亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Bilinear Forms and Soliton Solutions for the Reduced Maxwell-Bloch Equations with Variable Coefficients in Nonlinear Optics?

        2018-05-23 06:03:54JunChai柴俊BoTian田播andHanPengChai柴漢鵬
        Communications in Theoretical Physics 2018年2期

        Jun Chai(柴俊),Bo Tian(田播), and Han-Peng Chai(柴漢鵬)

        State Key Laboratory of Information Photonics and Optical Communications,and School of Science,Beijing University of Posts and Telecommunications,Beijing 100876,China

        1 Introduction

        Nonlinear evolution equations have attracted a lot of attentions since they are able to describe the nonlinear phenomena in many fields of sciences and engineering.[1?3]

        Recently,people have shown their interests in nonlinear optics.[4?5]In the communication-grade optical fiber or optical-transmitting medium,there exists the attenuation,so that the optical loss is inevitable and the pulse is deteriorated by this loss.[6]As we know,the selfinduced transparency(SIT)phenomenon plays a role in overcoming the attenuation in the optical communication systems.[7]Researchers have pointed out that the reduced Maxwell-Bloch(RMB)equations can be applied to get for the phenomenon of SIT,a more accurate description compared to the so-called SIT equations.[8?12]

        In this paper,we will study the RMB equations with variable coefficients,[10]written as

        describing the propagation of the intense ultra-short optical pulses through an inhomogeneous two-level dielectric medium,whereqis the inhomogeneous electric field,r1andr2denote the real and imaginary parts of the polarization of the two-level medium,respectively,r3represents the(real)population difference between the ground and excited states,the subscriptszandtrespectively refer to the partial derivatives with respect to the scaled distance and time,ωdenotes the resonance frequency,αj(z)’s(j=1,2,...,5)are the functions related to the inhomogeneous electric field,andμ(z)is the function related to the two-level medium.Painlevé integrable condition,Lax pair,in finitely-many conservation laws and Darboux transformation for Eqs.(1)have been derived.[10]

        The outline of this paper is as follows.In Sec.2,via the Hirota method,[13?15]and symbolic computation,[16?17]introducing the dependent variable transformations,we will derive the variable-coefficient-dependentbilinear forms for Eqs.(1).In Sec.3,based on those bilinear forms,the soliton solutions in analytic forms will be constructed.Section 4 will be our conclusions.

        2 Bilinear Forms

        Introducing the dependent variable transformations

        withG(z,t)as the differentiable function ofzandt,as the differentiable function of the formal variablesas the non-negative integers.

        3 Soliton Solutions

        In the following,based on bilinear forms(5),we will construct the soliton solutions for Eqs.(1),by expandingg,fandhwith respect to a formal expansion parameterεas

        where2,4,6,...)are the real differentiable functions with respect tozandt.

        3.1 One-Soliton Solutions

        To derive the one-soliton solutions for Eqs.(1),we truncate expressions(6)as,substitute them into bilinear forms(5),and derive the one-soliton solutions for Eqs.(1)as

        3.2 Two-Soliton Solutions

        For the two-soliton solutions,we truncate expressions(6)asandsubstitute them into bilinear forms(5),and obtain

        withρk(z)’s as the real functions andσk’s as the real constants.

        3.3 N-Soliton Solutions

        The vectorN-soliton solutions for Eqs.(1)can be expressed as

        under constraints(3)and(8),where

        withρl(z)’s being the real functions andσl’s being the real constants,denoting the summation over all the possible pairs taken from the 2Nelements with the conditionindicating the summations over all the possible combinations ofυl=0,1 and satisfying

        4 Conclusions

        In this paper,we have studied the RMB equations with variable coefficients,i.e.,Eqs.(1),describing the propagation of the intense ultra-short optical pulses through an inhomogeneous two-level dielectric medium.Through the Hirota method and symbolic computation in this paper,via transformations(2),we have derived variable-coefficient-dependent bilinear forms(5)under constraints(3).Then,based on bilinear forms(5),under constraints(3)and(8),the analytic one-,two-andN-soliton solutions,i.e.,solutions(7)–(10),have been constructed.

