亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Fekete-Szeg? Problem for a Subclass of Meromorphic Functions Defined by the Dziok-Srivastava Operator

        2018-05-23 02:38:03GuODONGLIZONGTAOANDXIONGLIANGPENG

        GuO DONG,LI ZONG-TAOAND XIONG LIANG-PENG

        (1.Foundation Department,Chuzhou Vocational and Technical College,Chuzhou,Anhui,239000)

        (2.Foundation Department,Guangzhou Civil Aviation College,Guangzhou,510403)

        (3.School of Mathematics and Statistics,Wuhan University,Wuhan,430072)

        Communicated by Ji You-qing

        1 Introduction and Definition

        LetΣdenote the class of meromorphic functions of the form:

        which are analytic in the open unit disk

        A function f ∈Σis meromorphic starlike of order β,denoted by S?(β),if Re(0≤ β< 1,z∈ U?).A function f∈Σis meromorphic convex of order β,denoted by

        Let φ be an analytic function with positive real part in the open unit disk U,φ(0)=1,φ′(0) > 0 and φ(U)be symmetric with respect to the real axis.The Taylor’s series expansion of such function is of the form

        Aouf[1]introduced and studied the classwhich consists of functions f(z)∈Σfor

        For the functions

        let(f?g)(z)be the Hadamard product or convolution of f(z)and g(z)defined by

        The generalized hypergeometric functionlFmfor a1, ···,al,d1, ···,dmsuch that dj0,?1,···for j=1,2,···,m,and z ∈ C is defined in[2]as follows:

        with l≤ m+1,l,m ∈ N,where the Pochhammer symbol(ν)n(or the shifted factorial since(1)n=n!)is given in terms of the gamma function as

        For the positive real values a1, ···,al,d1, ···,dmsuch that dj0,?1,···for j=1,2,···,m,by using the Gaussian hypergeometric function given by(1.4),we thus obtain

        where

        (see[3]–[5],and also the more recent works[6]–[8]dealing extensively with Dziok-Srivastava operator).

        We note that:

        (i) The differential operator2I1(a,b;c;z)=()(z)(a,b∈ C,c∈ Z+)was studied by Hohlov[9];

        (ii) The differential operator2I1(n+1,1;1;z)=Dnf(z)(n ∈ N+)was studied by Ruscheweyh[10];

        (iii) The operator2I1(a,1;c;z)=L(a,c)f(z)was studied by Carson and Shaffer[11];

        (iv) The operator2I1(ν,1; λ +1;z)=Iλ,νf(z)(λ > ?1, ν > 0)was studied by Choiet al.[12].

        Let H denote the class of function f(z)of the form

        which is analytic in the open unit disc U,and S be the subclass of H consisting of functions which are analytic and univalent in U.

        Liu and Cui[13]defined a class Mα(φ)consisting of functions f(z)∈ S for which

        Analogous to the class Mα(φ),by using the operatorlImf(z),we define the classas follows:

        Definition 1.1Letφ(z)=1+B1z+B2z2+B3z3+ ···A functionf(z)∈Σis in theclass

        It is interesting to note that,for l=2,m=1,a1=d1,a2=1,the classlM?m(α,φ)reduces to the following new subclasses.

        Example 1.1Fora function f(z)∈Σgiven by(1.1)is said to be in the class M(α,φ),if the following conditions are satis fied:

        In order to derive our main results,we have to recall here the following lemmas.

        Lemma 1.1[14]Let ?be the class of analytic functionsω,normalized byω(0)=0,

        satisfying condition|ω(z)|< 1.Ifω(z)∈?andω(z)=c1z+c2z2+ ···,z ∈ U,then

        Lemma 1.2[15]Ifω(z)∈?andω(z)=c1z+c2z2+ ···,z ∈ U,then

        for any complex numbert.The result is sharp for the functionsω(z)=z2orω(z)=z.

        Lemma 1.3[16]Ifω(z)∈?andω(z)=c1z+c2z2+ ···,z ∈ U,then

        Fort< ?1ort> 1,the equality holds if and only ifω(z)=zor one of its rotation.For?1 < t< 1,the equality holds ifω(z)=z2or one of its rotation.The equality holds fort= ?1if and only ifor one of its rotation.Fort=1,theequality holds if and only ifor one of its rotation.Theabove upper bound for?1<t<1is sharp,and it can be improved as follows:

        2 Main Results

        Theorem 2.1Letφ(z)=1+B1z+B2z2+B3z3+···Iff(α,φ)andl≤m+1,l,m∈N,then

        and

        Proof.Let f∈l(α,φ).Then there is an analytic function ω(z)=c1z+c2z2+···such that

        Since

        and

        it follows from(2.1)–(2.3)that

        Then,we see that

        Taking into account(2.6),(1.6)and Lemma 1.1,we obtain

        and,by Lemma 1.2,we have

        Also,if B1=0,then

        By using(1.6)and Lemma 1.1,we get

        Moreover,by using(1.6),(2.6)and Lemma 1.1,we have

        which completes the proof.

        Now,we consider the Fekete-Szeg? problem for the classl(α,φ).

        Theorem 2.2Letφ(z)=1+B1z+B2z2+B3z3+···Iff∈l(α,φ)andl≤m+1,then forμ∈Cwe have

        For eachμ,there is a function inl(α,φ)such that the equality holds.

        Proof.Applying(2.6),we have

        where

        Then,by using(1.6),(2.7)and Lemma 1.2,we have

        as asserted.An examination of the proof shows that for the first case,the equality is attained when c1=0 and c2=1,where the function inl(α,φ)is given by

        and for the second case,when c1=1 and c2=0,we have

        respectively.

