張 功,張勁松※,施生錦,孟 平,黃彬香,鄭 寧
?
飽和修正系數(shù)提高ZZLAS型閃爍儀測量顯熱通量精度
張 功1,2,3,張勁松1,2,3※,施生錦4,孟 平1,2,3,黃彬香4,鄭 寧1,2,3
(1. 中國林業(yè)科學研究院林業(yè)研究所,北京 100091;2. 國家林業(yè)局林木培育重點實驗室,北京 100091;3. 南京林業(yè)大學南方現(xiàn)代林業(yè)協(xié)同創(chuàng)新中心,南京 210037;4. 中國農(nóng)業(yè)大學資源與環(huán)境學院,北京 100093)
為了研究飽和效應對大孔徑閃爍儀估算區(qū)域顯熱通量的影響,在2014年8—9月期間進行試驗,以具有抗飽和性能的雙光路BLS900型閃爍儀為參考,以孔徑尺寸為0.075 m(文中簡記為LAS1)、0.15 m(文中簡記為LAS2)的中國產(chǎn)ZZLAS型閃爍儀為研究對象,通過光學傳播原理計算出飽和修正系數(shù),并對ZZLAS型閃爍儀的觀測結果進行飽和修正分析。結果表明:LAS1的飽和修正系數(shù)為1.034,LAS2的飽和修正系數(shù)為1.019。試驗觀測中LAS1飽和率為24.58%,LAS2飽和率為2.04%,進行飽和修正后,LAS1的有效飽和修正率為12.87%。與BLS900相比,LAS1修正后顯熱通量均方根誤差變?yōu)?5.67 W/m2;LAS2的飽和修正率僅為0.32%,修正前后顯熱通量均方根誤差基本無變化。進行飽和修正前,對BLS900與LAS1觀測的顯熱通量進行檢驗,未達到顯著水平(0.15);通過計算得出的修正系數(shù)修正后,達到極顯著水平(0.004);而利用BLS900的實時修正系數(shù)進行修正后,接近顯著水平(0.06)。利用試驗計算得出的飽和修正系數(shù)修正后,顯熱通量與參考標準的誤差范圍為1.28~53.42 W/m2,比修正前更接近BLS900的觀測結果。研究對農(nóng)田、人工林下墊面條件下的觀測結果采用文中的飽和修正方法進行驗證,結果也表明,經(jīng)飽和修正后,閃爍儀觀測的顯熱通量更接近BLS900的觀測結果。當ZZLAS型閃爍儀發(fā)生明顯飽和現(xiàn)象時,利用光學傳播原理計算得出的修正系數(shù)對飽和數(shù)據(jù)進行修正效果顯著。
蒸散;儀器誤差;飽和;區(qū)域尺度;孔徑平均效應;飽和修正
顯熱通量是能量平衡的重要組成部分,表征著下墊面與大氣間的相互作用,是地氣交互過程中重要的參數(shù)[1]。因此一直是農(nóng)林、生態(tài)、水文、氣象等領域研究的重點內(nèi)容。傳統(tǒng)觀測方法,如能量平衡法、空氣動力學法、渦動相關法等,這些方法對研究地表能量交換及水資源合理利用與管理等起到了非常重要的作用[2],但研究尺度均為單點尺度(百米級)。隨著遙感技術的發(fā)展,以及水文模型、陸面過程模型、數(shù)值天氣預報等對大尺度(千米級)水熱通量測算結果的需求,如何獲得大尺度通量的精確測算結果已成為模型算法發(fā)展的制約因子[3-4],同時由于實際農(nóng)業(yè)生產(chǎn)的需要,區(qū)域范圍內(nèi)的水熱通量研究也變得尤為重要[5-7]。近年來,大孔徑閃爍儀(large aperture scintillometer,LAS)因其能夠同時獲得時間和空間上的平均顯熱通量而被廣泛使用。根據(jù)孔徑尺寸的不同,有效觀測距離可擴展至5或10 km, 測量尺度與遙感像元尺度匹配較好,更適用于復雜多變的下墊面,并在觀測試驗中得到了大量應用[8-10]。中國產(chǎn)ZZLAS型閃爍儀測量結果準確,操作簡單,性價比高,因而在國內(nèi)的應用越來越普遍[8-9,11]。
國內(nèi)外關于閃爍儀飽和效應的研究較少,而關于ZZLAS型閃爍儀的飽和研究更是缺乏公開發(fā)表的文獻可供參考。大多數(shù)國內(nèi)學者利用閃爍儀進行觀測研究時,僅根據(jù)Ochs給出的飽和界限進行數(shù)據(jù)剔除,并未進行飽和修正,這種數(shù)據(jù)處理方式既降低閃爍儀觀測的有效數(shù)據(jù)量也影響觀測精度。因此,本文在通過試驗觀測得出的ZZLAS型閃爍儀飽和界限的基礎上[12],基于光學傳播原理的修正方法,對ZZLAS型閃爍儀的飽和數(shù)據(jù)進行飽和修正研究,旨在提高ZZLAS型閃爍儀的測量精度,從而進一步實現(xiàn)精確估算蒸散,為深入研究能量平衡、水分平衡在氣候變化研究中提供更加準確的數(shù)據(jù)。
