李志明,邱煒鳳,張杰銘,王祿芳,郭志榮 綜述,嚴 俊 審校
(1.南方醫(yī)科大學第一臨床醫(yī)學院,廣州 510515;2.南方醫(yī)科大學南方醫(yī)院普外科,廣州 510515)
膠原作為膠原原纖維存在于細胞外基質(zhì)中,是脊椎動物肌腱、軟骨、骨和皮膚組織的主要拉伸元素,為組織提供拉伸強度,并在組織支架、細胞黏附、細胞遷移、癌癥、血管生成、組織形態(tài)發(fā)生和組織修復等方面有重要作用[1]。
腫瘤微環(huán)境中Ⅰ型膠原的變化可以促進腫瘤的侵襲轉(zhuǎn)移,主要表現(xiàn)在新生膠原、密度、方向、長度、交聯(lián)等方面,見圖1。
圖1 腫瘤微環(huán)境中Ⅰ型膠原的變化促進腫瘤的侵襲轉(zhuǎn)移
1.1新膠原的產(chǎn)生 α1(Ⅰ)3(由3個α1鏈組成的同源三聚體)是僅在癌組織中表達的Ⅰ型膠原蛋白亞型,這種由浸潤性癌細胞產(chǎn)生的同型三聚體含有腫瘤膠原的特定片段并且對基質(zhì)金屬蛋白酶抵抗,癌細胞可以在基質(zhì)膠原被基質(zhì)金屬蛋白酶清除后利用它建立一種侵襲通路(表1),來支持腫瘤細胞增殖和引導腫瘤細胞侵襲轉(zhuǎn)移。它促進腫瘤細胞增殖和侵襲的作用是明確的[2]。新膠原會出現(xiàn)在腫瘤中,新的膠原表位HU177也會選擇性地在卵巢癌中產(chǎn)生,HU177膠原表位的產(chǎn)生提供了存在于基質(zhì)細胞上先前無法識別的α10β1配體,此配體選擇性控制血管生成和基質(zhì)細胞積累,積累的基質(zhì)細胞通過分泌促進卵巢腫瘤生長的致瘤因子促進腫瘤的生長侵襲[3],見表1。
表1 Ⅰ型膠原變化和對應的促進腫瘤侵襲轉(zhuǎn)移機制
1.2膠原密度 在腫瘤細胞微環(huán)境中同時存在膠原的降解生成等生理過程,上述生理過程共同調(diào)節(jié)細胞外基質(zhì)中膠原的密度。膠原密度的增加會促進腫瘤的生成和進展。脯氨酰羥化酶、賴氨酰氧化酶等的表達可以促進乳腺腫瘤中的膠原沉積[4]?;|(zhì)金屬蛋白酶在腫瘤侵襲的前沿降解基質(zhì)膠原[5],抑制基質(zhì)金屬蛋白酶的表達和活性可以作為一個抗癌的直接靶點[6],ROCK信號通路也是通過基質(zhì)金屬蛋白酶來促進胰腺腺癌的發(fā)展[7]。Ⅰ型膠原以外的其他類型膠原生成增多也會對腫瘤的轉(zhuǎn)移產(chǎn)生影響。在卵巢腫瘤中甲硫氨酸t(yī)RNA可以促進間質(zhì)成纖維細胞Ⅱ型膠原的分泌,進而促進腫瘤生長和血管發(fā)生[8]。乳腺癌中,Ⅲ型膠原蛋白通過抑制黏附、侵襲和轉(zhuǎn)移等過程來限制腫瘤轉(zhuǎn)移,體內(nèi)外試驗表明Ⅲ型膠原蛋白缺乏均可以促進腫瘤細胞增殖,減少腫瘤細胞凋亡[9]。結(jié)直腸癌肝轉(zhuǎn)移與Ⅳ型膠原蛋白的增高密切相關(guān),發(fā)生肝轉(zhuǎn)移的結(jié)直腸癌原發(fā)灶基質(zhì)中Ⅳ型膠原蛋白高表達[10]。肺腫瘤中,Ⅴ型膠原蛋白增加內(nèi)皮和上皮細胞凋亡,抑制腫瘤細胞的生長和侵襲[11]。癌癥相關(guān)成纖維細胞重塑一個富含膠原蛋白的基質(zhì)[12],膠原密度增加使得基質(zhì)增厚和硬化,促進細胞遷移、腫瘤轉(zhuǎn)移[13]。在小鼠乳腺組織增加膠原可以增加約3倍的腫瘤形成概率,以及約3倍的肺轉(zhuǎn)移概率[14],繼續(xù)在淋巴結(jié)中觀察膠原密度,腫瘤轉(zhuǎn)移淋巴結(jié)中膠原密度明顯增加,上述結(jié)果顯示轉(zhuǎn)移到淋巴結(jié)的癌細胞仍然可以改變淋巴結(jié)細胞外基質(zhì)的組成來促進腫瘤的轉(zhuǎn)移[15]。
