張會來 成晨 魯承蕓 韓娜娜
Discrete Element Analysis of Load Reduction for Culvert
摘要:采用PFC2D顆粒流軟件提出了一種新的生成初始土層模型的方法(Multi-layer and Multi-gravity Compaction Method 即MGCM),可以得到較合理的初始土層應(yīng)力分布。從細觀力學(xué)的角度對柔性填料法涵洞減載進行了數(shù)值模擬,研究了不同填土高度下涵頂土壓力系數(shù)的變化規(guī)律,及內(nèi)外土柱相對位移對涵洞上方和兩側(cè)受載的影響。研究結(jié)果表明:涵頂土壓力系數(shù)隨著填土高度的增加逐漸增加,當填土達到一定高度后其值趨于穩(wěn)定并略有降低。隨著內(nèi)外土柱相對位移的增加,涵洞上方土層接觸力鏈逐漸發(fā)展成拱形狀,涵側(cè)土壓力逐漸增大,但增幅逐漸減小;涵頂土壓力逐漸減小后趨于穩(wěn)定并略有上升。
Abstract: A new technique, designated as the Multi-layer and Multi-gravity Compaction Method (MGCM), capable of generating more reasonable specimens for DEM studies is presented herein. Flexible filling of load reduction for culvert is analyzed by PFC. The coefficient of earth pressure at the top of the culvert under different height of fill, and the load on the upper and both sides of culvert under difference between the inner and outer soil columns are studied. Numerical results indicate that the concentration coefficient increases with the height of the fill, but it approaches the limit value at a certain height of fill, then decreases slightly. With the increase of the relative displacement of the inner and outer soil column, the contact force of the particles above the culvert gradually developed into an arched shape, the pressure of the lateral soil gradually increases, and the pressure of the top soil decreases first and then increases.
關(guān)鍵詞:PFC2D;MGCM;土壓力系數(shù);減載
Key words: PFC2D;MGCM;coefficient of earth pressure;load reduction
中圖分類號:U449 文獻標識碼:A 文章編號:1006-4311(2018)15-0171-04
0 引言
高填方涵洞在山區(qū)高等級公路的修建中應(yīng)用十分廣泛,相比于橋梁造價較低。然而由于涵洞和填土的剛度存在巨大的差異往往造成涵洞頂部所受土壓力集中導(dǎo)致涵洞開裂甚至破壞。為了減小這種土壓力集中現(xiàn)象,國內(nèi)外學(xué)者做了大量的研究并取得了一定的成果。Marston[1]提出在涵洞頂部鋪設(shè)柔性材料進行減載,并將其命名為“非理想溝埋式安裝法”。Spangler[2]在此基礎(chǔ)上進行了改進,提出先將涵洞周圍填土壓實,然后在距離涵洞上方一定的高度開挖溝槽,在溝槽中鋪設(shè)柔性材料回填土進行減載。