王德迪,李隱俠,姚一龍,潘增祥,決 肯,依 明,曹少先,李齊發(fā)*
(1. 南京農(nóng)業(yè)大學(xué)動(dòng)物科技學(xué)院,南京210095;2.江蘇省農(nóng)業(yè)科學(xué)院畜牧研究所,南京 210014;3.新疆農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)學(xué)院,烏魯木齊 830052)
促卵泡素受體(Follicle stimulating hormone receptor,F(xiàn)SHR)是雌性哺乳動(dòng)物卵巢顆粒細(xì)胞膜上一種重要的受體蛋白,其編碼基因是影響哺乳動(dòng)物多胎性狀的主效基因,調(diào)控卵巢顆粒細(xì)胞狀態(tài)(增殖和凋亡)、卵泡發(fā)育和排卵[1-2]。促卵泡素(Follicle stimulating hormone,F(xiàn)SH)信號(hào)轉(zhuǎn)導(dǎo)必須通過與卵巢顆粒細(xì)胞膜上的受體FSHR結(jié)合才能作用于卵巢,從而促進(jìn)卵泡發(fā)育、調(diào)控配子形成[3],因此FSHR是母畜生殖必需的。研究發(fā)現(xiàn)豬卵泡成熟與排卵依賴FSHR基因的表達(dá)[4],其基因編碼區(qū)上3個(gè) 堿基突變(c.74C>G、c.532G>A和c.1166T>C)顯著影響豬排卵數(shù),F(xiàn)SHR被認(rèn)為是影響豬繁殖性狀的主效基因[1]。在綿羊中,F(xiàn)SHR基因在卵巢組織不同大小(直徑4~7 mm)和不同狀態(tài)(優(yōu)勢卵泡、劣勢卵泡和黃體化卵泡)的卵泡中均差異表達(dá)[5],說明FSHR基因表達(dá)水平與綿羊卵泡發(fā)育、優(yōu)勢化和排卵有關(guān)。FSHR基因5′-調(diào)控區(qū)和編碼區(qū)SNP位點(diǎn)(g.-414G>A、g.-200G>A、g.-197G>A、g.-98T>C、g.-47C > T和c.1235T>C)的多態(tài)性均與綿羊多胎性狀(產(chǎn)羔數(shù))顯著關(guān)聯(lián)[6-9]。因此,F(xiàn)SHR是影響綿羊多胎性狀的重要候選基因。
湖羊是中國著名的多胎綿羊品種,其多胎機(jī)制一直是湖羊特色性狀研究和應(yīng)用的熱點(diǎn)[6, 10-12]。FSHR基因SNP位點(diǎn)多態(tài)性與湖羊多胎性狀之間關(guān)系密切[13],是影響湖羊多胎性狀的候選基因。在高繁殖力綿羊個(gè)體卵巢卵泡中,F(xiàn)SHR基因轉(zhuǎn)錄水平顯著高于低繁殖力個(gè)體[5,14],可見卵泡中FSHR基因表達(dá)水平與綿羊繁殖力有關(guān)。但目前關(guān)于綿羊FSHR基因轉(zhuǎn)錄調(diào)控的研究較少,特別是轉(zhuǎn)錄因子的調(diào)控還未見報(bào)道。本研究擬以湖羊FSHR基因?yàn)檠芯繉?duì)象,克隆湖羊FSHR基因5′-UTR序列,了解其序列特征(如轉(zhuǎn)錄調(diào)控元件和轉(zhuǎn)錄因子結(jié)合位點(diǎn)),分析湖羊轉(zhuǎn)錄因子PAX4基因的組織表達(dá)特征和在卵巢顆粒細(xì)胞凋亡中的作用,以及對(duì)湖羊FSHR基因轉(zhuǎn)錄活性的影響,以期揭示湖羊FSHR基因的轉(zhuǎn)錄調(diào)控機(jī)制和湖羊多胎分子機(jī)制。
成年湖羊母羊(n=3)心、肝、脾、肺、腎、胃、肌肉、大腸、小腸、子宮和卵巢11種組織樣采自蘇州種羊場,置于液氮中保存,用于提取DNA和RNA。
采用酚/氯仿法提取湖羊卵巢組織DNA。采用Trizol(Invitrogen公司)法提取湖羊各組織和卵巢顆粒細(xì)胞總RNA,并利用快速反轉(zhuǎn)錄試劑盒(TaKaRa公司)反轉(zhuǎn)錄成cDNA。DNA和cDNA均在-20 ℃冰箱中保存?zhèn)溆谩?/p>
