亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Thermodynamic Nonequilibrium Features in Binary Diffusion?

        2018-06-15 07:32:46ChuanDongLin林傳棟KaiHongLuo羅開(kāi)紅YanBiaoGan甘延標(biāo)andHuiLinLai賴(lài)惠林
        Communications in Theoretical Physics 2018年6期

        Chuan-Dong Lin(林傳棟)? Kai Hong Luo(羅開(kāi)紅)? Yan-Biao Gan(甘延標(biāo))and Hui-Lin Lai(賴(lài)惠林)

        1Center for Combustion Energy,Key Laboratory for Thermal Science and Power Engineering of Ministry of Education,Department of Energy and Power Engineering,Tsinghua University,Beijing 100084,China

        2College of Mathematics and Informatics&FJKLMAA,Fujian Normal University,Fuzhou 350007,China

        3Department of Mechanical Engineering,University College London,Torrington Place,London WC1E 7JE,UK

        4North China Institute of Aerospace Engineering,Langfang 065000,China

        Diffusion is the net movement of particles down their concentration gradient.It takes place when miscible materials are brought together.[1]It is a fundamental and ubiquitous phenomenon in nature and widely exists in engineering,sciences,technologies and beyond.[1]For example,diffusion plays a key role in the storage and mining of shale gas,partially premixed or nonpremixed combustion,etc.Physically,diffusion is a typical scenario that incorporates various essential thermodynamic nonequilibrium effects(TNEs).Early in 1855,Fick’s laws of diffusion were presented in the background of thermodynamics and nonequilibrium thermodynamics.[1]Later,the theory of diffusion in gases was developed based on Boltzmann’s equation.[2]However,the nonlinear complexity and pronounced TNEs often provide challenges to previous theoretical studies.

        In recent decades,researches into nonlinear complex systems have been significantly promoted by numerical approaches,such as the lattice Boltzmann method(LBM).[3?12]In 2004,Briant and Yeomans utilized the LBM to simulate the relative diffusion of two fluid components in the vicinity of the contact line.[4]In 2016,an LBM was developed for solving the fractional advection-diffusion equation.[9]However,previous LBMs were mainly used to solve hydrodynamic equations,but ignored some detained TNEs.As a variant of traditional LBMs,the discrete Boltzmann method(DBM)[13?17]has achieved great success in simulating nonequilibrium systems,such as multiphase flows, fluid instabilities,combustion,etc.Very recently,the TNEs in binary diffusion were demonstrated by a double-distribution-function DBM.[16]

        In this work,we adopt the DBM to have a deeper probe into the nonequilibrium features of binary diffusion.The DBM is based on the following equation,[16]

        Toconductnumericalsimulations,thetemporal derivative in Eq.(1)is calculated in its analytical form,[15]and the spatial derivative is solved by the second order non-oscillatory and non-free-parameter dissipation difference scheme.[19]Next,let us investigate the nonequilibrium effects in the binary diffusion.The initial con figuration is

        whereL(R)indicates the left(right)part of the computational domain,and(ρ,u,T)=(1,0,T0)in the two parts.YAandYBrepresent the mole fraction of species A and B,respectively.Furthermore,the in flow and periodic boundary conditions are adopted in thexandydirections,respectively.First of all,two cases of simulations are performed.In Case I,the initial temperature isT0=1,the mole fractionY0=5%,the relaxation timeτ=2×10?5,the time step ?t=10?7,the space step?x= ?y=2×10?6,the meshNx=Ny=5000×1.In Case II,the parameters areT0=2,Y0=25%,τ=4×10?5,?t=2×10?7,?x= ?y=4×10?6,Nx=Ny=2500×1.

        Fig.1 Physical quantities and TNE characterizations around the material interface at representative instants,t1=2× 10?4,t2=4× 10?4,and t3=8× 10?4,respectively.(a)Mole fraction Yσ,(b)horizontal velocity uσx,(c)nonorganised energy?A?2,αα,(d)nonorganised energy?B?2,αα,(e)nonorganised energy flux?A?3,1,α,and(f)nonorganised energy flux?B?3,1,α.In each plot,a vertical line is plotted at the material interface.

        In fact,we can recover the main characteristics of the distribution functionfσfrom the above nonequilibrium in Fig.2(a),and the main feature offAin the velocity space(vx,vy)is shown in Fig.2(c).Similarly,the sketch offBis plotted in Figs.2(b)and 2(d).

        Fig.2 Sketches of the velocity distribution functions at the material interface:(a)fAversus vxor vy,(b)fB versus vxor vy,(c)fAin the velocity space(vx,vy),and(d)fBin the velocity space(vx,vy).

        To investigate the dependence of the TNEs on the relaxation time,we carry out two groups of simulations.Group I hasT0=1 andY0=5%.Group II hasT0=2 andY0=25%.Considering both the accuracy and efficiency,we choose the time and space steps as(?t,?x)=(5×10?8,10?6),(10?7,2×10?6),(2×10?7,4×10?6),(4×10?7,8×10?6),(8×10?7,1.6×10?5)for simula-tions with relaxation timeτ=10?5,2×10?5,4×10?5,8×10?5,1.6×10?4,respectively.Figure 4 plots the relationship between the TNEs and the relaxation time att=0.002.The fitting functions areF(?)=3.71+0.989?andF(?)=2.29+1.50?in Fig.4(a),F(?)=7.69+1.47?andF(?)=6.12+1.97?in Fig.4(b),F(?)=4.02+0.995?andF(?)=2.83+1.50?in Fig.4(c),F(?)=7.81+1.44?andF(?)=6.66+1.95?in Fig.4(d),respectively,with?=ln(τ). It is clear that both the local and global TNEs increase with the relaxation time in a power-law form.Theoretically,the physical gradients reduce fast for large relaxation time.The reducing physical gradients and increasing relaxation time exert opposite effects on the TNEs,[16]but the latter dominates for parameter space considered in our simulations.

