亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        On Weighted Lp?Approximation by Weighted Bernstein-Durrmeyer Operators

        2018-05-24 09:17:58MeilingWangDanshengYuandDejunZhao
        Analysis in Theory and Applications 2018年1期

        Meiling Wang,Dansheng Yu,?and Dejun Zhao

        1Department of Mathematics,Hangzhou Normal University,Hangzhou 310036,China

        2College of Fundamental Studies,Shanghai University of Engineering Science,Shanghai 201620,China

        1 Introduction

        Let

        be the classical Jacobi weights.Let

        Set

        WhenI=[0,1],we briefly writekfkp,winstead ofkfkp,w,[0,1].Obviously,kfkp,wis the norm ofLpwspaces.

        For anyf∈Lp([0,1]),1≤p≤∞,the corresponding Bernstein-Durrmeyer operatorsMn(f,x)are defined as follows:

        where

        The approximation properties ofMn(f,x)inwere also studied by Zhang(see[9]).Some approximation results were given under the restrictions

        on the weight parameters.Generally speaking,the restrictions can not be eliminated for the approximation byMn(f,x).For the weighted approximation by Kantorovich-Bernstein operators defined by

        the situation is similar(see[5]).Recently,Della Vecchia,Mastroianni and Szabados(see[2])introduced a weighted generalization of theKn(f,x)as follows:

        Whenα=β=0,K#n(f,x)reduces to the classical Kantorovich-Bernstein operatorKn(f,x).Della Vecchia,Mastroianni and Szabados obtained the direct and converse theorems and a Voronovskaya-type relation in[2],and solved the saturation problem of the operator in[3].Their results showed thatf,x)allows a wider class of functions than the operatorKn(f,x).In fact,they dropped the restrictionsα,β<1?on the weight parameters.Later,Yu(see[8])introduced another kind of modified Bernstein-Kantorvich operators,and established direct and converse results on weighted approximation which also have no restrictionsα,β<1?

        Then,a natural question is:can we modified the Bernstein-Durrmeyer operators properly such that the restrictionsα,β<1?onweighted approximation can be dropped?In the present paper,we will show that the weighted Bernstein-Durrmeyer operator introduced by Berens and Xu(see[1])is the one we need.The weighted Bernstein-Durrmeyer operator is defined as follows:

        where

        Define

        where?(x)=pandAC(I)is the set of all absolutely continuous functions onI.Forf∈define the weighted modulus of smoothness by

        with

        Define

        to be the best approximation offin weightedspaces by constants.

        The main results of the present paper are the following:

        Theorem 1.1.If f∈Lpw,1≤p≤∞,then

        Theorem 1.2.If f∈Lpw,1≤p≤∞,then

        2 Auxiliary lemmas

        We need the following inequalities:

        where

        It should be noted that(2.1d)is contained in the first inequality of[2,pp.9].

        Lemma 2.1.For1≤p<∞,0≤k≤n and n≥3,we have

        where k?is defined by(2.2).

        Proof.By the fact that(see[3])

        we deduce that

        Thus,we complete the proof.

        Especially,by takingp=1 in(2.3),we get

        Lemma 2.2.For any f∈,1≤p≤∞,we have

        Proof.Whenp=∞,by(2.1a),(2.4)and(2.1b),we get

        When 1

        By a similar and more simpler deduction,we see that(2.6)also holds forp=1.

        Combining(2.5)and(2.6),Lemma 2.2 is proved.

        Lemma 2.3.If f∈,then

        Proof.Direct calculations yield that(see[4,pp.331-332]),

        Therefore,

        Forp=∞,by(2.1a),(2.1b)and(2.1c),we have

        For 1

        We finish Lemma 2.3 by combining(2.8)and(2.9).

        Lemma 2.4.If f∈,then

        Proof.We prove the result by estimating the integral on two intervalsandEnrespectively.

        Simple calculation leads to

        ForI1(n,x),whenp=∞,by applying(2.1a)-(2.1c),(2.4)and Cauchy’s inequality,we have

        When 1≤p<∞,by using Hlder’s inequality twice forp>1(p=1 is more direct),(2.1c),(2.1d),(2.4)and(2.1a),

        ForI2(n,x),by Lemma 2.2,we have

        ForI3(n,x),whenp=∞,by(2.1a)-(2.1d)and(2.4),we have

        where in the last inequality,we used the fact 1/?(x)≤C,x∈En.

        When 1≤p<∞,by using Hlder’s inequality,(2.1a),(2.1c),(2.1d),(2.4),and the fact 1/?(x)≤C,x∈Enagain,we deduce that

        By combining(2.10)-(2.15),we already have

        Now,we estimate the integral onBy(2.7),we have

        When 1≤p<∞,noting thatn?2(x)≤Cforx∈Ecn,by Hlder’s inequality,(2.3)and(2.4),we have

        Whenp=∞,forx∈Ecn,by(2.1a)and(2.1b),

        By(2.18)and(2.19),we see that

        By(2.17)and(2.20),we complete the proof of Lemma 2.4.

        Lemma 2.5.For any nonnegative integer m,set

        Then

        and

        where pi,m,n,α,β(x)are polynomials in x of fixed degree with coefficients that are bounded uniformly for all n.

