佘馮建,李 勇,王煒宇,曹一家
(湖南大學(xué) 電氣與信息工程學(xué)院,湖南 長(zhǎng)沙 410082)
近年來(lái),風(fēng)電、光伏等新能源發(fā)電方式得到了廣泛的應(yīng)用,其有效的并網(wǎng)方式是研究熱點(diǎn)。將海上風(fēng)力發(fā)電輸送到電網(wǎng),傳輸距離較遠(yuǎn),而且容量大?;陔妷涸葱蛽Q流器的多端柔性直流輸電(VSC-MTDC)系統(tǒng)將成為解決這些問(wèn)題的關(guān)鍵技術(shù)手段之一[1]。VSC-MTDC系統(tǒng)在經(jīng)濟(jì)和技術(shù)方面具有諸多傳統(tǒng)直流輸電系統(tǒng)所不具備的優(yōu)點(diǎn),如成本低、能實(shí)現(xiàn)有功和無(wú)功功率解耦控制、損耗小、可多落點(diǎn)受電和多電源供電[2-4],因此多端柔性直流輸電系統(tǒng)是海上風(fēng)電場(chǎng)并網(wǎng)的有效方式。
國(guó)內(nèi)外學(xué)者對(duì)VSC-MTDC系統(tǒng)的協(xié)調(diào)控制策略已經(jīng)開(kāi)展了深入的研究。主從控制策略、直流電壓偏差控制策略、直流電壓下垂控制策略是目前VSC-MTDC系統(tǒng)中3種最常見(jiàn)的協(xié)調(diào)控制策略[5]。主從控制通常設(shè)定某個(gè)換流站為主站,并且將其作為功率平衡節(jié)點(diǎn)來(lái)實(shí)現(xiàn)定電壓控制,其他換流站則作為從站來(lái)控制輸出的有功功率,這種控制方式有較高的通信要求[6];直流電壓偏差控制策略則是在主從控制基礎(chǔ)上的一種改進(jìn)方法,假定作為主站的換流站因故障退出運(yùn)行,系統(tǒng)直流側(cè)電壓會(huì)發(fā)生波動(dòng),這時(shí)預(yù)先設(shè)定作為預(yù)備站的從站就履行主站的職責(zé),切換成直流電壓控制模式以保持系統(tǒng)直流電壓的穩(wěn)定,這種控制方式設(shè)計(jì)簡(jiǎn)單、可靠性強(qiáng)[7];直流電壓下垂控制策略的基本原理是根據(jù)功率與頻率的下垂控制關(guān)系,通過(guò)監(jiān)測(cè)系統(tǒng)直流側(cè)電壓偏差量,快速分配換流站有功功率以穩(wěn)定直流電壓[8]。
近年來(lái),智能多代理系統(tǒng)MAS(Multi-Agent System)技術(shù)發(fā)展迅速,其為VSC-MTDC系統(tǒng)的協(xié)調(diào)控制提供了新的研究思路[9]。Agent本身具有自治性、反應(yīng)性等特點(diǎn),它能感知周圍環(huán)境的變化并做出迅速調(diào)整。MAS中各Agent并行運(yùn)作,并且只與鄰居的Agent進(jìn)行信息交換,可以減少通信延遲對(duì)MAS的不利影響。MAS中的控制器發(fā)揮作用,可以保持系統(tǒng)功率平衡并實(shí)現(xiàn)頻率支撐。
本文提出了一種基于MAS的VSC-MTDC系統(tǒng)協(xié)調(diào)控制策略,使VSC-MTDC系統(tǒng)能夠?yàn)榻涣髦骶W(wǎng)提供快速頻率支撐,同時(shí)保證換流站之間合理的功率分配。首先,引入了網(wǎng)絡(luò)圖論的概念,設(shè)計(jì)了MAS的最優(yōu)通信拓?fù)浣Y(jié)構(gòu),使其動(dòng)態(tài)響應(yīng)速度達(dá)到最快。在此基礎(chǔ)上,為換流站設(shè)計(jì)了分布式頻率支撐模塊,使VSC-MTDC系統(tǒng)在交流電網(wǎng)因擾動(dòng)而出現(xiàn)頻率跌落時(shí),能夠提供快速功率支撐,抑制頻率跌落。本文通過(guò)陸地側(cè)換流站GSVSC(Grid-Side VSC) Agent間頻率差的傳遞,對(duì)其各換流站的功率輸出實(shí)施控制,以實(shí)現(xiàn)系統(tǒng)頻率支撐。同時(shí),提出了一種基于負(fù)載率信息的Agent控制器,通過(guò)換流站之間有功功率再分配,防止換流站重載甚至過(guò)載。