeds using high-speed camera system[J]. Computers & Electronics in Agriculture, 2006, 50(2): 89-96.
[10] Navid H, Ebrahimian S, Gassemzadeh H R, et al. Laboratory evaluation of seed metering device using image processing method[J]. Australian Journal of Agricultural Engineering, 2011, 2: 1-4.
[11] 車宇,偉利國,劉婞韜,等. 免耕播種機播種質量紅外監(jiān)測系統(tǒng)設計與試驗[J]. 農(nóng)業(yè)工程學報,2017,33(增刊1):11-16.
Che Yu, Wei Liguo, Liu Xingtao, et al. Design and experiment of seeding quality infrared monitoring system for no-tillage seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(Supp.1): 11-16. (in Chinese with English abstract)
[12] John D. Monitoring and documentation [EB/OL]. (2015-08-04) [2016-01-08]. http://www.deere.com/en_US/parts/parts_by_ industry/ag/seeding/monitoring/monitoring.page
[13] 宋鵬,張俊雄,李偉,等. 精密播種機工作性能實時監(jiān)測系統(tǒng)[J]. 農(nóng)業(yè)機械學報,2011,42(2):71-74.
Song Peng, Zhang Junxiong, Li Wei, et al. Real-time monitoring system for accuracy for precision seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(2): 71-74. (in Chinese with English abstract)
[14] 張繼成,陳海濤,歐陽斌林,等. 基于光敏傳感器的精密播種機監(jiān)測裝置[J]. 清華大學學報自然科學版,2013,53(2):265-268,273.
Zhang Jicheng, Chen Haitao, Ouyang Binlin, et al. Monitoring system for precision seeders based on a photosensitive sensor[J]. Journal of Tsinghua University Science and Technology, 2013, 53(2): 265-268, 273. (in Chinese with English abstract)
[15] 竇鈺程,歐陽斌林,陳海濤. 光敏式氣吸播種機監(jiān)測裝置研究[J]. 東北農(nóng)業(yè)大學學報,2010,41(9):133-137.
Dou Yucheng, Ouyang Binlin, Chen Haitao. Study on photosensitive-type suction planter monitoring apparatus[J]. Journal of Northeast Agricultural University, 2010, 41(9): 133-137. (in Chinese with English Abstract)
[16] Lu Caiyun, Fu Weiqiang, Zhao Chunjiang, et al. Design and experiment on real-time monitoring system of wheat seeding[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(2): 32-40.
盧彩云,付衛(wèi)強,趙春江,等. 小麥播種實時監(jiān)控系統(tǒng)設計與試驗[J]. 農(nóng)業(yè)工程學報,2017,33(2):32-40. (in English with Chinese abstract)
[17] 張曉輝,趙百通. 播種機自動補播式監(jiān)控系統(tǒng)的研究[J]. 農(nóng)業(yè)工程學報,2008,24(7):119-123.
Zhang Xiaohui, Zhao Baitong. Automatic reseeding monitoring system of seed drill[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(7): 119-123. (in Chinese with English abstract)
[18] 紀超,陳學庚,陳金成,等. 玉米免耕精量播種機排種質量監(jiān)測系統(tǒng)[J]. 農(nóng)業(yè)機械學報,2016,47(8):1-6.
Ji Chao, Chen Xuegeng, Chen Jincheng, et al. Monitoring system for working performance of no-tillage corn precision seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8): 1-6. (in Chinese with English abstract)
[19] 陳廣大,馬占輝,馬超,等. 基于ARM的玉米免耕播種施肥機監(jiān)控系統(tǒng)設計[J]. 中國農(nóng)機化學報,2016,37(5):209-212.
Chen Guangda, Ma Zhanhui, Ma Chao, et al. Design on monitoring system for no-tillage corn planter based on ARM[J]. Journal of Chinese Agricultural Mechanization, 2016, 37(5): 209-212. (in Chinese with English abstract)
[20] 吳南,林靜,李寶筏,等. 免耕播種機漏播補償系統(tǒng)設計與試驗[J]. 農(nóng)業(yè)機械學報,2017,48(7):69-77.
Wu Nan, Lin Jing, Li Baofa, et al. Design and test on no-tillage planter reseeding system for miss-seeding[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 69-77. (in Chinese with English abstract)
[21] 丁幼春,楊軍強,朱凱,等. 油菜精量排種器種子流傳感裝置設計與試驗[J]. 農(nóng)業(yè)工程學報,2017,33(9):29-36.
