楊艷麗
摘 ?要: 針對(duì)傳統(tǒng)高精度分類算法在面對(duì)不定因子時(shí),無(wú)法確定計(jì)算數(shù)據(jù)信噪度,造成計(jì)算精度不佳的問題,提出基于屬性約簡(jiǎn)的粗糙集數(shù)據(jù)的高精度分類算法。通過對(duì)影響粗糙集數(shù)據(jù)分類精度的各影響因素進(jìn)行詳細(xì)分析,對(duì)粗糙集數(shù)據(jù)屬性進(jìn)行約簡(jiǎn),抵消對(duì)應(yīng)不定因子以及信噪數(shù)據(jù),提高粗糙集數(shù)據(jù)分類精度。實(shí)驗(yàn)結(jié)果表明,采用改進(jìn)分類算法相比傳統(tǒng)分類方法,其分類精度及抗噪性均有提高,且其記錄結(jié)果數(shù)據(jù)致盲率較低,具有一定優(yōu)勢(shì)。
關(guān)鍵詞: 粗糙集數(shù)據(jù); 高精度分類算法; 屬性約簡(jiǎn); 屬性集; 數(shù)據(jù)集; 抗噪性
中圖分類號(hào): TN911?34; TP393 ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)識(shí)碼: A ? ? ? ? ? ? ? ? ? ?文章編號(hào): 1004?373X(2018)10?0154?03
Abstract: In allusion to the poor calculation accuracy problem caused by inability to determine the signal?to?noise degree of calculated data when uncertain factors are met in the traditional high?precision classification algorithm, a high?precision classification algorithm based on attribute reduction is proposed for rough set data. The attributes of rough set data are reduced by detailedly analyzing various factors affecting the classification accuracy of rough set data to counteract the corresponding uncertain factors and signal?to?noise data, and improve the classification accuracy of rough set data. The experimental results show that in comparison with the traditional classification method, the improved classification algorithm has certain advantages in that it has higher classification accuracy and noise immunity, and the blind rate of the recorded result data is low.
Keywords: rough set data; high accuracy classification algorithm; attribute reduction; attribute set; data set; noise immunity
3.1 ?試驗(yàn)數(shù)據(jù)設(shè)置
試驗(yàn)從某數(shù)據(jù)網(wǎng)站上下載了數(shù)個(gè)執(zhí)行粗糙數(shù)據(jù),將執(zhí)行粗糙數(shù)據(jù)進(jìn)行粗糙集數(shù)據(jù)的高精度分類計(jì)算。為保證試驗(yàn)的準(zhǔn)確性,需要對(duì)試驗(yàn)數(shù)據(jù)參數(shù)進(jìn)行設(shè)定,試驗(yàn)數(shù)據(jù)設(shè)定結(jié)果如表2所示。
3.2 ?試驗(yàn)結(jié)果分析
分別從計(jì)算抗性上以及計(jì)算精度上進(jìn)行對(duì)比,使用傳統(tǒng)高精度分類算法與改進(jìn)高精度分類算法進(jìn)行比較,在不同的試驗(yàn)參數(shù)下,分別記錄數(shù)據(jù)致盲過程的變化量以及在三種試驗(yàn)計(jì)算環(huán)境下的試驗(yàn)結(jié)果,見表3。
通過上述表3中數(shù)據(jù)可以看出,本設(shè)計(jì)的粗糙集數(shù)據(jù)的高精度分類計(jì)算方法在計(jì)算精準(zhǔn)度上明顯高于傳統(tǒng)計(jì)算方法。對(duì)比不同的計(jì)算過程跟蹤結(jié)果,本文計(jì)算方法更具有計(jì)算抗性。圖1為兩種方法計(jì)算致盲點(diǎn)數(shù)據(jù)變化。計(jì)算致盲點(diǎn)數(shù)據(jù)是描述計(jì)算流程的重要指標(biāo),計(jì)算致盲點(diǎn)數(shù)據(jù)與計(jì)算準(zhǔn)確率成一定的倍數(shù)關(guān)系。計(jì)算致盲點(diǎn)數(shù)據(jù)分布越有規(guī)律說明計(jì)算準(zhǔn)確率越高。通過圖可以看出粗糙集數(shù)據(jù)的高精度分類計(jì)算方法的計(jì)算致盲點(diǎn)數(shù)據(jù)分布成規(guī)律遞增的趨勢(shì),但傳統(tǒng)高精度分類計(jì)算方法的計(jì)算致盲點(diǎn)數(shù)據(jù)分布雜亂無(wú)序;因此本設(shè)計(jì)的粗糙集數(shù)據(jù)的高精度分類計(jì)算方法比傳統(tǒng)高精度分類計(jì)算方法更具準(zhǔn)確性。
