亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        FROM LEIBNIZ SUPERALGEBRAS TO LIE-YAMAGUTI SUPERALGEBRAS

        2018-07-16 12:08:00TANGXinxinZHANGQingchengWANGChunyue
        數(shù)學(xué)雜志 2018年4期

        TANG Xin-xin,ZHANG Qing-cheng,WANG Chun-yue

        (1.School of Mathematics and Statistics,Northeast Normal University,Changchun 130024,China)

        (2.School of Media and Mathematics and Physics,Jilin Engineering Normal University,Changchun 130052,China)

        Abstract:In this paper,we study the construction of Lie-Yamaguti superalgebras.By using left Leibniz superalgebras,we give the construction of left Leibniz superalgbebras,then give the construction of Lie-Yamaguti superalgebras from left Leibniz superalgebras.So we gain the construction of Lie-Yamaguti superalgebras,which generalizes the construction of Lie-Yamaguti algebras in the situation of superalgebras.

        Keywords: Lie-Yamaguiti superlagebras;(left)Leibniz superlagebras;Akivis superalgebras;Lie supertriple systems;construction

        1 Introduction

        Lie algebras were studied for many years in mathematics and physics,such as in quantum field theory.As the noncommutative analogs of Lie algebras,Leibniz algebras were first introduced by Cuvier and Loday in[1]and[2].Researchers obtained many results about Leibniz algebras and we can find some of them in[3–6].There are two kinds of Leibniz algebras,left Leibniz algebras and right Leibniz algebras[7].For a given non-commutative algebra(A,·),if the left multiplication lx·y=x ·y,?x,y ∈ A is a derivation of A,then(A,·)is called a left Leibniz algebra[8].As non-associative algebras,left Leibniz algebras can construct Akivis algebras[9].Kinyon and Weinstein found that a left Leibniz algebra has a Lie-Yamaguti algebra structure by using an enveloping Lie algebra of Leibniz algebras.

        Recently,Leibniz algebras are generalized to Leibniz superalgebras by Dzhumadil in[10].Then some important results were obtained such as[11]and[12].Like left Leibniz algebras and right Leibniz algebras,we can similarly obtain left Leibniz superalgebras and right Leibniz superalgebras.If(A,·)is a left Leibniz superalgebra,we can obtain a right Leibniz superalgebra(A,?)by defining x ? y=(?1)|x||y|y ·x.In this paper,we study the construction of left Leibniz superalgebras and Lie-Yamaguti superalgebras.

        This paper is organized as follows.In Section 2,we recall the definition of Leibniz superalgebras and prove that every non-associative superalgebra has an Akivis superalgebra structure.Then we give examples and constructions of left Leibniz superalgebras.In Section 3,we define Lie-Yamaguti superalgebras and prove that every left Leibniz superalgebra has a Lie-Yamaguti superalgebra structure.

        Throughout this paper,K denotes a field of characteristic zero;All vector spaces and algebras are over K;hg(A)denotes the set of homogeneous elements of the superalgebra A.

        2 Leibniz Superalgebras

        In this section,we introduce the definition of Leibniz superslgebras,and then give the constructions and examples of Leibniz superalgebras.

        Definition 2.1[11](i)A(left)Leibniz superalgebra is a pair(A,·),in which A is a superspace,·:A×A→A an even bilinear map such that

        for all x,y,z∈hg(A).

        (ii)A(right)Leibniz superalgebra is a pair(A,·),in which A is a superspace,·:A×A →A an even bilinear map such that

        for all x,y,z∈hg(A).

        In this paper, “Leibniz superalgebras” means “l(fā)eft Leibniz superalgebras”.A super skew-symmetric Leibniz superalgebra is a Lie superalgebra.In this case,equations(2.1)and(2.2)become the Jacobi super-identity.If(A,·)is a left Leibniz superalgebra,we can obtain a right Leibniz superalgebra(A,?)by defining x ? y=(?1)|x||y|y ·x.

        Definition 2.2 Let(A,·)be a superalgebra.

        (i)The super-associator of A is an even trilinear map:A×A×A→A defined by

        for all x,y,z∈hg(A).