然后,構(gòu)建了完整的MAS控制策略,詳細(xì)分析了頻率支撐Agent FSA(Frequency Support Agent)和功率分配Agent PAA(Power Allocation Agent)的配合控制問(wèn)題,控制器通過(guò)監(jiān)測(cè)頻率變化幅度自適應(yīng)地調(diào)整功率再分配系數(shù),以保證在實(shí)現(xiàn)GSVSC負(fù)載率均勻分配的同時(shí),又能為系統(tǒng)的交流電網(wǎng)頻率提供有效的支撐。最后在DIgSILENT/PowerFactory環(huán)境下搭建了一個(gè)典型的六端VSC-MTDC系統(tǒng),其中包括詳盡的MAS模型,通過(guò)仿真驗(yàn)證了所提控制策略的有效性。
海上風(fēng)電場(chǎng)可被看作一個(gè)弱交流電網(wǎng),需要通過(guò)風(fēng)電場(chǎng)側(cè)換流站W(wǎng)FVSC(Wind Farm-side VSC)對(duì)風(fēng)電場(chǎng)提供電壓和頻率支撐。WFVSC的經(jīng)典控制框架如圖1所示。
圖1 WFVSC控制框架Fig.1 Control diagram of WFVSC
電壓外環(huán)控制、電流內(nèi)環(huán)控制是WFVSC常采用的控制方法。在電壓外環(huán)控制中,首先比較換流站交流母線電壓幅值Vac與其參考值Vac_ref的偏差量,通過(guò)PI控制可以得到dq同步旋轉(zhuǎn)坐標(biāo)系下q軸電流參考值iq_ref。測(cè)量電壓源型換流器交流側(cè)電流iabc,并將其轉(zhuǎn)換至dq同步旋轉(zhuǎn)坐標(biāo)系下,將q軸電流值iq與其參考值作差,通過(guò)PI控制得到相應(yīng)的控制信號(hào),最后產(chǎn)生脈寬調(diào)制(PWM)波[10-11]。
圖2 傳統(tǒng)下垂控制策略框圖Fig.2 Block diagram of traditional droop control strategy
GSVSC常采用直流電壓下垂控制。傳統(tǒng)下垂控制的控制框架如圖2所示。當(dāng)VSC-MTDC系統(tǒng)輸入和輸出功率不平衡時(shí),將導(dǎo)致各換流站直流母線電壓發(fā)生改變,根據(jù)有功功率和直流電壓的下垂關(guān)系,控制器可以根據(jù)直流電壓偏差量調(diào)整有功功率,以此穩(wěn)定VSC-MTDC的直流電壓[12]。傳統(tǒng)下垂控制的電壓-功率關(guān)系為:
(1)
其中,K為電壓-功率下垂系數(shù);Vdc_ref、Vdc分別為換流站直流側(cè)電壓的參考值、實(shí)際測(cè)量值;Pref、P分別為流入換流站有功功率的參考值、實(shí)際測(cè)量值。根據(jù)式(1)可知,GSVSC之間的功率分配由下垂系數(shù)決定。
傳統(tǒng)的VSC-MTDC系統(tǒng)控制策略僅考慮直流電網(wǎng)本身的安全穩(wěn)定運(yùn)行,未能考慮其對(duì)交流電網(wǎng)產(chǎn)生的影響。由于電壓源型換流器具有靈活的功率調(diào)節(jié)能力,在傳統(tǒng)控制策略的基礎(chǔ)上,可進(jìn)一步開(kāi)發(fā)針對(duì)交流電網(wǎng)的頻率支撐功能。MAS具有自治性、反應(yīng)性等優(yōu)點(diǎn),其分布式控制思想與智能電網(wǎng)的發(fā)展趨勢(shì)相契合,本文基于MAS設(shè)計(jì)了適用于VSC-MTDC系統(tǒng)的并網(wǎng)控制策略。
Agent是一個(gè)信息交流的實(shí)體,MAS包括了2個(gè)甚至更多的Agent。當(dāng)系統(tǒng)運(yùn)行狀態(tài)發(fā)生變化時(shí),Agent能夠及時(shí)感知自身的狀態(tài)變化,并與相鄰Agent通信,根據(jù)本地與鄰居Agent的量測(cè)信息采取相應(yīng)的調(diào)整措施,最終實(shí)現(xiàn)了整個(gè)系統(tǒng)的優(yōu)化控制。
