亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Bilinear Forms and Soliton Solutions for the Reduced Maxwell-Bloch Equations with Variable Coefficients in Nonlinear Optics?

        2018-05-23 06:03:54JunChai柴俊BoTian田播andHanPengChai柴漢鵬
        Communications in Theoretical Physics 2018年2期

        Jun Chai(柴俊),Bo Tian(田播), and Han-Peng Chai(柴漢鵬)

        State Key Laboratory of Information Photonics and Optical Communications,and School of Science,Beijing University of Posts and Telecommunications,Beijing 100876,China

        1 Introduction

        Nonlinear evolution equations have attracted a lot of attentions since they are able to describe the nonlinear phenomena in many fields of sciences and engineering.[1?3]

        Recently,people have shown their interests in nonlinear optics.[4?5]In the communication-grade optical fiber or optical-transmitting medium,there exists the attenuation,so that the optical loss is inevitable and the pulse is deteriorated by this loss.[6]As we know,the selfinduced transparency(SIT)phenomenon plays a role in overcoming the attenuation in the optical communication systems.[7]Researchers have pointed out that the reduced Maxwell-Bloch(RMB)equations can be applied to get for the phenomenon of SIT,a more accurate description compared to the so-called SIT equations.[8?12]

        In this paper,we will study the RMB equations with variable coefficients,[10]written as

        describing the propagation of the intense ultra-short optical pulses through an inhomogeneous two-level dielectric medium,whereqis the inhomogeneous electric field,r1andr2denote the real and imaginary parts of the polarization of the two-level medium,respectively,r3represents the(real)population difference between the ground and excited states,the subscriptszandtrespectively refer to the partial derivatives with respect to the scaled distance and time,ωdenotes the resonance frequency,αj(z)’s(j=1,2,...,5)are the functions related to the inhomogeneous electric field,andμ(z)is the function related to the two-level medium.Painlevé integrable condition,Lax pair,in finitely-many conservation laws and Darboux transformation for Eqs.(1)have been derived.[10]

        The outline of this paper is as follows.In Sec.2,via the Hirota method,[13?15]and symbolic computation,[16?17]introducing the dependent variable transformations,we will derive the variable-coefficient-dependentbilinear forms for Eqs.(1).In Sec.3,based on those bilinear forms,the soliton solutions in analytic forms will be constructed.Section 4 will be our conclusions.

        2 Bilinear Forms

        Introducing the dependent variable transformations

        withG(z,t)as the differentiable function ofzandt,as the differentiable function of the formal variablesas the non-negative integers.

        3 Soliton Solutions

        In the following,based on bilinear forms(5),we will construct the soliton solutions for Eqs.(1),by expandingg,fandhwith respect to a formal expansion parameterεas

        where2,4,6,...)are the real differentiable functions with respect tozandt.

        3.1 One-Soliton Solutions

        To derive the one-soliton solutions for Eqs.(1),we truncate expressions(6)as,substitute them into bilinear forms(5),and derive the one-soliton solutions for Eqs.(1)as

        3.2 Two-Soliton Solutions

        For the two-soliton solutions,we truncate expressions(6)asandsubstitute them into bilinear forms(5),and obtain

        withρk(z)’s as the real functions andσk’s as the real constants.

        3.3 N-Soliton Solutions

        The vectorN-soliton solutions for Eqs.(1)can be expressed as

        under constraints(3)and(8),where

        withρl(z)’s being the real functions andσl’s being the real constants,denoting the summation over all the possible pairs taken from the 2Nelements with the conditionindicating the summations over all the possible combinations ofυl=0,1 and satisfying

        4 Conclusions

        In this paper,we have studied the RMB equations with variable coefficients,i.e.,Eqs.(1),describing the propagation of the intense ultra-short optical pulses through an inhomogeneous two-level dielectric medium.Through the Hirota method and symbolic computation in this paper,via transformations(2),we have derived variable-coefficient-dependent bilinear forms(5)under constraints(3).Then,based on bilinear forms(5),under constraints(3)and(8),the analytic one-,two-andN-soliton solutions,i.e.,solutions(7)–(10),have been constructed.