        (ii)The super-Jacobian of A is an even trilinear map:A×A×A→A defined by

        Remark 2.3 A not necessarily associative superalgebra is called a non-associative superalgebra.That is to say,(x,y,z)≠0 for some x,y,z ∈ hg(A).

        Definition 2.4[13]An Akivis superalgebra is a triple(A,?,[?,?,?]),in which A is a superspace,? :A×A → A an even bilinear map,[?,?,?]:A×A×A → A an even trilinear map such that

        for all x,y,z∈hg(A).Equation(2.5)is called the Akivis super-identity.

        Theorem 2.5 Every non-associative superalgebra(A,·)has an Akivis superalgebra(A,?,[?,?,?])structure with respect to the operation defined by

        for all x,y,z∈hg(A).

        Proof First,we proceed to verify that“?”is super skew-symmetric.

        So we obtain equation(2.4).

        Second,consider the Akivis super-identity.On one hand,

        On the other hand,

        That is

        So we get equation(2.5).

        An Akivis superalgebra derived from a given non-associative superalgebra A by Theorem 2.5 is said associated with A.We are interested in Akivis superalgebras associated with Leibniz superalgebras.

        In terms of equation(2.3),equation(2.1)has the form

        Because the operations of the Akivis superalgebra(A,?,[?,?,?])defined by the(left)Leibniz superalgebra(A,·)satisfy the super skew-symmetrization and equation(2.4),the Akivis super-identity(2.5)has the form

        By equations(2.8)and(2.1),we have?(?1)|x||y|(y,x,z)=(x·y)·z?(x,y,z).So equaiton(2.9)becomes

        Lemma 2.6 Let(A,·)be a Leibniz superalgebra,and consider on(A,·)the operation[x,y]:=x·y?(?1)|x||y|y·x for all x,y∈ hg(A).Then

        (i)

        (ii)

        Proof(i)Equation(2.1)implies that

        Likewise,interchanging x and y,we have

        Then,consider

        (ii)By calculating directly,we have

        Lemma 2.7 Let(A,·)be a Leibniz superalgebra,(A,?,[?,?,?])be an Akivis superalgebra associated with Leibniz superalgebra(A,˙).Then

        ProofWe get the result from equation(2.10).

        An superalgebra(A,·)is called Lie-super-admissible if its commutator superalgebra(A,?)is a Lie superalgebra.We can obtain following lemma immediatly from Lemma 2.7.

        Lemma 2.8 A Leibniz superalgebra(A,·)is Lie-super-admissible if and only if

        for all x,y,z∈hg(A).

        We now give an example of 3-dimensional Leibniz superalgebra and some methods to construct Leibniz superalgebras.We can find following definitions and similar constructions in[14].

        Example 2.9 Let A=Aˉ0⊕Aˉ1be a 3-dimensional superspace.Aˉ0=span{e1,e3},Aˉ1=span{e2}.The nonzero product is given by e2·e3=e2,e3·e1=e1,e2·e2= ?e2,e3·e3=e1.Then(A,·)is a left Leibniz superalgebra.

        Proposition 2.10 Let(A,?)be an associative superalgebra.Consider the linear map D:A→A which satis fies

        Define an even bilinear map[?,?]D:A×A → A,such that

        Then(A,[?,?]D)is a left Leibniz superalgebra.

        Proof We only need to verify that(A,[?,?]D)is a left Leibniz superalgebra.Calculate directly,

        and

        So we get[x,[y,z]D]D=[[x,y]D,z]D+(?1)|x||y|[y,[x,z]D]D.Therefore(A,[?,?]D)is a left Leibniz superalgebra.

        Definition 2.11[14]A superdialgebra is a triple(A,?,?),in which A is a superspace,?,?:A×A→A two bilinear maps such that

        (1)x?(y?z)=(x?y)?z;

        (2)x?(y?z)=(x?y)?z=x?(y?z);

        (3)x?(y?z)=(x?y)?z=(x?y)?z for all x,y,z∈hg(A).

        Proposition 2.12 Let(A,?,?),be a superdialgebra.Define an even bilinear map[?,?]:A × A → A such that[x,y]=(?1)|x||y|y ? x ? x ? y.Then(A,[?,?])is a left Leibniz superalgebra.