在含有VSC-MTDC的交直流混聯(lián)系統(tǒng)中,當(dāng)交流系統(tǒng)發(fā)生發(fā)電機(jī)停運(yùn)、負(fù)荷突增等事件時(shí),會(huì)導(dǎo)致電網(wǎng)功率失衡,進(jìn)而引發(fā)頻率偏移。而各個(gè)換流站可通過(guò)控制有功功率的輸出,為交流電網(wǎng)提供頻率支撐。每個(gè)Agent僅測(cè)量本地的頻率偏差,通過(guò)通信網(wǎng)絡(luò)將該偏差信號(hào)傳輸給相鄰Agent,同時(shí)接收鄰居Agent的頻率偏差信號(hào),綜合考慮本地頻率偏差、鄰居的頻率偏差信號(hào),調(diào)整換流站的輸出功率,以達(dá)到頻率支撐的目的。同時(shí)Agent通過(guò)相互傳遞負(fù)載率差值進(jìn)一步調(diào)整功率以保證系統(tǒng)功率的合理分配。
本文基于上述思想達(dá)到頻率支撐和功率分配的效果,為了方便起見(jiàn),將MAS控制系統(tǒng)中提供頻率支撐作用的Agent稱為FSA,而提供調(diào)整功率使系統(tǒng)合理分配功率功能的Agent簡(jiǎn)稱為PAA。
MAS的通信網(wǎng)絡(luò)拓?fù)渫ǔ?刹捎脠D論來(lái)分析。假設(shè)MAS中各Agent連接的拓?fù)浣Y(jié)構(gòu)圖用G={V,E}表示,其中V中元素代表圖G的節(jié)點(diǎn),而E中元素則代表邊[13-14]。在一個(gè)無(wú)向圖G中,用(Vi,Vj)表示節(jié)點(diǎn)Vi和Vj之間是相連的,每個(gè)節(jié)點(diǎn)代表每個(gè)Agent所處的位置,若兩節(jié)點(diǎn)有邊連接,則代表Agent間有信息傳遞??梢杂绵徑泳仃嘇=[aij]描述連通圖G中的節(jié)點(diǎn)連接情況,對(duì)角矩陣D=[dii]。其中aij和dii定義如下:
(2)
dii=d(Vi)
(3)
其中,d(Vi)為節(jié)點(diǎn)Vi的入度。根據(jù)各Agent之間的連接情況,可分別求得相應(yīng)的對(duì)角矩陣D和鄰接矩陣A,對(duì)其作差可得到對(duì)應(yīng)的拉普拉斯矩陣L:
L=D-A
(4)
由文獻(xiàn)[15]可知該拉普拉斯矩陣L僅有一個(gè)特征值為0,其他特征值均為可隨拓?fù)涓淖兌兓恼?,所有特征值可以表示為?/p>
0=λ1≤λ2≤…≤λn
(5)
在一致性算法下,Agent的狀態(tài)模型可以用矩陣表示,整個(gè)系統(tǒng)可以表示為:
(6)
e-L(G)t=e-(UΛUT)t=Ue-ΛΛ(G)UT=
(7)
其中,Λ為特征值所構(gòu)成的對(duì)角矩陣;矩陣U由矩陣L的規(guī)范正交化向量組成;u1、u2、…、un分別為對(duì)應(yīng)特征值λ1、λ2、…、λn的特征向量。
本文針對(duì)VSC-MTDC系統(tǒng)的4個(gè)GSVSC設(shè)計(jì)了MAS控制系統(tǒng)的通信拓?fù)浣Y(jié)構(gòu),圖3為4種典型通信拓?fù)浣Y(jié)構(gòu),各拓?fù)浣Y(jié)構(gòu)的特征參數(shù)見(jiàn)表1。
圖3 MAS通信拓?fù)浣Y(jié)構(gòu)Fig.3 Communication topologies of MAS
本文設(shè)計(jì)的通信網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)如圖3(a)所示,該拓?fù)浣Y(jié)構(gòu)下λ2比較大,系統(tǒng)的動(dòng)態(tài)響應(yīng)最快。
VSC-MTDC可實(shí)現(xiàn)有功、無(wú)功功率的解耦控制,根據(jù)該特性可為VSC-MTDC系統(tǒng)設(shè)計(jì)頻率支撐功能。交流系統(tǒng)中,同步發(fā)電機(jī)的轉(zhuǎn)子運(yùn)動(dòng)方程如下:
表1 各拓?fù)浣Y(jié)構(gòu)的特征參數(shù)Table 1 Characteristic parameter of each communication topology
(8)
其中,H為同步發(fā)電機(jī)的慣性時(shí)間常數(shù);PT和PE分別為同步發(fā)電機(jī)的機(jī)械功率和電磁功率;fN為交流系統(tǒng)的額定頻率;f為交流系統(tǒng)的實(shí)測(cè)頻率;上標(biāo)“*”表示量綱采用標(biāo)幺值形式。
