亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Thermodynamic Nonequilibrium Features in Binary Diffusion?

        2018-06-15 07:32:46ChuanDongLin林傳棟KaiHongLuo羅開(kāi)紅YanBiaoGan甘延標(biāo)andHuiLinLai賴(lài)惠林
        Communications in Theoretical Physics 2018年6期

        Chuan-Dong Lin(林傳棟)? Kai Hong Luo(羅開(kāi)紅)? Yan-Biao Gan(甘延標(biāo))and Hui-Lin Lai(賴(lài)惠林)

        1Center for Combustion Energy,Key Laboratory for Thermal Science and Power Engineering of Ministry of Education,Department of Energy and Power Engineering,Tsinghua University,Beijing 100084,China

        2College of Mathematics and Informatics&FJKLMAA,Fujian Normal University,Fuzhou 350007,China

        3Department of Mechanical Engineering,University College London,Torrington Place,London WC1E 7JE,UK

        4North China Institute of Aerospace Engineering,Langfang 065000,China

        Diffusion is the net movement of particles down their concentration gradient.It takes place when miscible materials are brought together.[1]It is a fundamental and ubiquitous phenomenon in nature and widely exists in engineering,sciences,technologies and beyond.[1]For example,diffusion plays a key role in the storage and mining of shale gas,partially premixed or nonpremixed combustion,etc.Physically,diffusion is a typical scenario that incorporates various essential thermodynamic nonequilibrium effects(TNEs).Early in 1855,Fick’s laws of diffusion were presented in the background of thermodynamics and nonequilibrium thermodynamics.[1]Later,the theory of diffusion in gases was developed based on Boltzmann’s equation.[2]However,the nonlinear complexity and pronounced TNEs often provide challenges to previous theoretical studies.

        In recent decades,researches into nonlinear complex systems have been significantly promoted by numerical approaches,such as the lattice Boltzmann method(LBM).[3?12]In 2004,Briant and Yeomans utilized the LBM to simulate the relative diffusion of two fluid components in the vicinity of the contact line.[4]In 2016,an LBM was developed for solving the fractional advection-diffusion equation.[9]However,previous LBMs were mainly used to solve hydrodynamic equations,but ignored some detained TNEs.As a variant of traditional LBMs,the discrete Boltzmann method(DBM)[13?17]has achieved great success in simulating nonequilibrium systems,such as multiphase flows, fluid instabilities,combustion,etc.Very recently,the TNEs in binary diffusion were demonstrated by a double-distribution-function DBM.[16]

        In this work,we adopt the DBM to have a deeper probe into the nonequilibrium features of binary diffusion.The DBM is based on the following equation,[16]

        Toconductnumericalsimulations,thetemporal derivative in Eq.(1)is calculated in its analytical form,[15]and the spatial derivative is solved by the second order non-oscillatory and non-free-parameter dissipation difference scheme.[19]Next,let us investigate the nonequilibrium effects in the binary diffusion.The initial con figuration is

        whereL(R)indicates the left(right)part of the computational domain,and(ρ,u,T)=(1,0,T0)in the two parts.YAandYBrepresent the mole fraction of species A and B,respectively.Furthermore,the in flow and periodic boundary conditions are adopted in thexandydirections,respectively.First of all,two cases of simulations are performed.In Case I,the initial temperature isT0=1,the mole fractionY0=5%,the relaxation timeτ=2×10?5,the time step ?t=10?7,the space step?x= ?y=2×10?6,the meshNx=Ny=5000×1.In Case II,the parameters areT0=2,Y0=25%,τ=4×10?5,?t=2×10?7,?x= ?y=4×10?6,Nx=Ny=2500×1.

        Fig.1 Physical quantities and TNE characterizations around the material interface at representative instants,t1=2× 10?4,t2=4× 10?4,and t3=8× 10?4,respectively.(a)Mole fraction Yσ,(b)horizontal velocity uσx,(c)nonorganised energy?A?2,αα,(d)nonorganised energy?B?2,αα,(e)nonorganised energy flux?A?3,1,α,and(f)nonorganised energy flux?B?3,1,α.In each plot,a vertical line is plotted at the material interface.

        In fact,we can recover the main characteristics of the distribution functionfσfrom the above nonequilibrium in Fig.2(a),and the main feature offAin the velocity space(vx,vy)is shown in Fig.2(c).Similarly,the sketch offBis plotted in Figs.2(b)and 2(d).

        Fig.2 Sketches of the velocity distribution functions at the material interface:(a)fAversus vxor vy,(b)fB versus vxor vy,(c)fAin the velocity space(vx,vy),and(d)fBin the velocity space(vx,vy).

        To investigate the dependence of the TNEs on the relaxation time,we carry out two groups of simulations.Group I hasT0=1 andY0=5%.Group II hasT0=2 andY0=25%.Considering both the accuracy and efficiency,we choose the time and space steps as(?t,?x)=(5×10?8,10?6),(10?7,2×10?6),(2×10?7,4×10?6),(4×10?7,8×10?6),(8×10?7,1.6×10?5)for simula-tions with relaxation timeτ=10?5,2×10?5,4×10?5,8×10?5,1.6×10?4,respectively.Figure 4 plots the relationship between the TNEs and the relaxation time att=0.002.The fitting functions areF(?)=3.71+0.989?andF(?)=2.29+1.50?in Fig.4(a),F(?)=7.69+1.47?andF(?)=6.12+1.97?in Fig.4(b),F(?)=4.02+0.995?andF(?)=2.83+1.50?in Fig.4(c),F(?)=7.81+1.44?andF(?)=6.66+1.95?in Fig.4(d),respectively,with?=ln(τ). It is clear that both the local and global TNEs increase with the relaxation time in a power-law form.Theoretically,the physical gradients reduce fast for large relaxation time.The reducing physical gradients and increasing relaxation time exert opposite effects on the TNEs,[16]but the latter dominates for parameter space considered in our simulations.