        Proof Calculate directly,

        and

        So we get[x,[y,z]]=[[x,y],z]+(?1)|x||y|[y,[x,z]].Therefore(A,[?,?])is a left Leibniz superalgebra.

        Definition 2.13[14]A dendriform superalgebra is a triple(A,<,>),in which A is a superspace,<,>:A×A→A two even bilinear maps such that

        (1)(x<y)<z=x<(y<z)+x<(y>z);

        (2)x>(y>z)=(x<y)>z+(x>y)>z;

        (3)(x>y)<z=x>(y<z)for all x,y,z∈hg(A).

        Proposition 2.14 Let(A,<,>)be a dendriform superalgebra.Define two even bilinear maps?,[?,?]:A×A → A such that x?y=x< y+y> x,[x,y]=(?1)|x||y|y?x?x?y.Then(A,[?,?])is a left Leibniz superalgebra.

        ProofCalculate directly,

        and

        and

        So we get

        Therefore(A,[?,?])is a left Leibniz superalgebra.

        Definition 2.15[14]A Rota-Baxter superalgebra is a triple(A,·,R),in which A is a superspace,(A,·)a superalgebra,R:A → A an even bilinear map satistying Rota-Baxter super-identity

        for all x,y ∈ hg(A).R:A → A is called a Rota-Baxter super-operator of weight λ.If(A,·)is an associative superalgebra,then we call(A,·,R)associative Rota-Baxter superalgebra.

        Proposition 2.16 Let(A,·,R)be an associative Rota-Baxter superalgebra with weight 0.Define two even bilinear maps?,[?,?]:A×A → A such that

        Then(A,[?,?])is a left Leibniz superalgebra.

        ProofCalculate directly,

        and

        and

        By Rota Baxter super-identity,we can get

        Therefore(A,[?,?])is a left Leibniz superalgebra.

        3 Leibniz Superalgebras,Lie Supertriple Systems,Lie-Yamaguti Superalgebras

        Definition 3.1 A Lie-Yamaguti superalgebra(LYSA)is a triple(A,[?,?],{?,?,?}),in which A is a superspace,[?,?]:A × A → A an even bilinear map and{?,?,?}:A×A×A→A an even trilinear map such that

        (LYS01)|[x,y]|=|x|+|y|;

        (LYS02)|{x,y,z}|=|x|+|y|+|z|;

        (LYS1)d[x,y]+(?1)|x||y|[y,x]=0;

        (LYS2){x,y,z}+(?1)|x||y|{y,x,z}=0;

        (LYS5){x,y,[u,v]}=[{x,y,u},v]+(?1)|u|(|x|+|y|)[u,{x,y,v}];

        (LYS6)

        for all x,y,z,u,v,w∈hg(A),where?x,y,zdenotes the sum over cyclic permutation of x,y,z.

        Definition 3.2[15]A Lie supertriple system is a pair(A,{?,?,?})such that

        (1){x,y,z}=(?1)|x||y|{y,x,z};

        (3)

        for all x,y,z,u,v,w∈hg(A).

        If[x,y]=0 for all x,y∈hg(A),then Lie-Yamaguti superalgebras become Lie supertriple systems.So Lie-Yamaguti superalgebras can be seen as general Lie supertriple systems.

        Let lxdenote the left multiplication operator on(A,·)which given by lxy=x ·y for all x,y ∈ hg(A).Then equation(2.1)means that lxare super-derivations of(A,·).By Lemma 2.6(ii),we can get following proposition.

        Proposition 3.3 Let(A,·)be Leibniz superlagebra,(A,?,[?,?,?])be its associate Akivis algebra.Then the operators lxare derivations of(A,?,[?,?,?])for all x ∈ A.

        We can obtain a Lie-Yamaguti superalgebra structure from Leibniz superalgebra as following theorem.