由式(8)知,若電網(wǎng)有功功率需求增加,這時(shí)需要發(fā)電機(jī)輸出更多的有功功率,進(jìn)而導(dǎo)致輸出電流、電磁轉(zhuǎn)矩增大,若機(jī)械轉(zhuǎn)矩保持不變,就會(huì)導(dǎo)致同步發(fā)電機(jī)轉(zhuǎn)速發(fā)生變化,從而使整個(gè)系統(tǒng)的頻率下降。
直流系統(tǒng)中可以用直流母線電壓表示系統(tǒng)功率平衡,可得:
(9)
考慮換流站交流、直流接口處的功率動(dòng)態(tài)平衡,交流側(cè)功率的缺額可由直流側(cè)功率補(bǔ)償,令式(8)、(9)相等并對(duì)兩邊積分可得[17]:
(10)
于是可得換流站兩側(cè)頻率與電壓的關(guān)系為:
(11)
其中,Kw為交直流系統(tǒng)V2-f下垂系數(shù),其值等于4HSN/(CdcfN)。
假設(shè)每個(gè)換流站交流側(cè)頻率的測(cè)量值為f,而系統(tǒng)頻率的參考值為fref,則換流站頻率的變化為:
Δf=f-fref
(12)
WFVSC采用傳統(tǒng)的控制方式,而GSVSC均配有FSA實(shí)時(shí)監(jiān)控本地交流電網(wǎng)的頻率偏差量。當(dāng)VSC-MTDC所連接的某交流電網(wǎng)頻率偏移量Δf超過(guò)閾值Δfthre時(shí),換流站i的FSA啟動(dòng)。換流站i與其鄰居換流站進(jìn)行通信,比較本地頻率偏移量與相鄰換流站所采集的頻率偏移量的差值,并計(jì)算所有偏差值的均值,即:
(13)
其中,Ni為換流站i的鄰居換流站集合;N為與換流站i有通信的換流站個(gè)數(shù)。進(jìn)一步綜合式(11)和式(13)可以得到:
(14)
于是,可得直流電壓參考值的調(diào)整量ΔVdc_ref,將其送至電壓-功率下垂控制環(huán)節(jié)中,最終可得到整個(gè)換流站的有功功率調(diào)整量ΔPag為:
(15)
其中,ΔVdc_ref為通過(guò)FSA控制所得到的直流電壓參考值的變化值。
最后通過(guò)限幅環(huán)節(jié)后將計(jì)算的功率調(diào)整量送至有功功率控制環(huán)節(jié)。
換流站之間功率的不合理分配可能會(huì)導(dǎo)致?lián)Q流站重載甚至過(guò)載,這會(huì)影響設(shè)備的使用壽命,甚至?xí){系統(tǒng)的安全穩(wěn)定運(yùn)行。因此保證各換流站的負(fù)載率處于正常范圍對(duì)VSC-MTDC系統(tǒng)的安全穩(wěn)定運(yùn)行至關(guān)重要。
為了使系統(tǒng)功率分配的合理性得到定量分析,用參數(shù)Δδ表征換流站間負(fù)載率之差:
(16)
本節(jié)根據(jù)各GSVSC的負(fù)載率之差Δδ對(duì)輸出功率進(jìn)行調(diào)整。PAA實(shí)時(shí)監(jiān)測(cè)本地?fù)Q流站功率的負(fù)載率,同時(shí)與其他PAA相互通信,獲取鄰居換流站的負(fù)載率信息,求取本換流站與鄰居換流站負(fù)載率差額的平均值,即:
(17)
根據(jù)負(fù)載率差值的平均值調(diào)整本換流站系統(tǒng)功率流動(dòng)以保證換流站功率的合理分配。正常運(yùn)行時(shí)換流站所分擔(dān)的功率缺額應(yīng)該與其額定容量呈正相關(guān)關(guān)系,所以應(yīng)該按照換流站的額定容量設(shè)定調(diào)整系數(shù)Kt來(lái)對(duì)系統(tǒng)功率進(jìn)行再分配:
(18)
其中,ΔPt為功率調(diào)節(jié)量;Kt為調(diào)節(jié)系數(shù)。這樣,當(dāng)某個(gè)換流站退出多端系統(tǒng)時(shí),系統(tǒng)的功率缺額就可以由其他換流站按各自的額定容量分配,同時(shí)又避免了換流站出現(xiàn)過(guò)載的情況。
圖4 FSA與PAA控制框架圖Fig.4 Control block digram of FSA and PAA