        Acknowledgments

        We express our sincere thanks to the Editors and Reviewers for their valuable comments.

        [1]M.J.Ablowitz and P.A.Clarkson,Solitons,Nonlinear Evolution Equations and Inverse Scattering,Cambridge University Press,Cambridge(2004).

        [2]H.Q.Hao,R.Guo,and J.W.Zhang,Nonlinear Dyn.88(2017)1615.

        [3]H.H.Zhao,X.J.Zhao,and H.Q.Hao,Appl.Math.Lett.61(2016)8.

        [4]Z.J.Yang,Z.F.Yang,J.X.Li,et al.,Res.Phys.7(2017)1485.

        [5]R.Guo and H.Q.Hao,Commun.Nonlinear Sci.Numer.Simul.18(2013)2426.

        [6]K.Porsezian,P.Seemuvasakumaran,and R.Ganapathy,Phys.Lett.A 348(2006)233.

        [7]V.V.Kozlov and J.H.Eberly,Opt.Commun.179(2000)85..

        [8]L.Mandel and E.Wolf,Coherence in Quantum Optics,Plenum Press,New York(1978).

        [9]H.Steudel,A.A.Zabolotskii,and R.Meinel,Phys.Rev.E 72(2005)056608.

        [10]H.Q.Hao and J.W.Zhang,Commun.Nonlinear Sci.Numer.Simul.22(2015)1350.

        [11]A.Bekir,Chaos,Solitons&Fractals 32(2007)449.

        [12]H.Steudel,A.A.Zabolotskii,and R.Meinel,Phys.Rev.E 72(2005)056608.

        [13]R.Hirota,J.Math.Phys.14(1973)805.

        [14]R.Hirota and Y.Ohta,J.Phys.Soc.Jpn.60(1991)798.

        [15]R.Hirota,The Direct Method in Soliton Theory,Cambridge University Press,Cambridge(2004).

        [16]W.P.Hong,Phys.Lett.A 361(2007)520.

        [17]G.C.Das and J.Sarma,Phys.Plasmas 6(1999)4394.

        亚洲中文欧美日韩在线| 国产亚洲日本精品无码| 少妇饥渴xxhd麻豆xxhd骆驼| 国产精品无码久久久久成人影院| 18无码粉嫩小泬无套在线观看| 日韩在线第二页| 久久精品人妻嫩草av蜜桃| 上海熟女av黑人在线播放| 无码尹人久久相蕉无码| 国产精品公开免费视频| 国产一区二区三区资源在线观看| 91久久综合精品久久久综合| 免费国产黄网站在线观看可以下载| 免费观看国产精品| 大量老肥熟女老女人自拍| 岛国熟女精品一区二区三区| 尤物网址在线观看| 国产成人亚洲综合无码DVD| 91久久国产露脸国语对白| 强开小婷嫩苞又嫩又紧视频韩国| 国产精品亚韩精品无码a在线| 日韩无码电影| 一区视频免费观看播放| 女人被狂躁c到高潮视频| 国产精品亚洲欧美云霸高清| 成年人男女啪啪网站视频| 亚洲精品人成中文毛片| 国产亚洲av综合人人澡精品| 亚洲欧洲AV综合色无码| 99精品久久精品一区| 国产男小鲜肉同志免费| 99视频全部免费精品全部四虎| 成人综合激情自拍视频在线观看| 麻豆国产一区二区三区四区| av无码免费永久在线观看| 午夜无码片在线观看影院y| 亚洲国产女性内射第一区二区| 亚洲女初尝黑人巨高清| 欧洲日韩视频二区在线| 久久精品国产黄片一区| 亚洲av永久中文无码精品综合|