以綿羊FSHR基因序列(GenBank序列號(hào):NC_019460.1)為參考序列,設(shè)計(jì)引物P1用于擴(kuò)增湖羊FSHR基因5′-UTR序列,引物信息和擴(kuò)增條件見表1。PCR產(chǎn)物用1.5%瓊脂糖凝膠電泳進(jìn)行分離,并采用膠回收試劑盒(Axygen公司)進(jìn)行回收。回收產(chǎn)物與載體pMD19-T(TaKaRa公司)連接后,轉(zhuǎn)化到感受態(tài)細(xì)胞DH5α(天根公司)中;挑取陽性克隆,采用質(zhì)粒提取試劑盒(Axygen公司)提取質(zhì)粒,由上海生物工程公司進(jìn)行雙向測序。
采用DNAMAN v5.2.2軟件進(jìn)行序列整理和比對(duì)分析;采用在線程序Genomatix(https://www.genomatix.de)進(jìn)行轉(zhuǎn)錄調(diào)控元件和轉(zhuǎn)錄因子結(jié)合位點(diǎn)預(yù)測;采用在線軟件Methprimer(http://www.urogene.org)預(yù)測CpG島。
以湖羊11個(gè)組織cDNA為模板,以P2(表1)為引物進(jìn)行RT-PCR擴(kuò)增。擴(kuò)增產(chǎn)物用1.5%瓊脂糖凝膠電泳進(jìn)行分離,用Tanon-3500凝膠成像系統(tǒng)拍照。以GAPDH為內(nèi)參基因,采用Quantity One v4.52軟件對(duì)目的基因和內(nèi)參基因進(jìn)行灰度分析,用目的基因/內(nèi)參基因計(jì)算不同組織目的基因的相對(duì)表達(dá)量。
湖羊PAX4基因過表達(dá)載體pcDNA3.1-PAX4由南京伯津公司合成,采用雙酶切鑒定法和直接測序進(jìn)行確認(rèn)。以P4(表1)為引物擴(kuò)增湖羊FSHR基因5′-UTR,用限制性內(nèi)切酶KpnI和Hind Ⅲ酶切后,克隆到pGL3雙熒光素酶報(bào)告基因載體(Promega公司)中,并轉(zhuǎn)染感受態(tài)細(xì)胞DH5α(天根公司),采用雙酶切鑒定法和直接測序進(jìn)行確認(rèn),構(gòu)建湖羊FSHR基因5′-UTR熒光素酶報(bào)告基因重組質(zhì)粒。
商品豬卵巢采自南京天環(huán)屠宰場,用于抽取卵巢顆粒細(xì)胞。豬卵巢顆粒細(xì)胞培養(yǎng)、轉(zhuǎn)染和熒光素酶活性分析的具體方法見文獻(xiàn)[2]。
pcDNA3.1-PAX4轉(zhuǎn)染體外培養(yǎng)的卵巢顆粒細(xì)胞,48 h后收集細(xì)胞,提取細(xì)胞總RNA,并反轉(zhuǎn)錄成cDNA。卵巢顆粒細(xì)胞中PAX4基因表達(dá)水平采用qRT-PCR技術(shù)進(jìn)行檢測,具體步驟見文獻(xiàn)[11],退火溫度見表1。
表1 引物信息Table 1 The primers in this study
數(shù)據(jù)用“平均數(shù)±標(biāo)準(zhǔn)誤”表示,采用SPSS v18.0軟件對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析。P<0.05表示差異顯著;P<0.01表示差異極顯著。
以湖羊卵巢組織基因組DNA為模板,利用引物P1進(jìn)行PCR擴(kuò)增,PCR產(chǎn)物電泳結(jié)果見圖1。從圖1可以看出,電泳條帶單一明亮。測序發(fā)現(xiàn),擴(kuò)增片段長度為730 bp,與引物源序列(GenBank序列號(hào):NC_019460.1)的一致性為98.99%。