研究中所使用的閃爍儀飽和數(shù)據(jù)均為實測數(shù)據(jù)。試驗主要在河北省張家口市壩上地區(qū)的沽源縣草地生態(tài)系統(tǒng)國家野外試驗站(41°46¢062N,115°40¢502E)進行,試驗選擇孔徑為0.075 m(本文簡記為LAS1)和0.15 m(本文簡記為LAS2)2套閃爍儀進行試驗。由于BLS900型閃爍儀(Scintec,德國)采用雙光路進行工作,抗飽和性能較強,且系統(tǒng)自身的數(shù)據(jù)處理單元(signal processing unit,SPU)可以實現(xiàn)數(shù)據(jù)的實時修正[19-20],因而將之作為本試驗的參考標準。
試驗觀測時間為2014年8月28日至2014年9月16日。試驗期間氣溫較低,風大,降雨頻繁,伴有結露霜凍天氣。試驗場地下墊面平坦,植被平均高度約10 cm,閃爍儀的發(fā)射端和接收端的安裝平臺均為三腳支架。為避免太陽輻射的影響,閃爍儀安裝呈東南—西北方向。為避免信號交叉的影響,采取相鄰兩套閃爍儀的發(fā)射端和接收端交叉安裝方式,即LAS1的發(fā)射端與LAS2的接收端相鄰,LAS1的接收端與LAS2的發(fā)射端相鄰。儀器布置如圖1所示,安裝參數(shù)見表1所示。試驗中所用數(shù)據(jù)采集器為CR1000(Campbell Inc. 美國),采樣頻率為1 Hz。
注:LAS1,LAS2,BLS900的發(fā)射端分別表示為LAS1T,LAS2T,BLS900T;LAS1,LAS2,BLS900的接收端分別表示為LAS1R,LAS2R,BLS900R。下同。
表1 試驗儀器安裝信息
根據(jù)自動氣象站觀測的雨量數(shù)據(jù)以及空氣濕度數(shù)據(jù),剔除降雨時刻以及相對濕度大于95%的數(shù)據(jù)。剔除信號大于–50 mV的信號數(shù)據(jù),剔除BLS900閃爍儀因供電不足、觀測信號低所導致的長時間序列中的無效數(shù)據(jù),同時根據(jù)BLS900輸出的信號診斷文件進行數(shù)據(jù)質(zhì)量控制,剔除不符合觀測要求的數(shù)據(jù)。根據(jù)試驗結果[11]獲得的ZZLAS型閃爍儀的“強飽和”界限0.359,剔除強飽和數(shù)據(jù);選出觀測數(shù)據(jù)位于“弱飽和”界限0.099和“強飽和”界限0.359間的數(shù)據(jù)進行修正。計算得出,LAS1的強飽和閾值為7.910×10–13m–2/3,弱飽和閾值為3.779×10–13m–2/3;LAS2的強飽和閾值為4.598× 10–12m–2/3,弱飽和閾值為1.180×10–12m–2/3。試驗中依據(jù)0.193–8/31/35/3對BLS900進行的飽和判定。試驗中達到“弱飽和”界限的數(shù)據(jù)量占觀測數(shù)據(jù)總量的比值定義為飽和率。進行飽和數(shù)據(jù)修正后,數(shù)值變化大于10%的修正被定義為有效修正,有效修正的總數(shù)占飽和數(shù)據(jù)總量的百分數(shù)稱為有效飽和修正率。試驗中LAS1的飽和率為24.58%,LAS2飽和率為2.04%,而BLS900的飽和率僅為0.13%,無明顯飽和現(xiàn)象。研究中主要針對LAS1和LAS2位于強飽和界限和弱飽和界限間的數(shù)據(jù)進行修正。經(jīng)數(shù)據(jù)質(zhì)量控制后,沽源試驗總體有效數(shù)據(jù)樣本量=12097。
式中是光波數(shù)(=2π/),為波長,是路徑長度,是路徑歸一化函數(shù),表示路徑上距離發(fā)射端的位置與總長度的比值,()是折射譜函數(shù),是一維空間波數(shù)。最常用的譜函數(shù)是Kolmogorov函數(shù)[17],即
將式(2)代入式(1)可得到下述方程
計算得出的BLS900、LAS1、LAS2飽和修正系數(shù)分別為1.014、1.034、1.019。使用這些參數(shù)時需要注意的是,閃爍儀飽和現(xiàn)象的發(fā)生主要與觀測高度與光束路徑長度有關,且受觀測區(qū)域的氣象條件(溫度、濕度等)影響較大,因此本文計算得出的飽和修正參數(shù)更適用于本研究或與研究相似觀測條件。