FSA與PAA的控制框架如圖4所示。值得注意的是,當(dāng)交流電網(wǎng)因擾動(dòng)發(fā)生頻率偏移時(shí),F(xiàn)SA參與系統(tǒng)調(diào)頻過(guò)程中每個(gè)換流站應(yīng)當(dāng)承擔(dān)的功率缺額補(bǔ)給量不同,但PAA為了防止換流站的過(guò)載再次調(diào)整了功率的分配。因此,PAA對(duì)系統(tǒng)頻率的恢復(fù)可能會(huì)造成不利的影響,PAA控制器可使調(diào)節(jié)系數(shù)Kt隨著頻率的變化幅度做出相應(yīng)的調(diào)整,如式(19)所示,這樣就緩和了PAA對(duì)FSA控制效果的影響。
(19)
其中,K1為頻率偏差絕對(duì)值小于df1的功率調(diào)節(jié)系數(shù);K2為頻率偏差絕對(duì)值不小于df1、不大于df2的功率調(diào)節(jié)系數(shù),并且滿足K1>K2>0。
為了驗(yàn)證本文所提控制策略的有效性,基于DIgSILENT/PowerFactory軟件搭建了如圖5所示的六端VSC-MTDC系統(tǒng)仿真模型。系統(tǒng)各項(xiàng)參數(shù)和控制器參數(shù)分別如附錄A中表A1、A2所示。
圖5 六端VSC-MTDC系統(tǒng)模型Fig.5 Model of six-terminal VSC-HVDC system
圖6 不同通信拓?fù)浣Y(jié)構(gòu)下的系統(tǒng)頻率Fig.6 System frequency under different communication topologies
圖5中,風(fēng)電場(chǎng)側(cè)換流站W(wǎng)FVSC1、WFVSC2采用傳統(tǒng)的定交流電壓定頻率控制,陸地側(cè)換流站GSVSC1、GSVSC2、GSVSC3、GSVSC4采用下垂控制,所有GSVSC均裝有FSA和PAA控制器,各個(gè)換流站頻率Agent信息交流的連接采用如圖3(a)所示的通信網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)。
以短路事件為例,1s時(shí)設(shè)置2區(qū)4機(jī)系統(tǒng)中線路L1發(fā)生短路,單獨(dú)開(kāi)啟FSA,通過(guò)仿真觀察不同通信拓?fù)浣Y(jié)構(gòu)時(shí)2區(qū)4機(jī)系統(tǒng)的頻率支撐效果,如圖6所示。由圖6可知,采用圖3(a)所示通信拓?fù)浣Y(jié)構(gòu)時(shí)系統(tǒng)最易于實(shí)現(xiàn)頻率穩(wěn)定。
通過(guò)仿真可以看出,當(dāng)圖3(a)所示通信拓?fù)湎孪到y(tǒng)頻率達(dá)到穩(wěn)定時(shí),其他拓?fù)浣Y(jié)構(gòu)下的系統(tǒng)頻率仍有較大的波動(dòng)。通過(guò)仿真數(shù)據(jù)得到各種拓?fù)湎碌念l率穩(wěn)定所需時(shí)間,如表2所示。由表2可以看出,本文設(shè)計(jì)的通信拓?fù)湎骂l率穩(wěn)定所需的時(shí)間最短,系統(tǒng)頻率的收斂速度最快。
表2 不同通信拓?fù)浣Y(jié)構(gòu)下頻率穩(wěn)定所需時(shí)間Table 2 Time required for frequency stability under different communication topologies
在3.1節(jié)研究?jī)?nèi)容基礎(chǔ)上,進(jìn)一步研究負(fù)荷突變時(shí)MAS控制策略的頻率支撐、負(fù)載率調(diào)節(jié)效果。
為了驗(yàn)證FSA控制的有效性,預(yù)設(shè)MAS控制系統(tǒng)中PAA退出運(yùn)行,設(shè)置FSA正常運(yùn)行和退出運(yùn)行2種情況。傳統(tǒng)下垂控制與配備FSA的系統(tǒng)頻率如圖7所示。通過(guò)對(duì)比發(fā)現(xiàn),傳統(tǒng)下垂控制比開(kāi)啟FSA控制時(shí)的系統(tǒng)頻率支撐效果差。