        By using Lemma 1.3,we can obtain the following theorem.

        Theorem 2.3Letφ(z)=1+B1z+B2z2+B3z3+ ···(Bi> 0,i∈ N+,α >).Ifandl≤m+1,l,m∈N,then forμ ∈R,we have

        where

        For eachμ,there is a function inl(α,φ)such that the equality holds.

        Proof.By using(2.7),(1.6)and Lemma 1.3 successively,we have

        where

        To show that these results are sharp,we define the functionssuch that

        It is clear that the functionsLetIf u<u1or u>u2,then the equality occurs for the functionor one of its rotations.For u1<u<u2,the equality is attained if and only if f isor one of its rotations.If u=u1,then the equality holds for the functionor one of its rotations.If u=u2,then the equality is obtained for the functionor one of its rotations.

        Using arguments similar to those in the proof of Theorem 2.3,we obtain the following theorem.

        Theorem 2.4Letφ(z)=1+B1z+B2z2+B3z3+ ···(Bi> 0,i∈ N+,α >)and.Iff(z)given by(1.1)belongs to the classthen forμ∈R,we have

        whereμ1andμ2are given in Theorem2.3.

        References

        [1]Aouf M K,EI-Ashwah R M,Zayed H M.Fekete-szeg? inequalities for certain class of meromorphic functions.J.Egyptian Math.Soc.,2013,21:197–200.

        [2]Ponnusamy S,Vuorinen M.Univalence and convexity properties for Gaussian hypergeometric functions.Rocky Mountain J.Math.,2001,31:327–353.

        [3]Dziok J,Srivastava H M.Classes of analytic functions associated with the generalized hypergeometric function.Appl.Math.Comput.,1999,103:1–13.

        [4]Dziok J,Srivastava H M.Some subclasses of analytic functions with fixed argument of coeffi cients associated with the generalized hypergeometric fuction.Adv.Stud.Contemp.Math.,2002,5:115–125.

        [5]Dziok J,Srivastava H M.Certain subclasses of analytic functions associated with the generalized hypergeometric function.Integral Transforms Spec.Funct.,2003,14:7–18.

        [6]Patel J,Mishra A K,Srivastava H M.Classes of multivalent functions involving the Dziok-Srivastava operator.Comput.Math.Appl.,2007,54:599–616.

        [7]Wang Z G,Jiang Y P,Srivastava H M.Some subclasses of multivalent analytic functions involving the Dziok-Srivastava operator.Integral Transforms Spec.Funct.,2008,19:129–146.

        [8]AI-Hawary T,Frasin B A,Darus M.Fekete-Szeg? problems for certain classes of analytic functions of complex order defined by the Dziok-Srivastava operator.Acta.Math.Vietnam,2014,39:185–192.

        [9]Hohlov Y E.Operators and operations in the class of univalent functions.Izv.Vysˇsh.Uchebn.Zaved.Mat.,1978,10:83–89.

        [10]Ruscheweyh S.New criteria for univalent functions.Proc.Amer.Math.Soc.,1975,49:109–115.

        [11]Carlson B C,Shaffer D B.Starlike and prestarlike hypergeometric functions.SIAM J.Math.Anal.,1984,15:737–745.

        [12]Choi J H,Saigo M,Srivastava H M.Some inclusion properties of a certain family of integral operators.J.Math.Anal.Appl.,2002,276:432–445.

        [13]Liu M S,Cui Z F.Fekete-Szeg? inequalities for some Subclasses of analytic functions.J.South China Normal Univ.Natur.Sci.Ed.,2010,1(1):1–8.

        [14]Nehari Z.Conformal Mapping.New York:McGraw-Hill Book Co.,1952.

        [15]Keogh F R,Merkes E P.A coefficient inequality for certain classes of analytic functions.Proc.Amer.Math.Soc.,1969,20:8–12.

        [16]Ali R M,Ravichandran V,Seenivasagan N.Coefficient bounds for p-valent functions.Appl.Math.Comput.,2007,187(1):35–46.

        av在线免费观看网站免费| 亚洲精品一区网站在线观看| 中文字幕一区二区三区97| 国产清品夜色一区二区三区不卡| 456亚洲人成在线播放网站| 搞黄色很刺激的网站二区| 精品人妻av区乱码色片| 又色又爽又黄还免费毛片96下载| 午夜亚洲www湿好爽| 亚洲国产精品嫩草影院久久| 亚洲Av无码专区尤物| 国产传媒剧情久久久av| 国语对白精品在线观看| 亚洲一区二区二区视频| 久久精品女人天堂av免费观看| 真人做爰片免费观看播放| 亚洲色无码播放| 青草蜜桃视频在线观看| 亚洲av毛片在线播放| 二区视频在线免费观看| 人人爽人人爽人人片av| 深夜福利小视频在线观看| 亚洲AV无码一区二区三区日日强| 欧美一级鲁丝片免费一区| 日本高清视频在线观看一区二区| 精品乱码一区内射人妻无码| 国产亚洲精品aaaa片app| 极品 在线 视频 大陆 国产| 日本一二三区在线视频观看 | 精品三级久久久久久久| 一本色道亚州综合久久精品| 日本三区在线观看视频| 亚洲熟妇色自偷自拍另类| 女人大荫蒂毛茸茸视频| 亚洲国产成人aⅴ毛片大全| 手机在线国产福利av| 亚洲 日本 欧美 中文幕| 激情第一区仑乱| 人体内射精一区二区三区| 欧美激情精品久久999| 精品成人av人一区二区三区 |