LAS1的飽和修正系數(shù)最大,BLS900與LAS2的飽和修正系數(shù)相對較小。閃爍儀的孔徑尺寸不同,其發(fā)生的飽和現(xiàn)象程度也各不相同[11,19]。根據(jù)參數(shù)b可知,結合孔徑平均效應可知,LAS1發(fā)生飽和現(xiàn)象與內(nèi)尺度0的關系最密切,而相同的內(nèi)尺度0對BLS900與LAS2的飽和現(xiàn)象影響較小。這種差異的原因是因為孔徑尺寸的不同,在本試驗安裝條件中,對閃爍儀的測量貢獻最大的菲涅爾尺度大小約為24 mm,較小孔徑尺寸的LAS1在強烈湍流狀態(tài)下更容易發(fā)生飽和現(xiàn)象,而較大孔徑尺寸的BLS900與LAS2由于孔徑平均效應的存在,受到內(nèi)尺度0的影響較小。
圖2 LAS1、LAS2與BLS900觀測的空氣折射指數(shù)Cn2在修正前后的比較
注:除BLS900實時修正系數(shù)外,其他曲線均對應于左邊的縱軸。
飽和修正對顯熱通量()的影響見圖5所示??芍?,采用試驗得出的修正系數(shù)對數(shù)據(jù)進行飽和修正后LAS1與BLS900的斜率由0.94變?yōu)?.97,RMSE由36.67 W/m2變?yōu)?5.67 W/m2;而利用BLS900的實時修正系數(shù)修正后,顯熱通量線性關系變化不明顯,且RMSE變化幅度僅為0.83 W/m2。由圖5a可以看出,當顯熱通量達到50 W/m2時,修正后的通量值離散性減小,且修正值多位于1∶1線的下方,隨著通量值的增大,數(shù)據(jù)的離散性越小,而用BLS900實時修正系數(shù)進行修正時,位于1∶1線的上方區(qū)域的顯熱通量變化更加明顯(圖5b),這會造成合理的通量值發(fā)生低估現(xiàn)象。顯熱通量達到120 W/m2時修正效果才開始明顯。對顯熱通量修正前后進行-檢驗結果顯示,修正前BLS900與LAS1觀測的顯熱通量0.15(>0.05),二者表現(xiàn)出較大的差異,顯著性并不明顯。按圖5a的修正方法后,二者的=0.004(<0.01),達到極顯著水平;按圖5b方法進行修正后=0.06(>0.05),達到顯著水平。這2種不同修正方式出現(xiàn)差異主要是因為實時修正在整體上對觀測數(shù)據(jù)進行修正,未飽和的數(shù)據(jù)與飽和數(shù)據(jù)均被進行同時修正,幾乎全部觀測數(shù)據(jù)參與修正,結果導致未飽和數(shù)據(jù)偏小,飽和數(shù)據(jù)變大,整體通量根據(jù)數(shù)據(jù)飽和率出現(xiàn)不同程度的降低或增加。
圖4 LAS1、LAS2觀測的Cn2用BLS900實時修正系數(shù)修正后與BLS900觀測的Cn2對比
圖5 LAS1飽和修正前后顯熱通量(H)的對比
注:選擇2014年9月5日11:00—15:00數(shù)據(jù),顯熱通量時間間隔10 min。
本研究提出的飽和修正方法已在沽源試驗(本文)中得以驗證,沽源試驗地區(qū)地勢平坦,植被均一,下墊面熱力屬性差異不明顯。為了驗證本研究所用方法在其他下墊面條件下的適用性,本文對下墊面分別為農(nóng)田、人工林的觀測結果進行驗證。觀測儀器為LAS1和BLS900,其中BLS900仍作為參考標準。LAS1在農(nóng)田下墊面條件下安裝的有效高度3.8 m、路徑長度864 m以及計算得出的飽和修正系數(shù)為1.042。 LAS1在人工林下墊面條件下安裝的有效高度27.3 m、路徑長度1 036 m以及計算得出的飽和修正系數(shù)為1.021。
與沽源試驗不同,用于飽和修正方法驗證的數(shù)據(jù)屬于常規(guī)觀測,飽和現(xiàn)象并不十分明顯,為使驗證結果清晰明了,驗證的數(shù)據(jù)僅選擇中午時分(11:00?13:00)觀測數(shù)據(jù)進行飽和修正處理,相應顯熱通量結果如圖7所示??芍琇AS1的飽和數(shù)據(jù)經(jīng)過飽和修正后更接近BLS900的觀測結果。農(nóng)田驗證結果出現(xiàn)飽和修正后LAS1觀測的顯熱通量仍然明顯小于BLS900的觀測結果(第3~5樣本)。這種差異尚無確定解釋。因為農(nóng)田驗證數(shù)據(jù)取自中國農(nóng)業(yè)大學上莊試驗站,試驗觀測期間農(nóng)作物長勢旺盛,灌溉、除草等人為影響較大。反觀人工林驗證數(shù)據(jù)經(jīng)飽和修正后,LAS1觀測的顯熱通量更接近BLS900的觀測結果。人工林位于黃河小浪底地區(qū),地形條件復雜,觀測區(qū)域起伏不平,幾乎沒有人為活動的影響,因而飽和修正后的顯熱通量更能接近BLS900的觀測結果。
注:農(nóng)田驗證數(shù)據(jù)選擇2014年8月24?29日11:00—13:00數(shù)據(jù),人工林驗證數(shù)據(jù)選擇2016年7月16?21日11:00—13:00數(shù)據(jù)。顯熱通量時間間隔30 min。