1.3膠原纖維的方向 膠原纖維為癌細胞提供了1個支架,膠原纖維錨定點和形狀的保持促進了癌細胞的增殖侵襲[16]。實驗發(fā)現(xiàn)1級乳腺癌中膠原纖維與腫瘤邊界平行,3級乳腺癌膠原纖維與腫瘤邊界接近垂直,在腫瘤發(fā)生侵襲的部位,膠原纖維垂直于不規(guī)則形狀的腫瘤邊界[17]。乳腺癌細胞沿著膠原纖維排列方向突破基底膜,進入血管內(nèi)滲,實驗證明上皮細胞和成纖維細胞介導肌動蛋白收縮性以定向膠原纖維[18-19],細胞侵襲沿著膠原纖維表明膠原纖維方向的改變促進腫瘤細胞侵襲[17]。對8周和10周腫瘤樣本膠原排列的實驗證實了膠原纖維與切線的夾角從0°~90°的轉(zhuǎn)變[14],利用膠原排列與腫瘤邊界切線的夾角來度量和預測侵襲轉(zhuǎn)移情況,為臨床提供一種新的評估預測腫瘤進展情況的方法[20]。
1.4膠原纖維的長度 研究發(fā)現(xiàn)在頭頸部、食管癌和結(jié)直腸癌的腫瘤基質(zhì)中,增加的膠原纖維長度與患者的低存活率存在相關(guān)性,上述膠原纖維長度的改變是由一部分平滑肌肌動蛋白陽性的癌相關(guān)成纖維細胞介導[21],見表1。
1.5膠原蛋白的交聯(lián) 膠原交聯(lián)的發(fā)生使細胞外基質(zhì)變硬,組織纖維化,膠原交聯(lián)通過整合素信號系統(tǒng)促進腫瘤的侵襲轉(zhuǎn)移[22],見表1。賴氨酰羥化酶2通過羥化膠原蛋白上的賴氨酸殘基,增加膠原交聯(lián),增加組織硬度從而促進腫瘤細胞侵襲和轉(zhuǎn)移[23]。賴氨酰氧化酶氧化催化膠原和彈性蛋白之間的共價交聯(lián),保持細胞外基質(zhì)的剛性和結(jié)構(gòu)穩(wěn)定性來促進腫瘤侵襲和轉(zhuǎn)移[24-25]。
膠原是把雙刃劍,乳腺癌中細胞外基質(zhì)3型膠原可以抑制細胞增殖,促進細胞凋亡[9]。膠原主要通過下列幾個方面促進腫瘤侵襲轉(zhuǎn)移。
2.1促進上皮間充質(zhì)轉(zhuǎn)化(EMT)過程 腫瘤和細胞外基質(zhì)之間的不平衡生物力學是引發(fā)EMT的關(guān)鍵觸發(fā)因素,并導致腫瘤侵襲[26-27]。這種生物力導致EMT,使得癌細胞形態(tài)變化,黏附性能減弱,運動性和侵襲性增強[28]。
2.2直接增大轉(zhuǎn)移距離和空間 乳腺腫瘤微環(huán)境中的基質(zhì)膠原重新定向,垂直邊界的膠原纖維不增加腫瘤細胞侵襲速度,但可以通過增大行進的距離和空間來促進遷移的效率[29],見表1。
2.3通過基質(zhì)及免疫細胞等間接影響 隱蔽性膠原表位提供了促進基質(zhì)細胞積累的新配體,基質(zhì)細胞分泌促進卵巢腫瘤生長的致瘤因子從而促進腫瘤細胞的侵襲轉(zhuǎn)移[3]。與中性粒細胞信號相關(guān)的細胞因子在膠原密集型乳腺腫瘤微環(huán)境中明顯升高,實驗證明用抗中性粒細胞抗體治療可以減少腫瘤數(shù)目并抑制轉(zhuǎn)移,在野生型乳腺腫瘤中無明顯效果,中性粒細胞在膠原密集型乳腺腫瘤細胞外基質(zhì)中加速腫瘤進展[30-31]。