本設(shè)計(jì)的粗糙集數(shù)據(jù)的高精度分類計(jì)算方法導(dǎo)入粗糙集數(shù)據(jù)實(shí)現(xiàn)屬性約簡(jiǎn)計(jì)算,有效地排除不定因子異己信噪數(shù)據(jù)的干擾,通過屬性約簡(jiǎn)方式實(shí)現(xiàn)粗糙數(shù)據(jù)的高精度分類計(jì)算。希望通過本文的研究能夠提升高精度分類計(jì)算方法的計(jì)算精準(zhǔn)度。
[1] 王旭,謝沐男,鄧?yán)?基于粗糙集的物流資源分類方法研究[J].計(jì)算機(jī)工程與應(yīng)用,2016,52(14):67?71.
WANG Xu, XIE Munan, DENG Lei. Research on classification method of logistics resources based on rough set [J]. Computer engineering and applications, 2016, 52(14): 67?71.
[2] 劉繼宇,王強(qiáng),羅朝暉,等.基于粗糙集的加權(quán)KNN數(shù)據(jù)分類算法[J].計(jì)算機(jī)科學(xué),2015,42(10):281?286.
LIU Jiyu, WANG Qiang, LUO Zhaohui, et al. Weighted KNN data classification algorithm based on rough set [J]. Computer science, 2015, 42(10): 281?286.
[3] 徐久成,李濤,孫林,等.基于信噪比與鄰域粗糙集的特征基因選擇方法[J].數(shù)據(jù)采集與處理,2015,30(5):973?981.
XU Jiucheng, LI Tao, SUN Lin, et al. Feature gene selection based on SNR and neighborhood rough set [J]. Journal of data acquisition & processing, 2015, 30(5): 973?981.
[4] 熊方,張賢勇.變精度粗糙集的區(qū)域?qū)傩约s簡(jiǎn)及其結(jié)構(gòu)啟發(fā)算法[J].計(jì)算機(jī)應(yīng)用,2016,36(11):2954?2957.
XIONG Fang, ZHANG Xianyong. Regional attribute reduction and their structural heuristic algorithms for variable precision rough sets [J]. Journal of computer applications, 2016, 36(11): 2954?2957.
[5] MA X, WANG G, YU H. Heuristic algorithms for finding distribution reducts in probabilistic rough set model [J]. International journal of engineering science & technology, 2015, 2(3): 1?14.
[6] HAN Y, LI M C, GUO X C, et al. The text classification attribute reduction algorithm based on the rough set theory [J]. Journal of Northeast Dianli University, 2016, 1(5): 145?150.
[7] JIAO N. Research on knowledge reduction algorithm based on variable precision tolerance rough set theory [J]. Computer science, 2015, 5(8): 120?135.
[8] LI X, ZENG W, SHI Y, et al. Resting state fMRI data classification method based on K?means algorithm optimized by rough set [J]. 2017, 8(6): 84?92.
[9] KUMAR S U, INBARANI H H. A novel neighborhood rough set based classification approach for medical diagnosis [J]. Procedia computer science, 2015, 47: 351?359.
[10] 龐幫艷,張艷敏.基于粗糙集的公共網(wǎng)絡(luò)入侵檢測(cè)方法研究[J].現(xiàn)代電子技術(shù),2017,40(4):28?31.
PANG Bangyan, ZHANG Yanmin. Research of public network intrusion detection method based on rough set theory [J]. Modern electronics technique, 2017, 40(4):28?31.