閃爍儀準確的觀測數(shù)據(jù)是進行千米級陸面蒸散研究的前提,而實際觀測過程中閃爍儀的飽和現(xiàn)象不可避免。閃爍儀的飽和現(xiàn)象的發(fā)生主要與湍流強度有關,雖然“孔徑平均效應”在一定程度上減緩了飽和現(xiàn)象的發(fā)生,但在安裝過程中由于安裝距離和高度的原因,湍流的迅速變化仍然會導致飽和現(xiàn)象的出現(xiàn)[19,23]。ZZLAS型閃爍儀在湍流強烈時容易發(fā)生飽和現(xiàn)象,湍流條件不強烈時飽和現(xiàn)象不明顯,且飽和現(xiàn)象符合“孔徑平均效應”規(guī)律,大多數(shù)飽和數(shù)據(jù)可以進行修正[11]。
閃爍儀在測量過程中其光強與測量區(qū)域固有的空氣結構指數(shù)存在一定的關系,這個關系通常會受到湍流強度的影響[23],因此湍流對閃爍儀最直接的影響就是閃爍儀接收的信號強度。閃爍儀的信號強度與空氣折射指數(shù)間的經(jīng)驗關系通常選擇中性或近中性條件下的經(jīng)驗函數(shù)[28],當飽和現(xiàn)象發(fā)生時,湍流狀態(tài)發(fā)生改變,經(jīng)驗函數(shù)也會隨之改變。Hartogensis等[29-30]對湍流內(nèi)尺度0進行研究表明,內(nèi)尺度相差0.3 mm時會對最終顯熱通量結果產(chǎn)生0.5%的偏差,Kohsiek等[19]對閃爍儀進行飽和修正研究時發(fā)現(xiàn),進行飽和修正處理后的顯熱通量會增加約50%,認為修正后的顯熱通量更接近真實值(與渦動相關法測量相比)。研究中ZZLAS型閃爍儀進行飽和修正后顯熱通量提高約3.5%,與Kohsiek等研究存在差異的原因可能與試驗過程中的數(shù)據(jù)飽和程度有關,同時也受到修正方法的影響。
湍流中的內(nèi)尺度0是引起閃爍儀飽和現(xiàn)象的關鍵因素[13-15],在進行飽和修正過程中必須考慮湍流內(nèi)尺度0的影響才會使得修正結果更加準確。在針對ZZLAS型閃爍儀的飽和修正研究中,基于Hill和Clifford原理,同時為了減少了復雜的運算過程,選擇了菲涅爾尺度附近以及文獻中常用的內(nèi)尺度0進行分析研究,并采用強迫線性回歸方法得出飽和修正系數(shù)。飽和修正結果與利用BLS900系統(tǒng)給出的實時飽和修正系數(shù)存在差別,其中以LAS1的差別最為明顯。出現(xiàn)這種情況的原因是因為,實時飽和修正系數(shù)針對觀測的每個數(shù)據(jù)進行修正,這種修正方法對未飽和的數(shù)據(jù)會產(chǎn)生誤差,并影響最終結果。同時相關研究[14,20]認為閃爍儀觀測到的飽和數(shù)據(jù)低于5%時,可以忽略飽和效應的影響。由于觀測技術手段的局限性,文中給出的湍流內(nèi)尺度0偏于理論值,并非實測值,因此從湍流內(nèi)尺度0方面深入分析閃爍儀飽和現(xiàn)象發(fā)生的機理以及何種尺度的湍流對飽和發(fā)生的貢獻最大,將會是今后閃爍儀飽和現(xiàn)象研究的主要方向。
本研究利用光學傳播原理,根據(jù)實際觀測與理論結合的方式進行飽和修正計算,簡化了飽和修正理論計算的復雜過程。結果表明:中國產(chǎn)ZZLAS型閃爍儀在觀測過程中發(fā)生飽和現(xiàn)象時,可以基于光學傳播原理進行修正處理,且修正系數(shù)應與閃爍儀安裝的高度、距離相對應。研究中得出LAS1閃爍儀(孔徑0.075 m)的飽和修正系數(shù)為1.034,LAS2閃爍儀(孔徑0.15 m)的飽和修正系數(shù)為1.019,BLS900的飽和修正系數(shù)為1.014。發(fā)生飽和現(xiàn)象時,進行修正處理能夠改善閃爍儀測量顯熱通量的精度。本研究以BLS900觀測數(shù)據(jù)為標準,LAS1飽和率為24.58%,修正后顯熱通量的RMSE變?yōu)?5.67 W/m2,LAS2飽和率為2.04%,修正前后顯熱通量的RMSE基本無變化。因此,閃爍儀觀測數(shù)據(jù)的飽和率越大,飽和修正效果越顯著。本文利用簡化的飽和修正系數(shù)計算方法得出的飽和修正系數(shù)修正的顯熱通量與BLS900觀測的顯熱通量相差1.28~53.42 W/m2,比修正前更接近BLS900的觀測結果。同時,本文也對不同觀測時期,不同觀測地點進行驗證,驗證結果表明,經(jīng)飽和修正后,LAS1觀測的顯熱通量更接近BLS900的觀測結果。由此可見本研究所提出的飽和現(xiàn)象簡化修正算法對于提高ZZLAS型閃爍儀精確測算千米尺度顯熱通量有顯著影響。