M.DL2000 marker;1~2.PCR擴(kuò)增產(chǎn)物M.DL2000 marker; 1-2.PCR product圖1 湖羊FSHR基因5′調(diào)控區(qū)擴(kuò)增產(chǎn)物電泳圖Fig.1 Agarose gel photograph of FSHR 5′ regulatory region in Hu sheep
湖羊FSHR基因5′-UTR序列全長161 bp(圖2)。序列分析發(fā)現(xiàn),湖羊FSHR基因5′-UTR序列中A、T、C和G等4種堿基的含量分別是32.30%、16.77%、21.74%和29.19%,其中A+T含量(49.07%)接近C+G含量(50.93%)。同源性比對(duì)發(fā)現(xiàn),湖羊FSHR基因5′-UTR序列與特塞爾(Texel)綿羊序列(GenBank序列號(hào):NC_019460.1)一致,與牛(GenBank序列號(hào):AC_000168.1)、小鼠(GenBank序列號(hào):NC_000083.6)和斑馬魚(GenBank序列號(hào):NC_007123.7)的一致性分別為95.03%、61.11%和28.90%,可見FSHR基因5′-UTR核苷酸序列在哺乳動(dòng)物中較為保守。通過序列比對(duì)發(fā)現(xiàn),在湖羊FSHR基因5′-UTR區(qū)含有多個(gè)轉(zhuǎn)錄調(diào)控元件,如E-box、CAAT-box和GC-box等(圖2)。采用在線軟件Genomatic對(duì)湖羊FSHR基因5′-UTR序列進(jìn)行轉(zhuǎn)錄因子結(jié)合位點(diǎn)預(yù)測,結(jié)果顯示,在湖羊FSHR基因5′-UTR序列含有GATA-2、SOX3、IRF-1、Sp1、E4FUSF1和SOX10轉(zhuǎn)錄因子結(jié)合位點(diǎn)(圖2)。采用在線軟件Methprimer在湖羊FSHR基因5′-UTR中未檢測到CpG島,但發(fā)現(xiàn)多個(gè)CpG位點(diǎn)。
*表示轉(zhuǎn)錄起始位點(diǎn); 黑體字母表示USF1結(jié)合位點(diǎn);虛線表示起始密碼子* indicate transcription start site. Black letters indicate binding site for USF1;Dashed line indicate start codon圖2 湖羊FSHR基因5′-UTR序列與特塞爾綿羊、牛同源性比對(duì)Fig.2 Alignment of FSHR 5′-UTR sequence in Hu sheep with Texel sheep and cattle
PAX4(Paired box 4)是一種重要的轉(zhuǎn)錄因子,主要通過與靶基因調(diào)控區(qū)結(jié)合調(diào)控基因轉(zhuǎn)錄[15],但關(guān)于其調(diào)控FSHR基因轉(zhuǎn)錄和在卵巢中作用的研究還未見報(bào)道。本研究首先以湖羊心、肝、脾、肺、腎、胃、肌肉、大腸、小腸、子宮和卵巢11種組織cDNA為模板,采用RT-PCR技術(shù)檢測各組織中PAX4基因表達(dá)情況,結(jié)果見圖3。從圖3中可以看出,PAX4基因在湖羊11種組織中均有表達(dá),其中在小腸組織表達(dá)量最高,在心和肝等組織高表達(dá),在心、肝、肺、胃、腎、子宮和卵巢等組織中等表達(dá),而在脾、肌肉和大腸等組織中低表達(dá),可見PAX4是一個(gè)卵巢組織表達(dá)基因。