        Fig.3 Evolution of nonequilibrium effects:(a)the amplitude and integral of?σ2,xxin Case I,(b)the amplitude and integral of?σ3,1,xin Case I,(c)the amplitude and integral of?σ2,xxin Case II,(d)the amplitude and integral of?σ3,1,xin Case II.

        Fig.4 Nonequilibrium effects versus the relaxation time:(a)the amplitude and integral of?σ2,xxin Group I,(b)the amplitude and integral of?σ3,1,xin Group I,(c)the amplitude and integral of?σ2,xxin Group II,(d)the amplitude and integral of?σ3,1,xin Group II.

        In summary,the recently developed discrete Boltzmann method is employed to investigate the TNEs in the dynamic process of binary diffusion.The departure of the velocity distribution function from its equilibrium counterpart is investigated in detail.It is found that,both the local and global TNEs around the material interface decrease with evolution due to the smoothness of physical quantities;while they are enhanced by the relaxation time.Specifically,the relations between the TNEs and the time(the relaxation time)obey a negative(positive)power law.

        [1]S.R.De Groot and P.Mazur,Non-Equilibrium Thermodynamics,Dover Publications,New York(2013).

        [2]S.Chapman and T.G.Cowling,The Mathematical Theory of Non-Uniform Gases:an Account of the Kinetic Theory of Viscosity,Thermal Conduction and Diffusion in Gases,Cambridge University Press,Cambridge(1970).

        [3]X.Shan and G.Doolen,Phys.Rev.E 54(1996)3614.

        [4]A.J.Briant and J.M.Yeomans,Phys.Rev.E 69(2004)031603.

        [5]Z.Chai,C.Huang,B.Shi,and Z.Guo,Int.J.Heat Mass Transf.98(2016)687.

        [6]A.S.Joshi,A.A.Peracchio,K.N.Grew,and W.K.Chiu,J.Phys.D:Appl.Phys.40(2007)7593.

        [7]F.M.Liu,A.L.Wang,R.F.Qiu,and T.Jiang,Int.J.Mod.Phys.C 27(2016)1650130.

        [8]J.Zudrop,K.Masilamani,S.Roller,and P.Asinari,Computers&Fluids 153(2017)20.

        [9]J.G.Zhou,P.M.Haygarth,P.J.A.Withers,et al.,Phys.Rev.E 93(2016)043310.

        [10]S.Succi,The Lattice Boltzmann Equation for Fluid Dynamics and Beyond,Oxford University Press,New York(2001).

        [11]R.Qin and Y.Zhang,Comput.Fluids 35(2006)929.

        [12]C.Zhuo and C.Zhong,Int.J.Heat Fluid Flow 42(2013)10.

        [13]Y.Gan,A.Xu,G.Zhang,and Y.Li,Commun.Theor.Phys.57(2012)681.

        [14]Y.Gan,A.Xu,G.Zhang,and S.Succi,Soft Matter 11(2015)5336.

        [15]C.Lin,A.Xu,G.Zhang,et al.,Phys.Rev.E 89(2014)013307.

        [16]C.Lin,A.Xu,G.Zhang,and Y.Li,Combust.and Flame 164(2016)137.

        [17]C.Lin,K.H.Luo,L.Fei,and S.Succi,Sci.Rep.7(2017)14580.

        [18]M.Watari and M.Tsutahara,Phys.Rev.E 67(2003)036306.

        [19]H.Zhang and F.Zhuang,Adv.Appl.Mech.29(1991)193.

        精品国产一区二区三区av片 | h视频在线免费观看视频| 99久久无码一区人妻| 国产97在线 | 中文| 久久久精品国产亚洲AV蜜| 狼人综合干伊人网在线观看| 91久久精品色伊人6882| 亚洲中文字幕在线观看| 亚洲色大成网站www在线观看| 国产一区二区免费在线观看视频 | 放荡的少妇2欧美版| 国产主播一区二区三区在线观看| yw193.can尤物国产在线网页| 亚洲视频一区二区免费看| 精品国产三级a∨在线| 亚洲av国产av综合av| 久久成人黄色免费网站| 国产成人高清在线观看视频 | 亚洲精品有码日本久久久| 人妻少妇不满足中文字幕| 国产一级毛片AV不卡尤物| 色婷婷亚洲一区二区在线| 末成年人av一区二区| 日韩高清在线观看永久| 亚洲一区二区自拍偷拍| 91乱码亚洲精品中文字幕| 国产成人精品2021| 亚洲国产综合人成综合网站 | 亚洲天堂资源网| 国产av大片久久中文字幕| 人妻av中文字幕久久| 亚洲日韩国产精品第一页一区| 亚洲无码美韩综合| 日韩极品视频免费观看| 在线不卡av片免费观看| 一区二区三区放荡人妻| 毛片成人18毛片免费看| 香港台湾经典三级a视频| 日韩一区二区肥| 国产影院一区二区在线| 人妻av无码一区二区三区|