亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        HYPOTHESIS TESTING IN LINEAR MODELS WITH MARKOV TYPE ERRORS

        2018-07-16 12:08:14YANHuiHUHongchang
        數(shù)學雜志 2018年4期

        YAN Hui,HU Hong-chang

        (School of Mathematics and Statistics,Hubei Normal University,Huangshi 435002,China)

        Abstract:In this paper,we study the hypothesis testing for the homogeneity of the Markov chain of the errors in linear models.By using the quasi-maximum likelihood estimates(QMLEs)of some unknown parameter and the methods of martingale-difference,the limiting distribution for likelihood ratio test statistics is obtained.

        Keywords:linear model;Markov chain;homogeneity;hypothesis testing;martingale

        1 Introduction

        The theory and application of linear models with Markov type dependent errors recently attracted increasing research attention.In the case that the errors form a homogeneous Markov chain,one can see Maller[1],Pere[2],Fuller[3]and form a non-homogeneous Markov chain,see Azrak and Mélard[4],Carsoule and Franses[5],Dahlhaus[6],Kwoun and Yajima[7].It is well-known that compared with a homogeneous Markov chain,the limit behavior of a non-homogeneous Markov chain is much more complicated to handle.To simplify the models,we consider the hypothesis testing for the homogeneity of the process of errors in the following linear model

        where xt∈ Rdare deterministic regressor vectors,β is a d-dimensional unknown parameter,and{εt}is a Markov chain with recursive formula as follows

        where θ∈ R is an unknown parameter,φt(θ)is a real valued function on a compact set Θ which contains the true value θ0as an inner point,and the ηtare i.i.d.mean zero random variables(rvs)with finite variance σ2(also to be estimated).

        It is obvious that the errors{εt}is a non-homogeneous Markov chain when the coefficient φt(θ)depends on t.This paper discusses the hypothesis testing for the homogeneity of Markov chain{εt}based on the quasi-maximum likelihood estimates(QMLEs)of the unknown parameters.Limiting distribution for likelihood ratio test statistics of hypotheses is obtained by the techniques of martingale-difference.

        2 Preliminaries and Statement of Result

        The log-likelihood of y2,y3,···,ynconditional on y1is defined by[1]

        We maximize(2.1)to obtain QML estimators denoted by?βn,?θnand?σ2n(when they exsit).Then the corresponding estimators,satisfy[1]

        Write the“true”model as

        By(2.5)

        We need the following conditions

        (A2)There is a constant α>0 such that

        for any t∈ {1,2,···,n}and θ∈ Θ.

        Remark 2.1 Condition(A1)is often imposed in order to obtain the existence of the estimators in some linear models with Markov type errors,see e.g.Muller[1],Hu[8],Xu and Hu[9].

        And[8,9]used condition(A2),Kwound and Yajima[7]used the first condition in(A2).Silvapulle[10],Tong et.al.[11]used the condition similar to(A3),when they discussed the asymptotic properties of the estimators in some linear and partial linear models.

        Define(d+1)-vectorG=(β,θ),and

        where

        From eq.(5.29)in Hu[8],we have

        where

        In this paper,we consider the hypothesis

        where the function ρ(θ)<1,θ∈ Θ and ρ(θ0) ≠0,ρ′(θ)is bounded on Θ.

        The main result in this paper is the following theorem.

        Theorem2.1 Assume(A1)–(A3).Suppose H0:φt(θ)= ρ(θ)holds.Then as n → ∞,whereis chi-square rv with m degrees of freedom.

        3 Lemmas

        Lemma 3.1Assume(A1)–(A3).Thenand,the QML estimators of β,θ and σ2in model(1.1)–(1.2)exist.And as n → ∞,

        Proof See Theorem 3.1 and Theorem 3.2 in Hu[8].

        Lemma 3.2 Assume(A2)and(A3).Then

        Proof

        From Lemma 4.1 in Xu and Hu[9],we haveThen

        By recursive method,

        Similarly,

        Therefore,from(3.2),(3.4)and(3.5),

        where c0is the bound of

        4 Proof of Theorem

        Using(2.2),(2.8)and(2.4),

        By(2.8),

        Then,from(2.4),

        By(5.23)and(5.24)in Hu[8],as n→∞,|T2|=op(1),|T3|=op(1).Thus

        From(2.7),

        Using(4.1),(4.3),(4.4)and Taylor expansion,

        Thus,

        Now we give an approximation for.In fact,from eq.(5.28)in Hu[8],

        Φn,Dn,Snsame as in(2.14)and(2.11).Then

        which means

        In view of Lemma 3.2,the law of large numbers holds for the sequenceNote thatthen

        From(4.11)and(2.14),

        Thus,from(4.8),(4.13),(4.14)and Lemma 3.2,straightforward calculus yields

        We now finish the proof of Theorem 2.1.From(2.4)and(2.8),

        By(2.2),(2.8)and(4.16),

        In view of eq.(4.14)and Lemma 3.1,Lemma 3.2,

        and

        Then to prove that

        we need only to show that

        then,to obtain(4.21),it will suffice to verify the Lindeberg condition for the sequence

        In fact,since

        ?n(θ0,σ0)=O(n)as n → ∞,then for every ε>0,we have

        Now,we obtain(4.21)due to the central limit theorem for martingale difference array(Theorem 8.1 in Pollard[12]).Then we prove(4.18)from(4.20).

        国产成人免费高清激情明星| 久久久亚洲精品一区二区三区| 成片免费观看视频大全| 亚洲中文无码久久精品1| 国产美女自拍国语对白| 亚洲精品女同一区二区三区| 天天爽夜夜爽人人爽| 午夜福利电影| www.av在线.com| 青青久在线视频免费视频| 亚洲香蕉成人av网站在线观看| 日日躁夜夜躁狠狠躁超碰97| 久久久久久岛国免费网站| 日本国产一区二区在线| 又湿又紧又大又爽a视频国产| 欧美成年黄网站色视频| 国产丝袜免费精品一区二区| 日本办公室三级在线观看| 欧美日韩精品一区二区视频| 国产精品麻豆aⅴ人妻| 亚洲AV无码久久久久调教| 可以直接在线看国产在线片网址| 亚洲欧美日韩精品久久| 亚洲男同志gay 片可播放 | 国产人成精品免费久久久| 亚洲午夜福利在线视频| 中文字幕在线日韩| 看中文字幕一区二区三区| 强开小婷嫩苞又嫩又紧视频韩国| 性高朝久久久久久久| 久久99精品波多结衣一区| 久久亚洲网站中文字幕| 欧美狠狠入鲁的视频777色| 最新国产日韩AV线| 国产av一区二区三区在线| 天天做天天爱夜夜夜爽毛片| 韩国19禁无遮挡啪啪无码网站| 日韩AV无码中文无码AV| 亚洲一区二区日韩精品在线| 一夲道无码人妻精品一区二区| 精品亚洲国产探花在线播放|