[1] 束士杰,劉朝順,施潤和,等. 基于集合卡爾曼濾波的地表水熱通量同化研究[J]. 農(nóng)業(yè)工程學報,2013,29(6):82-90. Shu Shijie, Liu Chaoshun, Shi Runhe, et al. Assimilation of surface water heat flux using Ensemble Kalman Filter [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(6): 82-90. (in Chinese with English abstract)
[2] 張寶忠,許迪,劉鈺,等. 多尺度蒸散發(fā)估測與時空尺度拓展方法研究進展[J]. 農(nóng)業(yè)工程學報,2015,31(6):8-16. Zhang Baozhong, Xu Di, Liu Yu, et al. Review of multi-scale evapotranspiration estimation and spatio-temporal scale expansion [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(6): 8-16. (in Chinese with English abstract)
[3] 夏浩銘,李愛農(nóng),趙偉,等. 遙感反演蒸散發(fā)時間尺度拓展方法研究進展[J]. 農(nóng)業(yè)工程學報,2015,31(24):162-173. Xia Haoming, Li Ainong, Zhao Wei, et al. Review of temporal scale expansion for evapotranspiration retrieved by remote sensing data [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(24): 162-173. (in Chinese with English abstract)
[4] 吳金勝,劉紅利,張錦水. 無人機遙感影像面向?qū)ο蠓诸惙椒ü浪闶杏蛩久娣e[J]. 農(nóng)業(yè)工程學報,2018,34(1):70-77. Wu Jinsheng, Liu Hongli, Zhang Jinshui. Paddy planting acreage estimation in city level based on UAV images and object-oriented classification method [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(1): 70-77. (in Chinese with English abstract)
[5] 于兵,蔣磊,尚松浩. 基于遙感蒸散發(fā)的河套灌區(qū)旱排作用分析[J]. 農(nóng)業(yè)工程學報,2016,32(18):1-8. Yu Bing, Jiang Lei, Shang Songhao. Dry drainage effect of Hetao irrigation district based on remote sensing evapotranspiration [J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2016, 32(18): 1-8. (in Chinese with English abstract)
[6] 曹雯,楊太明,陳金華,等. 安徽省參考作物蒸散模型參數(shù)化[J]. 農(nóng)業(yè)工程學報,2016,32(增刊 2):60-68. Cao Wen, Yang Taiming, Chen Jinhua, et al. Parametrization of reference crop evapotranspiration model in Anhui Province[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(Supp. 2): 60-68. (in Chinese with English abstract)