圖7 傳統(tǒng)下垂控制與配備FSA的系統(tǒng)頻率Fig.7 System frequency of traditional droop control strategy and control strategy equipped with FSA
由圖7可見(jiàn),采用FSA后2區(qū)4機(jī)系統(tǒng)、IEEE 39節(jié)點(diǎn)系統(tǒng)的頻率變化值均能穩(wěn)定在0.12Hz范圍內(nèi),而傳統(tǒng)下垂控制下2區(qū)4機(jī)系統(tǒng)頻率跌落則達(dá)到0.28Hz。因此FSA控制下的頻率支撐效果良好。
在實(shí)現(xiàn)頻率支撐的同時(shí),需要調(diào)整系統(tǒng)功率的再分配,以避免換流站的有功功率過(guò)大出現(xiàn)過(guò)載的情況,換流站根據(jù)自身的額定容量,自適應(yīng)地分配有功功率。為了驗(yàn)證PAA控制系統(tǒng)的有效性,在負(fù)荷事件中保證MAS控制系統(tǒng)中的FSA均能正常運(yùn)行,設(shè)置PAA正常運(yùn)行和退出運(yùn)行2種情況。2種情況下的GSVSC的負(fù)載率如圖8所示。
圖8 2種情況下GSVSC的負(fù)載率Fig.8 Load rate of GSVSC in two cases
對(duì)比發(fā)現(xiàn),當(dāng)PAA正常運(yùn)行時(shí),GSVSC1、GSVSC2的負(fù)載率均降低;而GSVSC3、GSVSC4的負(fù)載率則均有所增加。由此可見(jiàn)PAA控制有效地規(guī)避了無(wú)PAA情況下可能出現(xiàn)的換流站過(guò)載情況,并合理利用了換流站的容量。
對(duì)單獨(dú)運(yùn)行FSA與同時(shí)運(yùn)行FSA和PAA進(jìn)行比較,可以發(fā)現(xiàn)MAS加入PAA后的功率再分配對(duì)FSA頻率支撐的效果有一定的影響。
為了解決該沖突,Agent可根據(jù)頻率變化情況及時(shí)對(duì)調(diào)節(jié)系數(shù)Kt做出調(diào)整。調(diào)節(jié)Kt后的頻率支撐效果如圖9所示。由圖9可以看出Kt的調(diào)整降低了PAA的功率再分配對(duì)FSA頻率支撐效果的影響。
圖9 調(diào)節(jié)Kt后的頻率支撐效果Fig.9 Frequency support effect after adjusting Kt
圖10 配備FSA與傳統(tǒng)下垂控制策略的系統(tǒng)頻率Fig.10 System frequency of traditional droop control strategy and control strategy equipping with FSA
N-1原則是多端系統(tǒng)需達(dá)到的基本要求,當(dāng)某個(gè)換流站出現(xiàn)故障時(shí),系統(tǒng)仍能保持安全穩(wěn)定運(yùn)行。1s時(shí)設(shè)置故障事件,GSVSC4突發(fā)故障而中斷運(yùn)行使其有功功率為0。故障事件導(dǎo)致系統(tǒng)交流側(cè)的頻率發(fā)生變化,各換流站會(huì)重新調(diào)整有功功率流動(dòng)。
圖10比較了GSVSC4突發(fā)故障退出運(yùn)行時(shí),在保證PAA退出運(yùn)行的前提下,采用FSA和采用傳統(tǒng)下垂控制策略2種情況下2區(qū)4機(jī)系統(tǒng)和IEEE39節(jié)點(diǎn)系統(tǒng)的頻率支撐效果。MAS中FSA正常運(yùn)行時(shí)能有效地提供頻率支撐,而未采用FSA僅在傳統(tǒng)下垂控制策略下的系統(tǒng)頻率則變化很大。
同樣地,為了體現(xiàn)MAS控制中PAA的控制效果,在保證FSA正常運(yùn)行前提下,設(shè)定了有/無(wú)PAA控制系統(tǒng)的2種情況,通過(guò)系統(tǒng)功率響應(yīng)體現(xiàn)PAA的控制功能,結(jié)果如圖11所示。
圖11 有/無(wú)PAA時(shí)GSVSC的負(fù)載率Fig.11 Load rate of GSVSC with and without PAA