本研究合成了湖羊PAX4基因過表達(dá)載體(pcDNA3.1-PAX4)。pcDNA3.1-PAX4載體經(jīng)雙酶切(圖4A)和直接測序鑒定正確后,瞬時(shí)轉(zhuǎn)染體外培養(yǎng)的卵巢顆粒細(xì)胞,qRT-PCR檢測發(fā)現(xiàn),PAX4過表達(dá)組(即轉(zhuǎn)染pcDNA3.1-PAX4)卵巢顆粒細(xì)胞中PAX4基因mRNA表達(dá)水平極顯著高于對(duì)照組(P<0.01)(圖4B),說明構(gòu)建的湖羊PAX4基因過表達(dá)質(zhì)粒pcDNA3.1-PAX4可在卵巢顆粒細(xì)胞中高效表達(dá),符合試驗(yàn)要求。流式細(xì)胞術(shù)檢測發(fā)現(xiàn),PAX4過表達(dá)組卵巢顆粒細(xì)胞凋亡率顯著高于對(duì)照組(P<0.05)(圖5),說明PAX4可促進(jìn)卵巢顆粒細(xì)胞凋亡,是一個(gè)促凋亡轉(zhuǎn)錄因子。
M.DL100 marker;1~11.心、肝、脾、肺、腎、胃、肌肉、大腸、小腸、子宮和卵巢M.DL100 marker; 1-11. Heart, liver, spleen, lung, kidney, stomach, muscle, rectum, intestinal, uterus and ovary圖3 湖羊PAX4基因組織表達(dá)譜Fig.3 The mRNA expression profile of PAX4 gene in various tissues of Hu sheep
A.pcDNA3.1-PAX4載體的酶切鑒定;B. pcDNA3.1-PAX4載體轉(zhuǎn)染后PAX4基因表達(dá)。M.DL5000 marker;1.pcDNA3.1載體;2.pcDNA3.1-PAX4載體。**.P<0.01A.The digested results of pcDNA3.1-PAX4 vector;B.The expression of PAX4 in granulosa cells transfected with pcDNA3.1-PAX4 vector. M.DL5000 marker;1.pcDNA3.1 vector; 2.The restructuring pcDNA3.1-PAX4 vector. **.P<0.01圖4 湖羊PAX4基因過表達(dá)載體在卵巢顆粒細(xì)胞中的表達(dá)Fig.4 The expression of Hu sheep pcDNA3.1-PAX4 vector in ovarian granulosa cells
A、B. 流式細(xì)胞術(shù)檢測pcDNA3.1和pcDNA3.1-PAX4轉(zhuǎn)染后顆粒細(xì)胞凋亡;C.凋亡率分析。*. P<0.05A,B.Flow cytometry was performed to detect cell apoptosis in GCs transfected with pcDNA3.1 and pcDNA3.1-PAX4;C.Apoptosis rate analysis. *. P<0.05圖5 湖羊PAX4在卵巢顆粒細(xì)胞凋亡中的作用Fig.5 The role of Hu sheep PAX4 in ovarian granulosa cell apoptosis
本研究構(gòu)建了包含PAX4結(jié)合位點(diǎn)(CAGGATTG)的湖羊FSHR基因5′-UTR的雙熒光素酶報(bào)告載體pGL3-730(圖6A)。將湖羊PAX4基因過表達(dá)載體pcDNA3.1-PAX4與FSHR基因5′-UTR雙熒光素酶報(bào)告載體pGL3-730共轉(zhuǎn)體外培養(yǎng)的卵巢顆粒細(xì)胞,收集細(xì)胞檢測熒光素酶活性,結(jié)果見圖6B。從圖6B中可以看出,轉(zhuǎn)染pcDNA3.1-PAX4后,卵巢顆粒細(xì)胞中pGL3-730載體的熒光素酶活性顯著低于對(duì)照組(P<0.05)。同樣地,轉(zhuǎn)染pcDNA3.1-PAX4后,COS-7細(xì)胞中pGL3-730載體的熒光素酶活性極顯著低于對(duì)照組(P<0.01)(圖6C)。結(jié)果說明轉(zhuǎn)錄因子PAX4可下調(diào)湖羊FSHR基因5′-UTR活性,即抑制FSHR基因的轉(zhuǎn)錄活性。