[7] 劉春偉,曾勰婷,邱讓建. 用分時段修正雙源模型估算南京地區(qū)冬小麥生育期蒸散量[J]. 農(nóng)業(yè)工程學報,2016,32(增刊1):80-87. Liu Chunwei, Zeng Xieting, Qiu Rangjian. Simulated total evapotranspiration of winter wheat with modified Shuttle worth-Wallace model in different stages in Nanjing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(Supp. 1): 80-87. (in Chinese with English abstract)
[8] 施生錦,黃彬香,劉紹民,等. 大尺度水熱通量觀測系統(tǒng)的研制[J]. 地球科學進展,2010,25(11):1128-1138. Shi Shengjin, Huang Binxiang, Liu Shaomin, et al. Development of a measuring system for surface energy and water vapor fluxes at large scale[J]. Advances in Earth Science,2010, 25(11):1128-1138. (in Chinese with English abstract)
[9] 李懷香,劉紹民,施生錦,等. 國產(chǎn)光學型大孔徑閃爍儀的技術性能分析[J]. 高原氣象,2017,36(2):575-585. Li Huaixiang, Liu Shaomin, Shi Shengjin, et al. Assessing the performance of domestic optical larger aperture scintillometer under different environment conditions [J]. Plateau Meteorology, 2017, 36(2): 575-585. (in Chinese with English abstract)
[10] 白潔,劉紹民,丁曉萍,等. 大孔徑閃爍儀觀測數(shù)據(jù)的處理方法研究[J]. 地球科學進展,2010,25(11):1148-1167. Bai Jie, Liu Shaomin. Ding Xiaoping, et al. A study of the processing method of large aperture scintillometer observation data [J]. Advances in Earth Science, 2010, 25(11): 1148-1167. (in Chinese with English abstract)
[11] 張功,張勁松,施生錦,等. ZZLAS型閃爍儀信號飽和界限的確定[J]. 中國農(nóng)業(yè)氣象,2017,38(7):426-434. Zhang Gong, Zhang Jinsong, Shi Shengjin, et al. Determination of saturation lines of ZZLAS-Type scintillometer[J]. Chinese Journal of Agrometeorology, 2017, 38(7): 426-434. (in Chinese with English abstract)
[13] 饒瑞中,龔知本,王世鵬,等. 激光大氣閃爍飽和的孔徑平均效應[J]. 光學學報,2001, 22(1):36-40. Rao Ruizhong,Gong Zhiben,Wang Shipeng,et al. Aperture averaging of saturated scintillation of laser propagation [J]. Acta Optica Sinica,2001, 22(1):36-40. (in Chinese with English abstract)
[14] Clifford S F, Ochs G R, Lawrence R S. Saturation of optical scintillation by strong turbulence [J]. Journal of the Optical Society of America, 1974, 64(2): 148-154.