Liecheng[3]通過有限元分析了在地下結(jié)構(gòu)物頂部鋪設(shè)泡沫后,其周邊土壓力的分布。顧安全[4]以彈性理論為基礎(chǔ),推導(dǎo)出了涵洞土壓力的理論計算公式,即顧安全公式。王曉謀[5]在室內(nèi)模型試驗中,在涵洞頂部鋪設(shè)海綿,并得出了較好的減載效果。白冰[6]用EPS板進行了涵洞減載的模型試驗,并對涵洞減載模型進行了有限元數(shù)值模擬,分析了減載后的涵洞周邊土壓力的分布情況。馬強等[7]用有限元數(shù)值模擬分析了中松側(cè)實法、先填后挖法、柔性材料法對涵洞上部土壓力系數(shù)的影響。楊錫武等[8]研究了在涵洞上部鋪設(shè)土工格柵加筋材料來實現(xiàn)減載。鄭俊杰等[9]推導(dǎo)了在加筋橋結(jié)構(gòu)條件下的涵頂土壓力計算公式。
本文利用PFC2D顆粒流軟件,并通過MGCM法建立初始土層模型主要探討了不同填土高度對涵洞上部土壓力系數(shù)的影響,并分析了不同的內(nèi)外土柱位移沉降差對涵洞上部和涵側(cè)所受土壓力的影響。
1 數(shù)值模型的建立
1.1 建模方法
PFC2D顆粒流軟件在生成初始土層模型時主要由一系列不同半徑的圓盤來模擬土體,由墻體模擬邊界條件,由于PFC自身軟件的限制,其墻體只能受力卻無法變形和傳遞力。當需要考慮到邊界變形或者傳遞力的時候,可以通過賦予圓盤接觸模型使其模擬我們所需要的邊界。初始模型的建立對于后期的數(shù)值分析十分重要。
目前常用的土的初始模型生成的方法有半徑擴張重力沉積法[10]、多層壓實法、蔣明鏡[11]的UCM,賴漢江[12]的IMCM。第一種方法是直接在指定區(qū)域生成顆粒,并采用算法通過不停地擴大顆粒圓盤半徑來達到指定的孔隙率,然后再賦予顆粒摩擦因素和重力使其沉積。第二種方法是通過分層生成顆粒,然后在每層生成好的顆?;A(chǔ)上,通過墻體壓實使其達到目標孔隙率。欠壓法在其基礎(chǔ)上進行了改進,使其每層壓實孔隙率一層比一層小,最先生成的孔隙率比目標孔隙率大,最后再壓實整個模型使其達到目標孔隙率。IMCM類似于多層壓實法每層都壓實到指定孔隙率最后再設(shè)置重力和摩擦力使其計算到平衡。這些方法共同點都是先生成指定目標孔隙率最后再賦予摩擦因素和重力。其優(yōu)點可以使生成的顆粒圓盤密實均勻不會存在較大的不均勻空隙。但是同時也存在較大的不足,前三種方法生成的初始模型可能會存在過大的水平應(yīng)力如圖1,與實際土層中應(yīng)力分布不符。IMCM雖然可以減小生成初始模型時的水平應(yīng)力,但其算法也較為繁瑣,每生成一層土都需要不停地移動墻體及計算其孔隙率。為了避免這些不足,本文在建立土層初始模型時,提出一種新的方法,即MGCM(Multi-layer and Multi-gravity Compaction Method)法。其過程如下:
①在指定區(qū)域(用ball distribute命令)生成指定孔隙率的顆粒,等其計算平衡后,賦予重力加速度的三分之一。再讓其計算平衡,此過程中顆粒摩擦系數(shù)設(shè)置為0。
②在第一層上方生成一個墻體,然后固定第一層顆粒,設(shè)置重力加速度為0,再在第一層上方生成指定空隙率的第二層土,使其計算平衡后,刪除墻體,賦予重力加速度的三分之一使其沉積計算平衡。
③重復(fù)步驟②,直至生成目標高度。
④最后再賦予顆粒摩擦系數(shù)和全部重力加速度進行計算平衡。
為了驗證此方法的合理性,利用MGCM法建立一個初始土層模型(7m×6m)。圖3、圖4為初始土層及力鏈圖。測得圖中30處靜止土壓力系數(shù)如圖5所示,與靜止土壓力系數(shù)(K0=1-sinφ)計算結(jié)果存在一定的差異(實際自然堆積的砂土也有可能如此)。同時測得其豎向應(yīng)力值見圖6,由于土的豎向應(yīng)力的公式(σz=γh)是在假設(shè)土為連續(xù)介質(zhì)的條件下得到的,對于離散介質(zhì)可能不太適合,因為離散介質(zhì)各個點處的孔隙大小并不一樣,同一深度各個測量圓測出來的應(yīng)力可能存在較大的差異,所以我們?nèi)∶繉訙y量圓的平均值作為此深度的豎向應(yīng)力值,結(jié)果幾乎吻合如圖所示。說明此方法用于生成初始土層結(jié)果是基本可信的。