A.pGL3-730載體的酶切鑒定: M.DL2000 marker;1~3.pGL3-730酶切產(chǎn)物。B.過表達(dá)PAX4對(duì)卵巢顆粒細(xì)胞中pGL3-730活性的影響;C.過表達(dá)PAX4對(duì)COS-7細(xì)胞中pGL3-730活性的影響。*.P<0.05;**.P<0.01A.The digested results of pGL3-730 vector:M.DL2000 marker;1-3.The restructuring pGL3-730 vector.B. Overexpression of PAX4 influences luciferase activity of pGL3-730 vector in granulosa cells; C.Overexpression of PAX4 influences luciferase activity of pGL3-730 vector in COS-7 cells.*.P<0.05;**.P<0.01圖6 PAX4對(duì)湖羊FSHR基因轉(zhuǎn)錄活性的影響Fig.6 The effect of PAX4 on the transcriptional activity of FSHR gene in Hu sheep
FSH是促進(jìn)哺乳動(dòng)物卵巢卵泡生長、發(fā)育、分化和成熟的關(guān)鍵激素,但其生物學(xué)功能的發(fā)揮必須通過與其靶細(xì)胞膜上的受體蛋白(FSHR)結(jié)合才能傳導(dǎo)信號(hào)進(jìn)入靶細(xì)胞內(nèi)[16],因此FSHR水平的高低決定了FSH對(duì)靶細(xì)胞的作用效果,以及響應(yīng)的生物學(xué)特征[17]。研究發(fā)現(xiàn)FSHR基因轉(zhuǎn)錄調(diào)控的研究主要在5′調(diào)控區(qū),其中人、模式動(dòng)物(如小鼠)和主要家畜(如豬、牛)等哺乳動(dòng)物FSHR基因5′-UTR和核心啟動(dòng)子區(qū)均已被成功鑒定,5′調(diào)控區(qū)結(jié)構(gòu)和序列特征也進(jìn)行了深入的研究[18-21]。在綿羊中,早在1997年就已鑒定出其FSHR基因的5′-UTR[22],其核心啟動(dòng)子區(qū)也于2001年被發(fā)現(xiàn)[23]。另外,國內(nèi)著名地方綿羊品種湖羊FSHR基因核心啟動(dòng)子區(qū)的鑒定工作也于2014年完成[9],但目前關(guān)于綿羊特別是湖羊FSHR基因5′-UTR特征的研究相對(duì)較少。本研究通過克隆測序獲得了湖羊FSHR基因5′-UTR序列,并發(fā)現(xiàn)其包含多個(gè)已知的轉(zhuǎn)錄調(diào)控元件,如E-box、CAAT-box和GC-box等。E-box是目前研究最多的FSHR基因5′-UTR 的轉(zhuǎn)錄調(diào)控元件,在人、大鼠和綿羊等物種中已證實(shí)E-box元件可招募大量同源結(jié)合因子、上游刺激因子USF1與USF2,調(diào)控FSHR基因的轉(zhuǎn)錄活性[20]。I.Teino等[24]發(fā)現(xiàn),AHR可通過E-box元件調(diào)控小鼠卵巢中FSHR基因的轉(zhuǎn)錄活性。另外,CAAT-box可能是RNA聚合酶II(RNA polymerase II,Pol II)特異性結(jié)合的DNA序列元件,控制基因轉(zhuǎn)錄的正確起始和頻率[25-26],而GC-box一般位于CAAT-box兩側(cè),是轉(zhuǎn)錄因子Sp1結(jié)合區(qū)域,可激活基因轉(zhuǎn)錄[27-28],但目前關(guān)于這2個(gè)轉(zhuǎn)錄調(diào)控元件調(diào)控FSHR基因轉(zhuǎn)錄的研究還未見報(bào)道。湖羊FSHR基因5′-UTR序列中多個(gè)轉(zhuǎn)錄調(diào)控元件的發(fā)現(xiàn),為進(jìn)一步研究湖羊卵巢組織中FSHR基因的轉(zhuǎn)錄調(diào)控奠定了基礎(chǔ)。
