亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Sufficient conditions for graphs to be super connected

        2018-07-13 10:51:00GUOLitao

        GUO Litao

        (School of Applied Mathematics, Xiamen University of Technology, Xiamen 361024,Fujian Province, China)

        Abstract: Let G be a connected graph. The connectivity κ(G) of a connected graph G is the least positive integer k such that there is F?V,|F|=k, and G-F is disconnected or is a trivial graph. If every minimum vertex cut isolates a vertex of G, a graph G is super connected or super-κ. Define the inverse degree of a graph G with no isolated vertices as In this paper, we show that let G be a connected graph with order n and minimum degree δ, if then G is super-κ.

        Key Words: connectivity; inverse degree; super connected

        0 Introduction

        All graphs considered in this paper are simple, finite and undirected. Unless stated otherwise, we follow BONDY et al[1]for terminology and definitions.

        LetG=(V,E) be a connected graph,dG(v) the degree of a vertexvinG(simplyd(v)), andδ(G) the minimum degree ofG. Moreover, forS?V,G[S] is the subgraph induced byS. AndG-Sdenotes the subgraph ofGinduced by the vertex set ofV,S. We writeKnfor the complete graph of ordern. Ifu,v∈V,d(u,v) denotes the length of a shortest (u,v)-path. And, the diameter isdm(G)=max{d(u,v):u,v∈V}.

        The edge connectivityλ(G) of a connected graphGis the least positive integerksuch that there isF?E,|F|=kandG-Fis disconnected. A graphGis super edge connected or super-λ, if every minimum edge cut isolates a vertex ofG. IfGis super-λ, thenλ=δ. The connectivityκ(G) of a connected graphGis the least positive integerksuch that there isF?V,|F|=kandG-Fis disconnected or is a trivial graph. A graphGis super connected or super-κ, if every minimum vertex cut isolates a vertex ofG. IfGis super-κ, thenκ=δ. It is well known thatκ(G)≤λ(G)≤δ(G).

        Different authors proposed sufficient conditions for a graph to be super-λ.

        Theorem1A connected graphGwith ordernis super-λ, if one of the following conditions holds:

        (1)δ≥(n+1)/2(by KELMANS[2]);

        (2)d(u)+d(v)≥nfor all pairsu,vof nonadjacent vertices, andGis different fromKn/2×K2(by LESNIAK[3]);

        (3)d(u)+d(v)≥n+1 for all pairsu,vof nonadjacent vertices(by LESNIAK[3]);

        (4)dm(G)=2, andGcontains no completeKδwith all its vertices of degreeδ(by FIOL[4]);

        (5)Gis bipartite andd(u)+d(v)≥n/2+2 for all pairsu,vof vertices such thatd(u,v)≥3 (by FIOL[4]);

        (6)Gis bipartite andδ≥max{3,(n+2)/4+1} (by FIOL[4]);

        1 Main results

        We start the section with the following useful lemmas.

        The following lemmas can be found in [8], we rewrite its proof for convenience here.

        (3) Iff(x) is continuous and convex on an interval [L,R], and ifl,r∈[L,R], withl+r=L+R, thenf(L)+f(R)≥f(l)+f(r).

        (3) Follows from the definition of convex function.

        Lemma2[10]LetGbe a connected graph of ordern, minimum degreeδ. If

        thenκ=δ.

        Theorem2LetGbe a connected graph with ordern, minimum degreeδ. If

        thenGis super-κ.

        ProofBy lemma 2,κ=δ. Suppose thatGis not super-κ. We assume thatS?V(G) with |S|=κis a cut ofG, andX1,X2,…,Xpare the connected components ofG-S. Then 2≤|Xi|≤n-δ(G)-2 fori=1,2,…,p.

        Because every vertex ofSis adjacent to some vertex ofXifori=1,2,…,p. We can obtain

        According to lemma 1, we have

        Therefore, the inverse degree ofGis

        Hence, we have

        There is a contradiction.

        国产自拍av在线观看| 亚洲午夜精品久久久久久一区| 毛片在线啊啊| 亚洲性感毛片在线视频| 波多野结衣在线播放| 香蕉久久福利院| 亚洲国产精品国语在线| 久久亚洲精品中文字幕蜜潮| 蜜桃传媒一区二区亚洲av婷婷| 蜜桃久久精品成人无码av| 精品人妻无码视频中文字幕一区二区三区| 亚洲午夜久久久精品国产| 亚洲免费女女在线视频网站| av鲁丝一区鲁丝二区鲁丝三区| 7777精品久久久大香线蕉| 日本国产在线一区二区| 免费观看人妻av网站| 极品嫩模高潮叫床| 色综合久久丁香婷婷| 日韩精品高清不卡一区二区三区| 免费在线观看视频播放| 成人精品一区二区三区中文字幕 | 视频一区二区三区国产| 色婷婷一区二区三区四区成人网| 成av人片一区二区三区久久| 毛片在线啊啊| 国产激情综合五月久久| 内射人妻视频国内| 91麻豆精品激情在线观看最新| 精品国产一区二区三区男人吃奶| 免费人成视频网站网址| 在线精品一区二区三区| 日本口爆吞精在线视频| 精品一区二区三区a桃蜜| 无码一区二区三区中文字幕| 男女边吃奶边做边爱视频| 青青手机在线视频观看| 国产一区二区av免费在线观看| 国产精品一区二区无线| 久久国产国内精品对话对白| 亚洲熟女熟妇另类中文|