[15] Hill R J. Models of the scalar spectrum for turbulent advection [J]. Fluid Mech, 1978, 88(3): 541-562.
[16] Hill R J, Clifford S F. Theory of saturation of optical scintillation by strong turbulence for arbitrary refractive- index spectra [J]. Journal of the Optical Society of America, 1978, 71(6): 675-686.
[17] Frehlich G R, Ochs R G. Effects of saturation on the optical scintillometer [J]. Appl. Opt, 1990, 29(4): 548-553.
[18] Hill R J, Frehlich R G. Onset of strong scintillation with application to remote sensing of turbulence inner scale [J]. Applied Optics, 1996, 35(6): 986-997.
[19] Kohsiek W, Meijninger W M L, Debruin, et al. Saturation of the large aperture scintllometer[J]. Boundary-Layer Meteorology, 2006, 121(1): 111-126
[20] Kleissl, Watts C. J., Rodriguez J C, et al. Scintillometer inter-comparison study continued [J]. Boundary-Layer Meteorology, 2008, 130(3): 437-443.
[21] Beyrich, De Bruin, Meijninger, et al. Results from one year continuous operation of a large aperture scintillometer over a heterogeneous land surface [J]. Boundary-Layer Meteorology, 2002, 105(1): 85-97.
[22] Meijninger, Hartogensis O K, Kohsiek W, et al. Determination of area-averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface- flevoland field experiment [J]. Boundary-Layer Meteorology, 2002, 105(1): 37-62.
[23] Kohsiek W, Meijninger W M L, Moene A F, et al. An extra-large aperture scintillometer for long range applications [J]. Boundary-Layer Meteorology, 2002, 105(1): 119-127.
[24] Kleissl, Hartogensis, Gomez. Test of scintillometer saturation correction methods using field experimental data [J]. Boundary-Layer Meteorology, 2010, 137(2): 493-507.
[25] 黃印博,魏合理,梅海平,等. 大氣信道對紅外激光通信系統(tǒng)性能影響的實驗研究[J]. 光子學報,2009,38(3):646-651. Huang Yinbo, Wei Heli, Mei Haiping, et al. Effects of atmospheric channel on system performance of infrared laser communication system [J]. Acta Photonica Sinica, 2009, 38(3): 646-651. (in Chinese with English abstract)
[26] Moorhead J E, Marek G W, Colaizzi P D, et al. Evaluation of sensible heat flux and evapotranspiration estimates using a surface layer scintillometer and a large weighing lysimeter [J]. Sensors, 2017, 17(10): 2350.
[27] Beyrich F, Bange J, Hartogensis O K, et al. Towards a validation of scintillometer measurements: The LITFASS- 2009 experiment [J]. Boundary-Layer Meteorology, 2012, 144(1): 83-112.
[28] Meijninger, Beyrich F, Lüdi, et al. Scintillometer-based turbulent fluxes of sensible and latent heat over a heterogeneous land surface–a contribution to LITFASS- 2003[J]. Boundary Layer Meteorology, 2006, 121(1): 89-110.
[29] Hartogensis, De Bruin H A R, Van De, et al. Displaced-Beam small aperture scintillometer test partⅡ: Cases-99 stable boundary-layer experiment [J]. Bound-Layer Meteorology, 2002, 105(3): 149-176.
[30] De Bruin H.A.R. Introduction: Renaissance of scintillometry [J]. Boundary-Layer Meteorology, 2002, 105(1): 1-4.