轉(zhuǎn)錄因子是一類具有特定功能的蛋白,主要通過與靶基因5′調(diào)控區(qū)上相應(yīng)的結(jié)合位點(diǎn)組合在一起形成順式調(diào)控模塊,共同調(diào)控靶基因轉(zhuǎn)錄。目前已鑒定的FSHR基因的轉(zhuǎn)錄調(diào)控因子主要包括轉(zhuǎn)錄因子如GATA-1[29]、E2F[29]、GATA-4[30]、GATA-6[30]、AR[31]、DAX-1[31]、OCT-1[32]、FOXL2[33]和YY1[9]等,和表觀遺傳因子如組蛋白去乙酰化酶MAT2[34]、miR-143[6]和miR-126*[35]等,其中通過作用于5′調(diào)控區(qū)對(duì)FSHR基因進(jìn)行轉(zhuǎn)錄調(diào)控的主要還是轉(zhuǎn)錄因子。本研究在湖羊FSHR基因5′-UTR序列中預(yù)測到多個(gè)轉(zhuǎn)錄因子結(jié)合位點(diǎn),如GATA-2、SOX3、IRF-1、Sp1、E4F、USF1和SOX10等,其中USF1[20]和GATA家族[32]已被證實(shí)可調(diào)控哺乳動(dòng)物FSHR基因轉(zhuǎn)錄。PAX4是已知的促進(jìn)哺乳動(dòng)物胚胎期內(nèi)分泌腺體發(fā)育的關(guān)鍵轉(zhuǎn)錄因子[15],但目前關(guān)于其在卵巢中的作用及對(duì)FSHR基因進(jìn)行轉(zhuǎn)錄調(diào)控的研究還未見報(bào)道。本研究結(jié)果發(fā)現(xiàn),PAX4可促進(jìn)卵巢顆粒細(xì)胞凋亡,是一個(gè)促凋亡因子,這與FSHR在卵巢顆粒細(xì)胞中的作用正好相反[2]。進(jìn)一步研究發(fā)現(xiàn),PAX4可抑制湖羊FSHR基因轉(zhuǎn)錄活性,這與PAX4、FSHR在卵巢顆粒細(xì)胞中的作用[2]是一致的,說明PAX4是湖羊FSHR基因的功能性轉(zhuǎn)錄因子。
本研究克隆了湖羊FSHR基因5′-UTR序列,了解了5′-UTR序列特征(如轉(zhuǎn)錄調(diào)控元件和轉(zhuǎn)錄因子結(jié)合位點(diǎn))。轉(zhuǎn)錄因子PAX4在湖羊卵巢組織中表達(dá),可促進(jìn)卵巢顆粒細(xì)胞凋亡。熒光素酶活性分析發(fā)現(xiàn),PAX4可抑制湖羊FSHR基因轉(zhuǎn)錄活性,是湖羊FSHR基因的抑制性轉(zhuǎn)錄因子。
參考文獻(xiàn)(References):
[1] SATO S, HAYASHI T, KOBAYASHI E. Fine mapping the number of corpora lutea quantitative trait loci on SSC3: Analysis of the porcine follicle-stimulating hormone receptor gene[J].AnimSciJ, 2011, 82(5): 633-641.
[2] DU X, ZHANG L F, LI X Y, et al. TGF-βsignaling controls FSHR signaling-reduced ovarian granulosa cell apoptosis through the SMAD4/miR-143 axis[J].CellDeathDis, 2016, 7(11): e2476.