由圖11可見(jiàn),GSVSC1、GSVSC2的負(fù)載率分別增加了約0.04、0.03,而GSVSC3的負(fù)載率則減少了約0.07,避免了過(guò)載。仿真結(jié)果表明,本文所提控制策略通過(guò)實(shí)時(shí)跟蹤本地和其他換流站的負(fù)載率變化情況,通過(guò)重新調(diào)整功率流動(dòng),使剩余換流站按額定容量重新分配了功率。
若對(duì)電網(wǎng)頻率要求較高,為了防止PAA對(duì)FSA頻率支撐效果的影響,Agent可根據(jù)頻率變化情況調(diào)整Kt。調(diào)節(jié)Kt后的頻率支撐效果見(jiàn)圖12。從圖12可看出,Kt的調(diào)整緩和了功率再分配對(duì)頻率支撐的影響,保證了PAA和FSA各自的控制效果良好。
圖12 調(diào)節(jié)Kt后的頻率支撐效果Fig.12 Frequency support effect after adjusting Kt
本文提出了一種基于MAS理論的VSC-MTDC系統(tǒng)分布式協(xié)同控制策略,該策略綜合考慮了交流側(cè)電網(wǎng)頻率、換流站的負(fù)載率因素,能夠使VSC-MTDC系統(tǒng)為交流電網(wǎng)提供快速頻率支撐,同時(shí)保證換流站功率的合理分配。本文詳細(xì)研究了MAS通信網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)對(duì)控制效果的影響,并根據(jù)圖論算法設(shè)計(jì)了最優(yōu)網(wǎng)絡(luò)拓?fù)涞那笕》椒?。MAS控制系統(tǒng)采用分布式控制方式,各Agent僅需監(jiān)測(cè)本地系統(tǒng)參量,并與相鄰的Agent進(jìn)行通信,在此基礎(chǔ)上,F(xiàn)SA和PAA子模塊將根據(jù)測(cè)量信號(hào)分別進(jìn)行頻率支撐和功率分配控制。本文提出的控制策略既能保證VSC-MTDC的穩(wěn)定運(yùn)行,又能在系統(tǒng)出現(xiàn)故障時(shí)提供必要的輔助支撐,有效地提高了交直流混聯(lián)電網(wǎng)的安全穩(wěn)定性。
附錄見(jiàn)本刊網(wǎng)絡(luò)版(http:∥www.epae.cn)。
參考文獻(xiàn):
[1] 閆文寧,李可軍,王卓迪,等. 基于附加有功信號(hào)的VSC-MTDC系統(tǒng)平衡控制策略[J]. 電力自動(dòng)化設(shè)備,2016,36(2):32-39.
YAN Wenning,LI Kejun,WANG Zhuodi,et al. Srategy of balanced control based on additional active power signal for VSC-MTDC system[J]. Electric Power Automation Equipment,2016,36(2):32-39.
[2] 吳金龍,劉欣和,王先為,等. 多端柔性直流輸電系統(tǒng)直流電壓混合控制策略[J]. 電網(wǎng)技術(shù),2015,39(6):1593-1599.
WU Jinlong,LIU Xinhe,WANG Xianwei,et al. Research of DC voltage hybrid control strategy for VSC-MTDC system[J]. Power System Technology,2015,39(6):1593-1599.
[3] 彭衍建,李勇,曹一家. 基于VSC-MTDC的大規(guī)模海上風(fēng)電并網(wǎng)系統(tǒng)協(xié)調(diào)下垂控制方法[J]. 電力自動(dòng)化設(shè)備,2016,36(8):16-25.
PENG Yanjian,LI Yong,CAO Yijia. Coordinated droop control for large-scale offshore wind farm grid-connected based on VSC-MTDC system[J]. Electric Power Automation Equipment,2016,36(8):16-25.