        Fig.3 Evolution of nonequilibrium effects:(a)the amplitude and integral of?σ2,xxin Case I,(b)the amplitude and integral of?σ3,1,xin Case I,(c)the amplitude and integral of?σ2,xxin Case II,(d)the amplitude and integral of?σ3,1,xin Case II.

        Fig.4 Nonequilibrium effects versus the relaxation time:(a)the amplitude and integral of?σ2,xxin Group I,(b)the amplitude and integral of?σ3,1,xin Group I,(c)the amplitude and integral of?σ2,xxin Group II,(d)the amplitude and integral of?σ3,1,xin Group II.

        In summary,the recently developed discrete Boltzmann method is employed to investigate the TNEs in the dynamic process of binary diffusion.The departure of the velocity distribution function from its equilibrium counterpart is investigated in detail.It is found that,both the local and global TNEs around the material interface decrease with evolution due to the smoothness of physical quantities;while they are enhanced by the relaxation time.Specifically,the relations between the TNEs and the time(the relaxation time)obey a negative(positive)power law.

        [1]S.R.De Groot and P.Mazur,Non-Equilibrium Thermodynamics,Dover Publications,New York(2013).

        [2]S.Chapman and T.G.Cowling,The Mathematical Theory of Non-Uniform Gases:an Account of the Kinetic Theory of Viscosity,Thermal Conduction and Diffusion in Gases,Cambridge University Press,Cambridge(1970).

        [3]X.Shan and G.Doolen,Phys.Rev.E 54(1996)3614.

        [4]A.J.Briant and J.M.Yeomans,Phys.Rev.E 69(2004)031603.

        [5]Z.Chai,C.Huang,B.Shi,and Z.Guo,Int.J.Heat Mass Transf.98(2016)687.

        [6]A.S.Joshi,A.A.Peracchio,K.N.Grew,and W.K.Chiu,J.Phys.D:Appl.Phys.40(2007)7593.

        [7]F.M.Liu,A.L.Wang,R.F.Qiu,and T.Jiang,Int.J.Mod.Phys.C 27(2016)1650130.

        [8]J.Zudrop,K.Masilamani,S.Roller,and P.Asinari,Computers&Fluids 153(2017)20.

        [9]J.G.Zhou,P.M.Haygarth,P.J.A.Withers,et al.,Phys.Rev.E 93(2016)043310.

        [10]S.Succi,The Lattice Boltzmann Equation for Fluid Dynamics and Beyond,Oxford University Press,New York(2001).

        [11]R.Qin and Y.Zhang,Comput.Fluids 35(2006)929.

        [12]C.Zhuo and C.Zhong,Int.J.Heat Fluid Flow 42(2013)10.

        [13]Y.Gan,A.Xu,G.Zhang,and Y.Li,Commun.Theor.Phys.57(2012)681.

        [14]Y.Gan,A.Xu,G.Zhang,and S.Succi,Soft Matter 11(2015)5336.

        [15]C.Lin,A.Xu,G.Zhang,et al.,Phys.Rev.E 89(2014)013307.

        [16]C.Lin,A.Xu,G.Zhang,and Y.Li,Combust.and Flame 164(2016)137.

        [17]C.Lin,K.H.Luo,L.Fei,and S.Succi,Sci.Rep.7(2017)14580.

        [18]M.Watari and M.Tsutahara,Phys.Rev.E 67(2003)036306.

        [19]H.Zhang and F.Zhuang,Adv.Appl.Mech.29(1991)193.

        日本亚洲视频一区二区三区| 久久夜色精品国产噜噜亚洲av| 亚洲av无码av制服另类专区| 九月婷婷人人澡人人添人人爽| 久久精品国产9久久综合| 亚洲日韩精品A∨片无码加勒比| 国产丝袜免费精品一区二区| 国产人成在线免费视频| 国产精品熟女一区二区三区| 亚洲精品久久久www小说| 亚洲av无码专区亚洲av桃| 日本国产在线一区二区| 国产精品高清免费在线| 无码av专区丝袜专区| 国产无遮挡又爽又刺激的视频老师 | 国产视频一区二区三区在线免费| 亚洲av中文无码乱人伦在线播放| 无码免费一区二区三区| 国产欧美日韩a片免费软件| A亚洲VA欧美VA国产综合| 国产亚洲中文字幕一区| 女人被爽到高潮视频免费国产| 欧美日韩亚洲精品瑜伽裤| 丝袜美腿爆炒国产在线观看| 中文有码人妻字幕在线 | 日射精情感性色视频| 久久久伊人影院| 久久亚洲精品成人AV无码网址 | 日本不卡一区二区三区久久精品 | 国产三级不卡一区不卡二区在线| 亚洲av永久无码精品网址| 日日av拍夜夜添久久免费 | 久久精品熟女亚洲av艳妇| 亚洲最大在线视频一区二区| 国产女厕偷窥系列在线视频| 国产成人亚洲综合无码精品| 久久婷婷国产色一区二区三区| 久久久久人妻一区二区三区| 国产97色在线 | 日韩| 亚洲AV无码精品色午夜超碰| 激情五月六月婷婷俺来也|