        Proof.Analogue to[4],we have the recursion relation:

        Direct calculations yield that

        and

        where

        By(2.23)-(2.25)and a simple induction process,we obtain(2.21)and(2.22).

        By(2.21),we have

        Lemma 2.6.For any given m,it holds that

        Lemma 2.7.For1≤p<∞,f∈W2,pw,there is a positive constant C such that

        where

        Proof.Firstly,we consider the casep=1.Setg(v)=w(v)?2(v)f′(v).By the inequality(see[5]):

        we have

        Set

        Forl≥1,by(2.1b),(2.4),and(2.26)withw≡1,we deduce that

        Forl=0,by(2.1b)and(2.4),

        Therefore,

        Noting thatwe have

        Since(see[5])

        then(by takingh=(l+1))

        Therefore,

        Thus,we can conclude that

        Now,we begin to prove the following

        Forl≥1,by(2.4),and(2.26),we deduce that Forl=0,by(2.1b),(2.3)and(2.4),we have

        Then,we can derive(2.30)in a similar way to the proof of(2.29).

        By combining(2.28)-(2.30),we obtain Lemma 2.7 forp=1.

        Finally,we prove Lemma 2.7 for 1

        Set

        The following maximal function inequality are well known

        Since 1/w(v)≤C(1/w(t)+1/w(x))for anyvbetweenxandt,by the maximal function inequality,we have

        Therefore,we only need to prove that

        where kKk∞,Enis the usual supremum norm ofKonEn,and

        For the first part ofK,by(2.26),

        For the second part ofK,by(2.4),(2.1b)and(2.26)(withw=1),

        By(2.33)and(2.34),we get(2.31),and thus Lemma 2.7 is valid for 1

        3 Proofs of theorems

        Proofof Theorem 1.1.It is sufficient to prove that

        for?2f′′∈.By the Taylor’s formula

        we have

        Then,by(2.25)and(2.27),we get(3.1)immediately. ?

        Proofof Theorem 1.2.The”?=”part follows from Theorem 1.1.The”=?”part can be done by using the argument of proof of Theorem 9.3.2 in[5],we omit the details here.?

        References

        [1]H.Berens and Y.Xu,On Bernstein-Durrmeyer polynomials with Jacobi weights,In C.K.Chui,editor,Approximation Theory and Functional Analysis,Boston:Academic Press,(1991),25–46.

        [2]B.Della Vecchia,G.Mastroianni and J.Szabados,A weighted generalization of the classical Kantorovich operator,Rend.Circ.Mat.Palermo,82(2)(2010),1–27.

        [3]B.Della Vecchia,G.Mastroianni and J.Szabados,A weighted generalization of the classical Kantorovich operator,II:Saturation,Mediter.J.Math.,10(2013),1–15.

        [4]M.M.Derriennic.Sur l’approximation de fonctions integrables sur[0,1]par des ploynomes de Bernstein modifies,J.Approx.Theory,31(1981),325–343.

        [5]Z.Ditzian,V.Totik,Moduli of Smoothness,Berlin:Springer-Verlag,1987.

        [6]J.L.Durrmeyer,une formule d’inversion de la transformee de Laplace:Applications a la therie des moments,These de 3e cycle,Faculte des sciences de l’universitede Paris,1967.

        [7]G.G.Lorentz,Bernstein Polynomials,University of Toronto Press,Toronto,1953.

        [8]D.S.Yu,Weighted approximation by modified Kantorovich-Bernstein operators,ActaMath.Hungar.,141(2013),132–149.

        [9]Z.Q.Zhang,On weighted approximation by Bernstein-Durrmeyer operators,Approx.Theory Appl.,7(1991),51–64.

        我揉搓少妇好久没做高潮| 天天干成人网| 熟妇无码AV| 亚洲天堂免费av在线观看| 精品国产一区二区三区a| 久久精品国产99国产精偷| 中文字幕一区二区三区精华液| 91亚洲人成手机在线观看| 午夜国产在线精彩自拍视频| 亚洲人妻调教中文字幕| 亚洲另类欧美综合久久图片区| 久久er国产精品免费观看8| 四虎国产精品免费久久| 婷婷丁香五月亚洲| 亚洲国产精品色婷婷久久| 日本人视频国产一区二区三区| 国产乱国产乱老熟300部视频| 国产91精选在线观看麻豆| 日韩av在线不卡一二三区| 白白白在线视频免费播放| 亚洲精品suv精品一区二区| 国内精品伊人久久久久av| 国产精品黑丝美女av| 三级全黄裸体| 亚洲美免无码中文字幕在线| 国内精品视频成人一区二区 | 无码国产精品一区二区免费97| 蜜桃视频高清在线观看| 亚洲视频在线一区二区| 亚洲中文字幕无码爆乳| 国产一区二区三区4区| 国产av精选一区二区| 无码人妻精品一区二区三| 国产一区日韩二区欧美三区| 色婷婷激情在线一区二区三区| 国产乱码一区二区三区精品| 国产精品无码专区av在线播放| 中文字幕avdvd| 日本本土精品午夜视频| 欧美人伦禁忌dvd放荡欲情 | 中文字幕免费不卡二区|