[4] 唐庚,徐政,劉昇,等. 適用于多端柔性直流輸電系統(tǒng)的新型直流電壓控制策略[J]. 電力系統(tǒng)自動(dòng)化,2013,37(15):125-132.
TANG Geng,XU Zheng,LIU Sheng,et al. A novel DC voltage control strategy for VSC-MTDC systems[J]. Automation of Electric Power Systems,2013,37(15):125-132.
[5] HAILESELASSIE T M,MOLINAS M,UNDELAND T. Multi-terminal VSC-HVDC system for integration of offshore wind farms and green electrification of platforms in the North Sea[J]. Proceedings of the Nordic Workshop on Power & Industrial Electronics,2008(2):1-8.
[6] 閻發(fā)友,湯廣福,賀之淵,等. 基于MMC的多端柔性直流輸電系統(tǒng)改進(jìn)下垂控制策略[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2014,34(3):397-404.
YAN Fayou,TANG Guangfu,HE Zhiyuan,et al. An improved droop control strategy for MMC-based VSC-MTDC systems[J]. Proceedings of the CSEE,2014,34(3):397-404.
[7] 付媛,王毅,張祥宇,等. 多端電壓源型直流系統(tǒng)的功率協(xié)調(diào)控制技術(shù)[J]. 電力自動(dòng)化設(shè)備,2014,34(9):130-136.
FU Yuan,WANG Yi,ZHANG Xiangyu,et al.Coordinated power control of VSC-MTDC system[J]. Electric Power Automation Equipment,2014,34(9):130-136.
[8] CHAUDHURI N R,CHAUDHURI B. Adaptive droop control for effective power sharing in Multi-Terminal DC(MTDC) grids[J]. IEEE Transactions on Power Systems,2013,28(1):21-29.
[9] 吳俊宏,艾芊,章健,等. 基于多代理技術(shù)的VSC-MTDC控制系統(tǒng)[J]. 電力系統(tǒng)自動(dòng)化,2009,33(19):85-89.
WU Junhong,AI Qian,ZHANG Jian,et al. A VSC-MTDC control system based on multi-agent technology[J]. Automation of Electric Power Systems,2009,33(19):85-89.
[10] LIANG J,JING T,GOMIS-BELLMUNT O,et al. Operation and control of multiterminal HVDC transmission for offshore wind farms[J]. IEEE Transactions on Power Delivery,2011,26(4):2596-2604.
[11] WANG W,LI Y,CAO Y,et al. Adaptive droop control of MTDC system for frequency support and power sharing[J]. IEEE Transactions on Power Systems,2017,33(2):1264-1274.
[12] 王煒宇,李勇,曹一家,等. 基于虛擬調(diào)速器的MTDC虛擬同步機(jī)控制策略[J/OL]. 中國(guó)電機(jī)工程學(xué)報(bào). [2017-07-27]. http:∥kns.cnki.net/kcms/detail/11.2017.TM.20170727.1652.009.html.
WANG Weiyu,LI Yong,CAO Yijia,et al. The virtual synchronous generator technology based on virtual governor for MTDC system[J/OL]. Proceedings of the CSEE. [2017-07-27]. http:∥kns.cnki.net/kcms/detail/11.2017.TM.20170727.1652.009.html.
[13] BABAZADEH D,NAZARI M,F(xiàn)IDAI M H,et al. Implementation of agent-based power flow coordination in AC/DC grids using co-simulation platform[C]∥IEEE International Conference on Smart Grid Communications. Venice,Italy:IEEE,2015:188-193.
[14] OLFATI-SABER R,FAX J A,MURRAY R M. Consensus and coope-ration in networked multi-agent systems[J]. Proceedings of the IEEE,2007,95(1):215-233.
[15] MESBAHI M,EGERSTEDT M. Graph theoretic methods in multi-agent networks[M]. Princeton,New Jersey,America:Princeton University Press,2010:44-50.
[16] NORDSTR?M L,BABAZADEH D. Cyber physical approach to HVDC grid control[M]. Berlin,Germany:Springer Berlin Heidelberg,2015:89-91.
[17] ZHU J,BOOTH C D,ADAM G P,et al. Inertia emulation control strategy for VSC-HVDC transmission systems[J]. IEEE Transactions on Power Systems,2013,28(2):1277-1287.