        Theorem 3.4 Every(left)Leibniz superalgebra(A,·)has a Lie-Yamaguti superalgebra structure(A,[?,?],{?,?,?})with respect to the operation defined by

        ProofEquations(3.2),(2.1)and(2.8)imply

        Moreover,we have

        So we get

        Thus equations(3.2),(3.3)and(3.4)are different expressions of the operation “{?,?,?}”.Now we proceed to verify equations(LYS1)–(LYS6).For(LYS1),

        So we get(LYS1).For(LYS2),

        So we get(LYS2).For(LYS3),(2.10)and(3.3)imply

        So we get(LYS3)by transposition.For(LYS4),

        So we get(LYS4).For(LYS5),

        So we get(LYS5).For(LYS6),

        So we get(LYS6).Therefore(A,[?,?],{?,?,?})is a Lie-Yamaguti superalgebra.

        Remark 3.5 By Proposition 2.10,Proposition 2.12,Proposition 2.14 and Proposition 2.16,we can get left Leibniz superalgebras from associative superalgebras,superdialgebras,dendriform superalgebras and associative Rota-Baxter superalgebras.Then using Theorem 3.4,we will obtain corresponding Lie-Yamaguti superalgebras from above superalgebras[16].Then we give an 3-dimensional example of Lie-Yamaguti superalgebra by Theorem 3.4.

        Example 3.6 Let A=Aˉ0⊕Aˉ1be a 3-dimensional superspace.Aˉ0=span{e1,e3},Aˉ1=span{e2}.The nonzero product is given by e2·e3=e2,e3·e1=e1,e2·e2= ?e2,e3·e3=e1.Then(A,·)is a left Leibniz superalgebra.By Theorem 2.8,when we define the binary operation and the ternary operation by(3.1)and(3.2),we get a Lie-Yamaguti superalgebra(A,[?,?],{?,?,?})with nonzero product

        The following proposition is a direct conclusion of Theorem 3.4.

        Proposition 3.7 Let(A,·)be Leibniz superlagebra,(A,?,[?,?,?])be its associate Akivis algebra.Define{x,y,z}=(?1)|x||y|[y,x,z]+[x,y,z]for all x,y,z ∈ hg(A),then(A,?,{?,?,?})is a Lie-Yamaguti superalgebra.

        In Leibniz superlagebra(A,·)and its associate Akivis algebra(A,?,[?,?,?]),consider even ternaty operation

        for all x,y,z∈hg(L).We have

        and the Akivis super-identity(2.5)is written as

        A superalgebra(A,(?,?,?))called a supertriple system if the even trilinear operation satis fies(3.6)and(3.7).By Theorem 2.5,any non-associative algebra has a supertriple system structure defined by(3.5),and we call it the associate supertriple system.

        青青草针对华人超碰在线| 国产理论亚洲天堂av| 久久2020精品免费网站| 可免费观看的av毛片中日美韩| 精品视频无码一区二区三区| 又粗又粗又黄又硬又深色的| 99国产免费热播视频| 国产精品国产三级国产av创| 蜜桃av噜噜一区二区三区香| 国产精品亚洲一区二区三区在线看| 人妻激情偷乱视频一区二区三区| 免费人成视频x8x8入口| 中文字幕一区二区三区久久网站| 69av视频在线观看| 亚洲av乱码一区二区三区女同 | 中文 在线 日韩 亚洲 欧美| 香色肉欲色综合| 亚洲欧洲日产国码久在线观看| 国产av熟女一区二区三区蜜臀| 米奇欧美777四色影视在线| 又爽又黄又无遮挡网站| 国产美女在线精品免费观看网址 | 丰满少妇又爽又紧又丰满动态视频 | 精品偷拍被偷拍在线观看| 精品av天堂毛片久久久| 极品粉嫩嫩模大尺度无码| 久久九九青青国产精品| 国产女主播强伦视频网站| 中文字幕一区二区在线看| 日本孕妇潮喷高潮视频| 久久久无码精品亚洲日韩按摩| 欧美日韩综合网在线观看| 午夜av福利亚洲写真集| 蜜桃视频在线免费视频| 久久久久久久97| 在线视频你懂的国产福利| 日本一区二区精品色超碰| 亚洲成av人综合在线观看| 日韩精品无码一区二区中文字幕 | av大片网站在线观看| 日韩亚洲欧美久久久www综合|