[4] CAI L P, SUN A D, LI H, et al. Molecular mechanisms of enhancing porcine granulosa cell proliferation and function by treatmentinvitrowith anti-inhibin alpha subunit antibody[J].ReprodBiolEndocrinol, 2015, 13: 26
[5] REGAN S L, MCFARLANE J R, O’SHEA T, et al. Flow cytometric analysis of FSHR, BMRR1B, LHR and apoptosis in granulosa cells and ovulation rate in Merino sheep[J].Reproduction, 2015, 150(2): 151-163.
[6] PAN X Y, LIU S J, LI F D, et al. Molecular characterization, expression profiles of the ovineFSHRgene and its association with litter size[J].MolBiolRep, 2014, 41(12): 7749-7754.
[7] CHU M X, GUO X H, FENG C J, et al. Polymorphism of 5′ regulatory region of ovine FSHR gene and its association with litter size in Small Tail Han sheep[J].MolBiolRep, 2012, 39(4): 3721-3725.
[8] 王金鑫. 不同繁殖力綿羊FSHR基因結(jié)構(gòu)和表達(dá)的差異研究[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2013.
WANG J X. Study on differences ofFSHRgene structure and expression in sheep with different fecundity[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)
[9] 郭 晶. 湖羊FSHR和TGF-β1基因核心啟動(dòng)子區(qū)鑒定與表達(dá)調(diào)控[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2014.
GUO J. Identification and regulation of theFSHRandTGF-β1 gene core promoter region in Hu sheep[D]. Nanjing: Nanjing Agricultural University, 2014. (in Chinese)
[10] CHU M X, ZHUANG H B, ZHANG Y J, et al. Polymorphism of inhibin βBgene and its relationship with litter size in sheep[J].AnimSciJ, 2011, 82(1): 57-61.
[11] 郭 晶, 李新宇, 李隱俠, 等. 湖羊TGF-β1基因特征、表達(dá)及其與排卵數(shù)的相關(guān)性分析[J]. 中國農(nóng)業(yè)科學(xué), 2013, 46(21): 4586-4593.
GUO J, LI X Y, LI Y X, et al. Characterization, expression of TGF-β1 gene and its association with ovulation rate in Hu sheep[J].ScientiaAgriculturaSinica, 2013, 46(21): 4586-4593. (in Chinese)
[12] HU X J, POKHAREL K, PEIPPO J, et al. Identification and characterization of miRNAs in the ovaries of a highly prolific sheep breed[J].AnimGenet, 2016, 47(2): 234-239.
[13] WANG W M, LIU S J, LI F D, et al. Polymorphisms of the ovineBMPR-IB,BMP-15 andFSHRand their associations with litter size in two Chinese indigenous sheep breeds[J].IntJMolSci, 2015, 16(5): 11385-11397.
[14] GOYAL S, AGGARWAL J, DUBEY P K, et al. Expression analysis of genes associated with prolificacy inFecBcarrier and noncarrier Indian sheep[J].AnimBiotechnol, 2017, 28(3): 220-227.
[15] VOLODIN A, KOSTI I, GOLDBERG A L, et al. Myofibril breakdown during atrophy is a delayed response requiring the transcription factor PAX4 and desmin depolymerization[J].ProcNatlAcadSciUSA, 2017, 114(8): E1375-E1384.
[16] ILGAZ N S, AYDOS O S, KARADAG A, et al. Impact of follicle-stimulating hormone receptor variants in female infertility[J].JAssistReprodGenet, 2015, 32(11): 1659-1668.
[17] BRAMBLE M S, GOLDSTEIN E H, LIPSON A, et al. A novel follicle-stimulating hormone receptor mutation causing primary ovarian failure: A fertility application of whole exome sequencing[J].HumReprod, 2016, 31(4): 905-914.
[18] GROMOLL J, DANKBAR B, GUDERMANN T. Characterization of the 5′ flanking region of the human follicle-stimulating hormone receptor gene[J].MolCellEndocrinol, 1994, 102(1-2): 93-102.
[19] LEVALLET J, KOSKIMIES P, RAHMAN N, et al. The promoter of murine follicle-stimulating hormone receptor: Functional characterization and regulation by transcription factor steroidogenic factor 1[J].MolEndocrinol, 2001, 15(1): 80-92.