膠原蛋白在調(diào)節(jié)巨噬細胞抑制或促進腫瘤侵襲方面起關(guān)鍵作用[32],研究表明在Ⅰ型膠原上培養(yǎng)的巨噬細胞降低了其對腫瘤細胞的細胞毒性作用,表明膠原抑制巨噬細胞分化為抗腫瘤M1型來促進腫瘤的侵襲轉(zhuǎn)移[33]。膠原降解產(chǎn)物可用作單核細胞的趨化性刺激物[34-35],膠原降解片段可招募腫瘤相關(guān)巨噬細胞,腫瘤相關(guān)巨噬細胞在實體腫瘤中很豐富,可以用來預測預后不良[36]。腫瘤相關(guān)巨噬細胞響應于腫瘤進展,促進腫瘤血管發(fā)生、侵襲和外滲[37-38]。細胞外硬度可以通過整聯(lián)蛋白介導的粘連和膠原介導的白細胞相關(guān)Ig樣受體的激活來影響T淋巴細胞活化[39]。
2.4驅(qū)動代謝轉(zhuǎn)變 膠原密度驅(qū)動乳腺癌細胞的代謝轉(zhuǎn)變。與在低密度基質(zhì)中培養(yǎng)的腫瘤細胞相比,在高密度膠原基質(zhì)中生長的乳腺癌細胞通過三羧酸循環(huán)的氧消耗和葡萄糖代謝均降低,谷氨酰胺驅(qū)動三羧酸循環(huán)的能力顯著增強,這些功能代謝的改變反映了代謝基因表達的顯著變化。腫瘤細胞改變其代謝以支持腫瘤的進展和增殖[40]。
2.5介導水擴散和大分子運輸 Ⅰ型膠原纖維增強惡性乳腺腫瘤中的水擴散。在腫瘤中觀察到致密排列的纖維可以促進分子的定向移動(表1),和低Ⅰ型膠原纖維密度的區(qū)域相比,高膠原密度的區(qū)域具有較高的大分子運輸[41]。
2.6促進基因表達 膠原密度增加促進腫瘤細胞環(huán)氧合酶-2(COX-2)基因的表達(表1),COX-2在促進腫瘤侵襲轉(zhuǎn)移方面具有直接作用[42]。結(jié)腸腫瘤中膠原蛋白誘導間充質(zhì)基因表達,促進上皮向間質(zhì)的轉(zhuǎn)化,進而促進腫瘤細胞侵襲[43]。膠原結(jié)合受體Endo180通過轉(zhuǎn)化生長因子β信號介導來促進基因表達,促進侵襲轉(zhuǎn)移[44]。
2.7促進血管生成 膠原代謝的抑制具有抗血管生成作用,血管形成和存活與基底膜處合適的膠原合成和沉積密切相關(guān)[45]。特別是血管基底膜中的Ⅳ型膠原在調(diào)節(jié)血管生成中起關(guān)鍵作用,Ⅳ型膠原的結(jié)構(gòu)完整性對于腫瘤血管生成是最重要的[46]。
3.1基質(zhì)金屬蛋白酶介導的膠原降解導致外周循環(huán)膠原片段增多,因此在轉(zhuǎn)移性結(jié)直腸癌患者血清中膠原片段升高。Ⅰ、Ⅲ和Ⅳ型膠原的蛋白質(zhì)片段可以作為結(jié)直腸癌新的生物標志物,與具有腺瘤和對照組的受試者相比,生物標志物在癌癥患者血清中水平顯著升高。生物標記物在Ⅳ期轉(zhuǎn)移性結(jié)直腸癌患者血清中與所有其他階段相比顯著升高,這些生物標記物(特別是Pro-C3)的水平可以用來評估腫瘤侵襲性和發(fā)展情況,這將為腫瘤患者診斷和監(jiān)測治療效果提供新的臨床工具[47]。
3.2放射治療促進Ⅰ型膠原蛋白特定的纖維排列,因此在治療后仍然有腫瘤細胞存活,定向的膠原纖維網(wǎng)可能會促進更加具有侵襲力的轉(zhuǎn)移。為改善上述情況通過直接修復細胞外基質(zhì)中膠原纖維方向以達到阻止腫瘤細胞侵襲轉(zhuǎn)移的作用[19]。