Ding Youchun, Yang Junqiang, Zhu Kai, et al. Design and experiment on seed flow sensing device for rapeseed precision metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 29-36. (in Chinese with English abstract)
[22] Ding Youchun, Wang Xueling, Liao Qingxi, et al. Design and experiment of performance testing system of multi-channel seed-metering device based on time intervals[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(7): 11-18.
丁幼春,王雪玲,廖慶喜,等. 基于時間間隔的多路精量排種器性能檢測系統(tǒng)設計與試驗[J]. 農(nóng)業(yè)工程學報,2016,32(7):11-18. (in English with Chinese abstract)
[23] 黃東巖,賈洪雷,祁悅,等. 基于聚偏二氟乙烯壓電薄膜的播種機排種監(jiān)測系統(tǒng)[J]. 農(nóng)業(yè)工程學報,2013,29(23):15-22.
Huang Dongyan, Jia Honglei, Qi Yue, et al. Seeding monitor system for planter based on polyvinylidence fluoride piezoelectric film[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(23): 15-22. (in Chinese with English abstract)
[24] 黃東巖,朱龍圖,賈洪雷,等. 基于GPS和GPRS的遠程玉米排種質量監(jiān)測系統(tǒng)[J]. 農(nóng)業(yè)工程學報,2016,32(6):162-168.
Huang Dongyan, Zhu Longtu, Jia Honglei, et al. Remote monitoring system for corn seeding quality based on GPS and GPRS[J]. Transactions of the Chinese Society of Agricultural Engineering, (Transactions of the CSAE), 2016, 32(6): 162-168. (in Chinese with English abstract)
[25] 周利明,王書茂,張小超,等. 基于電容信號的玉米播種機排種性能監(jiān)測系統(tǒng)[J]. 農(nóng)業(yè)工程學報,2012,28(13):16-21.
Zhou Liming, Wang Shumao, Zhang Xiaochao, et al. Seed monitoring system for corn planter based on capacitance signal[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(13): 16-21. (in Chinese with English abstract)
[26] 周利明,張小超,苑嚴偉. 小麥播種機電容式排種量傳感器設計[J]. 農(nóng)業(yè)工程學報,2010,26(10):99-103.
Zhou Liming, Zhang Xiaochao, Yuan Yanwei. Design of capacitance seed rate sensor of wheat planter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(10): 99-103. (in Chinese with English abstract)
[27] 陳進,邊疆,李耀明,等. 基于高速攝像系統(tǒng)的精密排種器性能檢測試驗[J]. 農(nóng)業(yè)工程學報,2009,25(9):90-95.
Chen Jin, Bian Jiang, Li Yaoming, et al. Performance detection experiment of precision seed metering device based on high-speed camera system[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(9): 90-95. (in Chinese with English abstract)
[28] 廖慶喜,鄧在京,黃海東. 高速攝影在精密排種器性能檢測中的應用[J]. 華中農(nóng)業(yè)大學學報,2004,23(5):570-573.
Liao Qingxi, Deng Zaijing, Huang Haidong. Application of the high speed photography checking the precision metering performances[J]. Journal of Huazhong Agricultural University, 2004, 23(5): 570-573. (in Chinese with English abstract)
[29] 胡少興,馬成林,張愛武. 排種器性能檢測中種子位置智能檢測方法[J]. 農(nóng)業(yè)機械學報,2001,32(3):36-39.
Hu Shaoxing, Ma Chenglin, Zhang Aiwu. An intelligent detecting method for seed position in performance detection of seedmeter[J]. Transactions of The Chinese Society of Agricultural Machinery, 2001, 32(3): 36-39. (in Chinese with English abstract)
[30] Ding X, Li P, Zhao L, et al. Research and design of intelligent control and precision sowing simulation system for wheat[J]. Journal of Intelligent & Fuzzy Systems, 2016, 31(4): 2313-2320.