Saturation correction factor improving sensible heat flux accuracy measured by ZZLAS scintillometer
Zhang Gong1,2,3, Zhang Jinsong1,2,3※, Shi Shengjin4, Meng Ping1,2,3, Huang Binxiang4, Zheng Ning1,2,3
(1.100091; 2.100091; 3.210037; 4.100093)
For the purpose of investigating the influence of saturation effect on the estimation of regional sensible heat flux by using large aperture scintillometer (LAS), a field test was conducted from August to September, 2014. The dual-optical-path BLS900 scintillometer, which possesses saturation resistance, was set as a reference, and the ZZLAS type scintillometer with aperture size of 0.075 m (LAS1) and 0.15 m (LAS2) was selected as research object. In this field test, the LAS1 was set as easily as possible to be saturated. The saturation correction coefficients calculated based on the optical propagation theory, and the real-time saturation correction coefficient calculated by BLS900 were also displayed, and the air structure parameters, heat fluxes measured from scintillometer were corrected with the coefficients in this study. Variables from LAS1 and LAS2 and that from BLS900 were compared and analyzed with fitted line, as well as root mean square error before and after correction, and-test was also used in the test of sensible heat flux. The saturation of scintillometer is often caused by the turbulence, and the scale of turbulence is thought to the main reason. Based on the optical propagation theory, inner scale of turbulence was also taken into consideration and the saturation correction coefficient of ZZLAS scintillometer was calculated. The results from the observation were corrected, and comparisons and analysis were also made. Here are the findings. Saturation correction coefficients of LAS1 and LAS2 are 1.034 and 1.019 respectively. The real-time correction coefficients given by BLS900 range from 0.70 to 1.15 depending on the developing of turbulence. The calculated coefficient of BLS900 during 10:00-12:30 shows smaller difference with the real-time coefficients, and it is thought to be more suitable for this period. During the observation, the saturation rate of the LAS1 is 24.58% and the effective saturation correction rate is 12.87%. After correction, root mean square error of air refraction index changes from 1.003×10-13to 9.74×10-14m-2/3, while there is no change occurring in2. There is no obvious change of the air structure parameters between LAS2 and BLS900 due to that the saturation rate of LAS2 is much less than LAS1. Sensible heat fluxes from ZZLAS type scintillometer are compared to the results from BLS900, and the root mean square error of LAS1 is 25.67 W/m2. By contrast, the saturation rate of LAS2 is 2.04% and the saturation correction rate is only 0.32%, and there is no significant difference for LAS2 before and after correction. It indicates that, the more pronounced the saturation phenomenon, the more pronounced the effect of saturation correction; this is consistent with the opinion that there is no need to do corrections when the saturation data are less than 5%. Sensible heat fluxes measured from LAS1 exceed 50 W/m2, the corrected fluxes are more close to the reference, and the system error decreases. Sensible heat fluxes from BLS900 and LAS1 are analyzed with-test and thevalue obtained is 0.15, which means there is much difference between the 2 datasets. Thevalue becomes to 0.004 when the saturation data are corrected with the calculated coefficient, while thevalue changes to 0.06 when saturation data are corrected with the real-time coefficients. After correcting the saturation correction coefficient obtained by experiment, the error range of sensible heat flux with reference standard is 1.28-53.42 W/m2, which is closer to the reference standard than that before correction. The results of the observation over the farmland and plantation are also verified by the saturation correction method in the paper. Results also showed that the sensible heat flux observed by the scintillometer after saturation correction is closer to that of the BLS900. When saturation data of the ZZLAS type scintillometer exceed 20%, there is significant improvement on sensible heat flux after the correction with the correction coefficient calculated by the optical propagation theory.
evapotranspiration; instrument error; saturation; regional area; aperture averaging effect; saturation correction
10.11975/j.issn.1002-6819.2018.14.007
P414
A
1002-6819(2018)-14-0052-09
2017-12-26
2018-01-03
國家自然科學基金面上項目(51076033);廣西科學研究與技術開發(fā)計劃(桂科AC16380047)
黃豪中,教授,博士,主要研究方向為內(nèi)燃機燃燒與排放控制。Email:hhz421@gxu.edu.cn
張勁松,男,研究員,主要從事農(nóng)林氣象、生態(tài)工程等方面研究。Email:zhangjs@caf.ac.cn
張 功,張勁松,施生錦,孟 平,黃彬香,鄭 寧. 飽和修正系數(shù)提高ZZLAS型閃爍儀測量顯熱通量精度[J]. 農(nóng)業(yè)工程學報,2018,34(14):52-60. doi:10.11975/j.issn.1002-6819.2018.14.007 http://www.tcsae.org
Zhang Gong, Zhang Jinsong, Shi Shengjin, Meng Ping, Huang Binxiang, Zheng Ning. Saturation correction factor improving sensible heat flux accuracy measured by ZZLAS scintillometer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(14): 52-60. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.14.007 http://www.tcsae.org