1.2 模型建立與參數(shù)選取
本文以墻體代替涵洞,其大小為4×4m。模型邊界也由墻體組成,填土采用圓形顆粒模擬。模型填土采用MGCM法分層填筑,最終填土高度18.45m。土層初始孔隙率為0.16,顆粒半徑0.01~0.03m范圍內(nèi),共生成顆粒126908個。顆粒接觸模型采用線性接觸模型用來模擬砂土。其細觀參數(shù)通過雙軸數(shù)值實驗不停地反復(fù)調(diào)整得到。最終得到材料的內(nèi)摩擦角為26.92°,彈性模量為53.8MPa,泊松比為0.303,位于砂土材料的力學(xué)參數(shù)范圍內(nèi)。最終涵洞填料標定的細觀參數(shù)如表1所示。模型具體尺寸如圖7所示。在填土過程中忽略涵洞自身的形變和位移,并假設(shè)涵洞底部為剛性地基。在建模時,在涵洞頂部建立一個4×4×0.45m的封閉墻體用來模擬柔性填料,然后通過給定這個封閉墻體向下的0.001m/s的速度,以模擬柔性材料的壓縮變形即內(nèi)外土柱相對位移,觀察顆粒接觸力鏈變化,同時記錄作用于墻體1的豎向荷載及涵洞兩側(cè)墻體2、3的水平向荷載。
2 數(shù)值模擬結(jié)果分析
2.1 初始應(yīng)力狀態(tài)
在涵洞兩側(cè)及上部按MGCM法分層填土計算平衡后,模型實際孔隙率為0.152,則重度γ為:
γ=(1-n)ρg=20.38kN/m3 (1)
式中:n為實際孔隙率;ρ為顆粒密度;g為重力加速度,9.81m/s2。
模型初始力鏈分布如圖8所示。涵洞頂部力鏈較集中且比同水平方向兩側(cè)填土的接觸力鏈大,說明涵洞頂部出現(xiàn)應(yīng)力集中。圖9反應(yīng)了土壓力集中系數(shù)隨填土高度變化圖。土壓力集中系數(shù)(K=σ實際/γh)隨涵頂填土高度的增加逐漸增加,當填土高度達到8.65m后趨于穩(wěn)定并略有降低。土壓力系數(shù)模擬值與我國《鐵路橋涵設(shè)計規(guī)范J460-2017》規(guī)定的土壓力系數(shù)值變化趨勢基本一致,說明模擬結(jié)果是可信的。圖10為距離涵洞兩側(cè)2.2m測量圓所測平均豎向應(yīng)力和涵洞上方平均豎向應(yīng)力與土柱自重應(yīng)力(σz=γh)計算所得豎向應(yīng)力分布。由圖可知,涵洞上方土層自重應(yīng)力隨深度增加(越接近涵洞頂部)逐漸大于土柱自重應(yīng)力(σz=γh)。距離涵洞兩側(cè)2.2m處土層自重應(yīng)力隨著深度的增加(越接近涵頂所在深度)逐漸小于土柱自重應(yīng)力值。其原因是涵洞與填土較大的剛度差使得兩側(cè)填土沉降大于涵洞上部填土沉降,使得外土柱對內(nèi)土柱的產(chǎn)生向下的摩擦力,促使涵洞兩側(cè)土層將部分自重應(yīng)力傳遞給了涵洞上部土層,從而造成一定深度下兩側(cè)土層自重應(yīng)力小于土柱壓力,而涵洞上部自重應(yīng)力大于土柱壓力。這在實際高填方上埋式涵洞工程中對其上部結(jié)構(gòu)的承載力及穩(wěn)定性是不利的。
2.2 涵洞減載分析
柔性填料法減載實質(zhì)就是增加內(nèi)外土柱的相對位移,使得土中應(yīng)力發(fā)生重分布,形成虛擬土拱。涵洞上方土層的部分自重應(yīng)力借由土拱效應(yīng)將傳遞給兩側(cè)土層,從而達到減載的效果。本文以活動墻來模擬柔性填料壓縮變形。當墻體逐漸向下位移時,顆粒接觸力鏈逐漸發(fā)生變化,涵頂上方豎向力鏈逐漸由豎向力鏈發(fā)展成拱形力鏈。圖11顯示,隨著內(nèi)外土柱的相對位移ΔS的增大,墻體1(涵頂)所受土壓力σ1逐漸減小,墻體2、3(涵側(cè))所受土壓力σ2、σ3逐漸增大。由于對稱性,σ2、σ3值和變化趨勢基本一致。當ΔS在0~5cm時,墻體1所受土壓力σ1減小趨勢較明顯;當ΔS>5cm時,σ1減小趨勢逐漸減緩;當ΔS=10.1cm時σ1達到最小,為1.88×106N,此時涵頂土壓力系數(shù)僅為土柱壓力的0.165倍;當ΔS>10.1cm時,σ1略有上升。圖12為內(nèi)外土柱的相對位移ΔS=10.1cm時,涵洞上方顆粒接觸力鏈圖。此時呈現(xiàn)出的拱形狀最高,約為1.1倍涵洞跨度。
3 結(jié)論