[20] GEORGE J W, DILLE E A, HECKERT L L. Current concepts of follicle-stimulating hormone receptor gene regulation[J].BiolReprod, 2011, 84(1): 7-17.
[21] WU W J, HAN J, CAO R, et al. Sequence and regulation of the porcineFSHRgene promoter[J].AnimReprodSci, 2015, 154: 95-104.
[22] SAIRAM M R, SUBBARAYAN V S. Characterization of the 5′ flanking region and potential control elements of the ovine follitropin receptor gene[J].MolReprodDev, 1997, 48(4): 480-487.
[23] XING W, SAIRAM M R. Characterization of regulatory elements of ovine follicle-stimulating hormone (FSH) receptor gene: The role of E-box in the regulation of ovine FSHreceptor expression[J].BiolReprod, 2001, 64(2): 579-589.
[24] TEINO I, KUUSE S, INGERPUU S, et al. The aryl hydrocarbon receptor regulates mouseFshrpromoter activity through an e-box binding site[J].BiolReprod, 2012, 86(3): 77.
[25] BARBASH Z S, WEISSMAN J D, CAMPBELL J A Jr, et al. Major histocompatibility complex class I core promoter elements are not essential for transcriptioninvivo[J].MolCellBiol, 2013, 33(22): 4395-4407.
[26] YANG Z S, YOSHIOKA H, MCCARREY J R. Sequence-specific promoter elements regulate temporal-specific changes in chromatin required for testis-specific activation of thePgk2 gene[J].Reproduction, 2013, 146(5): 501-516.
[27] TA A, THAKUR B K, DUTTA P, et al. Double-stranded RNA induces cathelicidin expression in the intestinal epithelial cells through phosphatidylinositol 3-kinase-protein kinase Cζ-Sp1 pathway and ameliorates shigellosis in mice[J].CellSignal, 2017, 35: 140-153.
[28] THAKUR B K, DASGUPTA N, TA A, et al. Physiological TLR5 expression in the intestine is regulated by differential DNA binding of Sp1/Sp3 through simultaneous Sp1 dephosphorylation and Sp3 phosphorylation by two different PKC isoforms[J].NucleicAcidsRes, 2016, 44(12): 5658-5672.
[29] KIM J S, GRISWOLD M D. E2F and GATA-1 are required for the Sertoli cell-specific promoter activity of the follicle-stimulating hormone receptor gene[J].JAndrol, 2001, 22(4): 629-639.
[30] BENNETT J, WU Y G, GOSSEN J, et al. Loss of GATA-6 and GATA-4 in granulosa cells blocks folliculogenesis, ovulation, and follicle stimulating hormone receptor expression leading to female infertility[J].Endocrinology, 2012, 153(5): 2474-2485.
[31] LU C L, YANG W, CHEN M, et al. Inhibin A inhibits follicle-stimulating hormone (FSH) action by suppressing its receptor expression in cultured rat granulosa cells[J].MolCellEndocrinol, 2009, 298(1-2): 48-56.
[32] HERMANN B P, HECKERT L L. Silencing ofFshroccurs through a conserved, hypersensitive site in the first intron[J].MolEndocrinol, 2005, 19(8): 2112-2131.
[33] QIN N, FAN X C, XU X X, et al. Cooperative effects of FOXL2 with the members of TGF-β superfamily on FSH receptor mRNA expression and granulosa cell proliferation from hen prehierarchical follicles[J].PLoSOne, 2015, 10(10): e0141062.
[34] ZHANG S, LI W, ZHU C C, et al. Sertoli cell-specific expression of metastasis-associated protein 2 (MTA2) is required for transcriptional regulation of the follicle-stimulating hormone receptor (FSHR) gene during spermatogenesis[J].JBiolChem, 2012, 287(48): 40471-40483.
[35] DU X, LI Q, PAN Z, et al. Androgen receptor and miRNA-126*axis controls follicle-stimulating hormone receptor expression in porcine ovarian granulosa cells[J].Reproduction, 2016, 152(2): 161-169.