Design of monitoring system for wheat precision seeding-fertilizing machine based on variable distance photoelectric sensor
Zhao Lixin1, Zhang Zenghui1, Wang Chengyi2, Jian Shichun3, Liu Tong1, Cui Dongyun1, Ding Xiaoling1※
(1.,271018,; 2.,271018,; 3.,250100,)
Precision seeding has become the main developing direction of the modern seeding technology, and the quality of seeding machine’s operation will directly affect the growth and yield of wheat. Facing complex field moisture, machine vibration, noise and other unfavorable factors as well as the fully closed environment of seeds’ tubes and fertilizer’s tubes, only using audio-visual method is difficult to know the running status of seeder in real time. When the seeds’ tubes and fertilizer’s tubes are plugged or the seeds and fertilizer are lacked, it will cause the question of seedling absence in large areas, and result in yield reduction. Therefore, researching and developing the monitoring system of seeding-fertilizing machine has important significance and benefits both in producing and economy. In the early research stage of the laboratory, an electronically controlled wide wheat fertilization precision seeder was designed to achieve wide precision seeding. In order to realize the real-time monitoring of the process of wheat precision seeding-fertilizing machine and ensure the operation quality, a monitoring system with variable distance photoelectric sensor, which can realize the function of wheat precision seeding-fertilizing machine, was designed based on the previous research. The monitoring system takes the STM32 MCU (micro control unit) hardware detection system as the lower computer, and transmits the information by Modbus communication protocol to man-machine interface of MCGS (Monitor and Control Generated System) touch screen displaying real-time operation status. The lower computer uses a reflective photocell as a monitoring sensor, and determines the malfunction type by combining the information of seeds’ and fertilizer’s flow and shaft rotation measured by master system’s rotary encoder and transferred by Modbus communication. The monitoring sensors of wheat and fertilizer were adopt OH-1021 reflective photoelectric sensor which transmitting terminal and receiving terminal distributed on the same side. When there are particles blocking infrared light, the sensors output low level; when there are no particles, the sensors output high level. The sensor output experiences a high-low-high level change process when the infrared light is reflected while the particles flow through the photoelectric sensor. It is easier to determine the operating status of the fertilizing according to the fertilizer shaft speed and the output of fertilizer sensor data collected by MCU, since the fertilizing sensor was installed under the row fertilizer device. But the seed tube with sensor was installed above the seeding device, in which the wheat particles were full and flowing slowly. The initial detection distance of the seed sensor is set as 5 mm, which is the sum of the short diameter (3 mm) of single wheat particle and the tube thickness (2 mm). In normal operation, the wheat particles reflect the infrared light when flowing through the position of seed sensor, and the sensor output experiences a high-low-high level change process. The MCU determines the operating status of the seeding according to the sensor output and seed shaft speed. During the monitoring of seeding, the type of malfunction cannot be distinguished when the infrared light is located on the gap between 2 particles on the wall of the seed tube. The MCU controls the conduction of the triode via changing the IO (Input /Output) port output by activating the variable pitch task function, and thereby controls the detection distance of the sensor. When the output of the MCU is high, the triode is turned on, then voltage of the sensor is increased, resulting in the increase of detection distance, and thereforethe type of malfunctions is determined by further understanding on the seed-reserve in the seed tube. The circuit simulation test results of the lower computer’s seeds’ tube show that the detection distance of the photoelectric sensor of the seeds’ tube is changed by 4-7 mm under the amplifier circuit; monitoring system prototype test results show that the accuracy of fault alarm at least reaches 92.5%, and the response time of lacking seeds and fertilization, blockage and leakage is less than or equal to 0.2, 0.3 and 0.3 s, respectively. The monitoring system realizes high-precision real-time monitoring of wheat seeding and it can improve the quality of wheat seeding.
monitoring; design; sensor; precision seeding-fertilizing machine; variable distance; MCGS touch screen
趙立新,張增輝,王成義,薦世春,劉 童,崔東云,丁筱玲. 基于變距光電傳感器的小麥精播施肥一體機監(jiān)測系統(tǒng)設計[J]. 農(nóng)業(yè)工程學報,2018,34(13):27-34.doi:10.11975/j.issn.1002-6819.2018.13.004 http://www.tcsae.org
Zhao Lixin, Zhang Zenghui, Wang Chengyi, Jian Shichun, Liu Tong, Cui Dongyun, Ding Xiaoling. Design of monitoring system for wheat precision seeding-fertilizing machine based on variable distance photoelectric sensor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 27-34. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.13.004 http://www.tcsae.org
2017-12-12
2018-04-04
山東省農(nóng)機裝備研發(fā)創(chuàng)新計劃項目(2015YZ103);山東省農(nóng)業(yè)重大應用技術創(chuàng)新項目(SNZY31955);山東農(nóng)業(yè)大學現(xiàn)代農(nóng)業(yè)智能化裝備研發(fā)項目(SDAU24131)
趙立新,副教授,主要從事傳感器技術、機電裝備智能化設計、機電一體化技術等教學研究工作。Email:xlding103@163.com
丁筱玲,教授,研究生導師,主要從事模式識別與智能控制、自動化儀器儀表與裝置、自動控制等方面的教學科研工作。 Email:xld@sdau.edu.cn
10.11975/j.issn.1002-6819.2018.13.004
S223.2+4
A
1002-6819(2018)-13-0027-08