①在應(yīng)用PFC2D模擬土層時,通過MGCM法所建立的初始土層模型的豎向應(yīng)力和計算值所得結(jié)果吻合較好,說明此方法模擬結(jié)果是可信的。②涵頂土壓力集中系數(shù)與填土高度有關(guān),隨著填土高度的增加逐漸增加,當涵洞上方填土高度達到8.65m后,其值逐漸穩(wěn)定并略有減小,最大值為1.486。③涵洞上方接觸力鏈隨著ΔS的增大,逐漸由豎向力鏈發(fā)展成拱形力鏈。涵洞頂部荷載隨著內(nèi)外土柱相對位移ΔS增加先減小后趨于穩(wěn)定,當ΔS=10.1cm時,涵頂荷載達到最小即減載最佳。涵洞兩側(cè)所受荷載ΔS逐漸增大,后趨于穩(wěn)定。
參考文獻:
[1]Marston, A. The theory of external loads on closed conduits in the light of the latest experiments[R]. Highway Research Board Proceedings No.204301,Highway Research Board, Washington, D.C., 1930, 138-170.
[2]Spangler, M.G. A theory on loads on negative projecting conduits[R]. Highway Research Board Proceedings No. 00204134, Highway Research Board, Washington, D.C., 1950, 153-161.
[3]Licheng S, Tommy H, Tony B. Stress reduction by ultra-lightweight geofoam for high fill culvert[C]// Proc of the 13th Great Lakes Geotechnical and Geo-environmental Conference. Reston: American Society of Civil Engineers, 2005: 146-154.
[4]顧安全.上埋式管道垂直土壓力的研究[D].西安:陜西工業(yè)大學(xué),1963.
[5]王曉謀,顧安全.上埋式管道垂直土壓力的減載措施[J].巖土工程學(xué)報,1990,12(3):83-89.
[6]白冰.減載條件下上埋式圓形結(jié)構(gòu)物周邊土壓力分析[J].長江科學(xué)院院報,1998,15(2):14-17.
[7]馬強,鄭俊杰,張軍,等.高填方涵洞減載機制與數(shù)值分析[J].巖土力學(xué),2010,31(S1):424-429.
[8]楊錫武.山區(qū)公路高填方涵洞土壓力理論及加筋減載研究[D].重慶:重慶大學(xué)土木工程學(xué)院,2005.
[9]鄭俊杰,馬強,張軍.加筋減載涵洞的涵頂土壓力計算[J]. 巖土工程學(xué)報,2011,33(7):1135-1141.
[10]Bhandari A, Han J. Investigation of geotextiles-soil interaction under a cyclic vertical load using the discrete element method. Geotext Geomembr 2010; 28(1):33-43.
[11]M.J Jiang, J.M. Konrad, S. Leroueil. An efficient technique for generating homogeneous specimens for DEM studies. Computers and Geotechnics 30 (2003):579-597.
[12]Han-Jiang Lai, Jun-Jie Zheng, Jun Zhang, Rong-Jun Zhang, Lan Cui. DEM analysis of “soil” –arching within geogrid-reinforced and unreinforced pile-supported embankments. Computer and Geotechnics 61(2014):13-23.