        Acknowledgments

        We express our sincere thanks to the Editors and Reviewers for their valuable comments.

        [1]M.J.Ablowitz and P.A.Clarkson,Solitons,Nonlinear Evolution Equations and Inverse Scattering,Cambridge University Press,Cambridge(2004).

        [2]H.Q.Hao,R.Guo,and J.W.Zhang,Nonlinear Dyn.88(2017)1615.

        [3]H.H.Zhao,X.J.Zhao,and H.Q.Hao,Appl.Math.Lett.61(2016)8.

        [4]Z.J.Yang,Z.F.Yang,J.X.Li,et al.,Res.Phys.7(2017)1485.

        [5]R.Guo and H.Q.Hao,Commun.Nonlinear Sci.Numer.Simul.18(2013)2426.

        [6]K.Porsezian,P.Seemuvasakumaran,and R.Ganapathy,Phys.Lett.A 348(2006)233.

        [7]V.V.Kozlov and J.H.Eberly,Opt.Commun.179(2000)85..

        [8]L.Mandel and E.Wolf,Coherence in Quantum Optics,Plenum Press,New York(1978).

        [9]H.Steudel,A.A.Zabolotskii,and R.Meinel,Phys.Rev.E 72(2005)056608.

        [10]H.Q.Hao and J.W.Zhang,Commun.Nonlinear Sci.Numer.Simul.22(2015)1350.

        [11]A.Bekir,Chaos,Solitons&Fractals 32(2007)449.

        [12]H.Steudel,A.A.Zabolotskii,and R.Meinel,Phys.Rev.E 72(2005)056608.

        [13]R.Hirota,J.Math.Phys.14(1973)805.

        [14]R.Hirota and Y.Ohta,J.Phys.Soc.Jpn.60(1991)798.

        [15]R.Hirota,The Direct Method in Soliton Theory,Cambridge University Press,Cambridge(2004).

        [16]W.P.Hong,Phys.Lett.A 361(2007)520.

        [17]G.C.Das and J.Sarma,Phys.Plasmas 6(1999)4394.

        尤物成av人片在线观看 | 亚洲一区二区久久青草| 国产视频一区二区三区免费| 精品日韩一级免费视频| 国产福利精品一区二区| 三上悠亚免费一区二区在线| 人妖熟女少妇人妖少妇| a黄片在线视频免费播放| 少妇扒开毛茸茸的b自慰| 护士奶头又白又大又好摸视频| 久久国产香蕉一区精品天美| 亚洲丰满熟女一区二亚洲亚洲| 狠狠的干性视频| 国产欧美VA欧美VA香蕉在| 少妇一级aa一区二区三区片| 青青草成人免费在线视频| 亚洲成a人无码| 欧美激情在线不卡视频网站| 国产精品一区二区久久精品蜜臀| 日本中文一区二区在线| 无码一区二区三区亚洲人妻| 日韩永久免费无码AV电影| 亚洲综合色视频在线免费观看| 激情人妻另类人妻伦| 亚洲精品第一国产综合精品| 久久日日躁夜夜躁狠狠躁| 精品水蜜桃久久久久久久| 天天躁日日躁狠狠躁一区| 国产情侣自拍偷拍精品| 国产在线第一区二区三区| 少妇寂寞难耐被黑人中出| 毛片一级精油按摩无码| 男男啪啪激烈高潮无遮挡网站网址| 日韩精品久久久久久久电影蜜臀 | 成人影院yy111111在线| 亚洲成av人最新无码| 一本久久综合亚洲鲁鲁五月夫| 女女同恋一区二区在线观看| 中文成人无字幕乱码精品区 | 色婷婷久久99综合精品jk白丝| 女优av一区二区三区|