3.3原位腫瘤的三維成像顯示了3個腫瘤相關(guān)膠原特征(TACS),其提供了一種新的描述腫瘤情況的方法:TACS-1,膠原密度增加作為定位小腫瘤區(qū)域的標志;TACS-2,在腫瘤周圍緊繃膠原纖維的存在,表明腫瘤生長導致腫瘤體積增加;TACS-3,促進侵襲的特定排列的膠原纖維,表明腫瘤的侵襲性和轉(zhuǎn)移性生長潛力[17]。在臨床根據(jù)上述膠原特征可以對腫瘤進行預測評估,解決困擾臨床工作的一大難點。
研究不同病理類型的腫瘤微環(huán)境中膠原的具體變化,以及膠原變化影響不同來源腫瘤轉(zhuǎn)移的機制,通過膠原在不同類型腫瘤建立腫瘤預測模型是未來對膠原變化和腫瘤轉(zhuǎn)移關(guān)系研究的重點,腫瘤的侵襲轉(zhuǎn)移與腫瘤微環(huán)境膠原密切相關(guān),對膠原變化和腫瘤轉(zhuǎn)移關(guān)系做深入研究可對防治腫瘤轉(zhuǎn)移產(chǎn)生重要的臨床意義。
[1]KADLER K E,BALDOCK C,BELLA J,et al.Collagens at a glance[J].J Cell Sci,2007,120(12):1955-1958.
[2]MAKAREEVA E,HAN S,VERA J C,et al.Carcinomas contain a matrix metalloproteinase-resistant isoform of type Ⅰ collagen exerting selective support to invasion[J].Cancer Res,2010,70(11):4366-4374.
[3]CARON J M,AMES J J,CONTOIS L,et al.Inhibition of ovarian tumor growth by targeting the HU177 cryptic collagen epitope[J].Am J Pathol,2016,186(6):1649-1661.
[4]GILKES D M,CHATURVEDI P,BAJPAI S,et al.Collagen prolyl hydroxylases are essential for breast cancer metastasis[J].Cancer Res,2013,73(11):3285-3296.
[5]PAGE-MCCAW A,EWALD A J,WERB Z.Matrix metalloproteinases and the regulation of tissue remodelling[J].Nat Rev Mol Cell Biol,2007,8(3):221-233.
[6]JABLONSKA-TRYPUC A,MATEJCZYK M,ROSOCHACKI S.Matrix metalloproteinases (MMPs),the main extracellular matrix (ECM) enzymes in collagen degradation,as a target for anticancer drugs[J].J Enzyme Inhib Med Chem,2016,31(Supp 1):177-183.
[7]RATH N,MORTON J P,JULIAN L,et al.ROCK signaling promotes collagen remodeling to facilitate invasive pancreatic ductal adenocarcinoma tumor cell growth[J].EMBO Mol Med,2017,9(2):198-218.
[8]CLARKE C J,BERG T J,BIRCH J,et al.The initiator methionine tRNA drives secretion of type Ⅱ collagen from stromal fibroblasts to promote tumor growth and angiogenesis[J].Curr Biol,2016,26(6):755-765.
[9]BRISSON B K,MAULDIN E A,LEI W,et al.Type Ⅲ collagen directs stromal organization and limits metastasis in a murine model of breast cancer[J].Am J Pathol,2015,185(5):1471-1486.
[10]NYSTROM H,NAREDI P,BERGLUND A,et al.Liver-metastatic potential of colorectal cancer is related to the stromal composition of the tumour[J].Anticancer Res,2012,32(12):5183-5191.
[11]PARRA E R,ALVENO R A,F(xiàn)AUSTINO C B,et al.Intranasal administration of type Ⅴ collagen reduces lung carcinogenesis through increasing endothelial and epithelial apoptosis in a urethane-induced lung tumor model[J].Arch Immunol Ther Exp (Warsz),2016,64(4):321-329.
[12]WANG K,WU F,SEO B R,et al.Breast cancer cells alter the dynamics of stromal fibronectin-collagen interactions[J].Matrix Biol,2017(60/61):86-95.
[13]FANG M,YUAN J,PENG C,et al.Collagen as a double-edged sword in tumor progression[J].Tumour Biol,2014,35(4):2871-2882.
[14]PROVENZANO P P,INMAN D R,ELICEIRI K W,et al.Collagen density promotes mammary tumor initiation and progression[J].BMC Med,2008,6:11.
[15]RIZWAN A,BULTE C,KALAICHELVAN A,et al.Metastatic breast cancer cells in lymph nodes increase nodal collagen density[J].Sci Rep,2015,5:10002.
[16]UCHUGONOVA A,ZHAO M,WEINIGEL M,et al.Multiphoton tomography visualizes collagen fibers in the tumor microenvironment that maintain cancer-cell anchorage and shape[J].J Cell Biochem,2013,114(1):99-102.
[17]PROVENZANO P P,ELICEIRI K W,CAMPBELL J M,et al.Collagen reorganization at the tumor-stromal interface facilitates local invasion[J].BMC Med,2006,4(1):38.
[18]WYCKOFF J B,WANG Y,LIN E Y,et al.Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors[J].Cancer Res,2007,67(6):2649-2656.
[19]HAN W,CHEN S,YUAN W,et al.Oriented collagen fibers direct tumor cell intravasation[J].Proc Natl Acad Sci U S A,2016,113(40):11208-11213.
[20]BURKE K A,DAWES R P,CHEEMA M K,et al.Second-harmonic generation scattering directionality predicts tumor cell motility in collagen gels[J].J Biomed Opt,2015,20(5):51024.
[21]HANLEY C J,NOBLE F,WARD M,et al.A subset of myofibroblastic cancer-associated fibroblasts regulate collagen fiber elongation,which is prognostic in multiple cancers[J].Oncotarget,2016,7(5):6159-6174.
[22]LEVENTAL K R,YU H,KASS L,et al.Matrix crosslinking forces tumor progression by enhancing integrin signaling[J].Cell,2009,139(5):891-906.
[23]CHEN Y,TERAJIMA M,YANG Y,et al.Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma[J].J Clin Invest,2015,125(3):1147-1162.
[24]WANG T H,HSIA S M,SHIEH T M.Lysyl oxidase and the tumor microenvironment[J].Int J Mol Sci,2016,18(1):E62.
[25]MOTRESCU E R,BLAISE S,ETIQUE N,et al.Matrix metalloproteinase-11/stromelysin-3 exhibits collagenolytic function against collagen Ⅵ under normal and malignant conditions[J].Oncogene,2008,27(49):6347-6355.
[26]TORZILLI P A,BOURNE J W,CIGLER T,et al.A new paradigm for mechanobiological mechanisms in tumor metastasis[J].Semin Cancer Biol,2012,22(5/6):385-395.
[27]ESSEX D W,LI M,MILLER A,et al.Protein disulfide isomerase and sulfhydryl-dependent pathways in platelet activation[J].Biochemistry,2001,40(20):6070-6075.
[28]NETTI P A,BERK D A,SWARTZ M A,et al.Role of extracellular matrix assembly in interstitial transport in solid tumors[J].Cancer Res,2000,60(9):2497-2503.
[29]RICHING K M,COX B L,SALICK M R,et al.3D collagen alignment limits protrusions to enhance breast cancer cell persistence[J].Biophys J,2014,107(11):2546-2558.
[30]GARCIA-MENDOZA M G,INMAN D R,PONIK S M,et al.Neutrophils drive accelerated tumor progression in the collagen-dense mammary tumor microenvironment[J].Breast Cancer Res,2016,18(1):49.
[31]PARKS W C,WILSON C L,LOPEZ-BOADO Y S.Matrix metalloproteinases as modulators of inflammation and innate immunity[J].Nat Rev Immunol,2004,4(8):617-629.
[32]POLLARD J W.Tumour-educated macrophages promote tumour progression and metastasis[J].Nat Rev Cancer,2004,4(1):71-78.
[33]KAPLAN G.In vitro differentiation of human monocytes.Monocytes cultured on glass are cytotoxic to tumor cells but monocytes cultured on collagen are not[J].J Exp Med,1983,157(6):2061-2072.
[34]WEATHINGTON N M,VAN HOUWELINGEN A H,NOERAGER B D,et al.A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation[J].Nat Med,2006,12(3):317-323.
[35]POSTLETHWAITE A E,KANG A H.Collagen-and collagen peptide-induced chemotaxis of human blood monocytes[J].J Exp Med,1976,143(6):1299-1307.
[36]BINGLE L,BROWN N J,LEWIS C E.The role of tumour-associated macrophages in tumour progression:implications for new anticancer therapies[J].J Pathol,2002,196(3):254-265.
[37]CARMELIET P,JAIN R K.Angiogenesis in cancer and other diseases[J].Nature,2000,407(6801):249-257.
[38]BOUDREAU N,MYERS C.Breast cancer-induced angiogenesis:multiple mechanisms and the role of the microenvironment[J].Breast Cancer Res,2003,5(3):140-146.
[39]ROTH J M,CAUNT M,CRETU A,et al.Inhibition of experimental metastasis by targeting the HUIV26 cryptic epitope in collagen[J].Am J Pathol,2006,168(5):1576-1586.
[40]MORRIS B A,BURKEL B,PONIK S M,et al.Collagen matrix density drives the metabolic shift in breast cancer cells[J].EBioMedicine,2016,13:146-156.
[41]KAKKAD S,ZHANG J,AKHBARDEH A,et al.Collagen fibers mediate MRI-detected water diffusion and anisotropy in breast cancers[J].Neoplasia,2016,18(10):585-593.
[42]ESBONA K,INMAN D,SAHA S,et al.COX-2 modulates mammary tumor progression in response to collagen density[J].Breast Cancer Res,2016,18(1):35.
[43]VELLINGA T T,DEN UIL S,RINKES I H,et al.Collagen-rich stroma in aggressive colon tumors induces mesenchymal gene expression and tumor cell invasion[J].Oncogene,2016,35(40):5263-5271.
[44]HUIJBERS I J,IRAVANI M,POPOV S,et al.A role for fibrillar collagen deposition and the collagen internalization receptor endo180 in glioma invasion[J].PLoS One,2010,5(3):e9808.
[45]MARAGOUDAKIS M E,MISSIRLIS E,KARAKIULAKIS G D,et al.Basement membrane biosynthesis as a target for developing inhibitors of angiogenesis with anti-tumor properties[J].Kidney Int,1993,43(1):147-150.
[46]KALLURI R.Basement membranes:structure,assembly and role in tumour angiogenesis[J].Nat Rev Cancer,2003,3(6):422-433.
[47]KEHLET S N,SANZ-PAMPLONA R,BRIX S,et al.Excessive collagen turnover products are released during colorectal cancer progression and elevated in serum from metastatic colorectal cancer patients[J].Sci Rep,2016,6:30599.