姜長(zhǎng)泓 徐宏
摘 ?要: 針對(duì)礦山避難硐室安全供電系統(tǒng)中鉛酸蓄電池內(nèi)化成過(guò)程中檢測(cè)是否已經(jīng)達(dá)到滿(mǎn)電荷量,且在組裝鉛酸蓄電池時(shí)需要考慮電池均衡問(wèn)題都需要進(jìn)行準(zhǔn)確估算SOC的問(wèn)題,提出基于BP神經(jīng)網(wǎng)絡(luò)的PID控制通過(guò)修正反饋誤差來(lái)實(shí)現(xiàn)鉛酸蓄電池SOC在線估計(jì)。采用實(shí)驗(yàn)的方法獲取數(shù)據(jù),選取與電池SOC相關(guān)的因子作為BP神經(jīng)網(wǎng)絡(luò)的輸入?yún)?shù),最終準(zhǔn)確在線預(yù)測(cè)蓄電池SOC值。仿真結(jié)果表明,基于BP神經(jīng)網(wǎng)絡(luò)的PID控制的鉛酸蓄電池SOC估計(jì)的精度大大提高,同時(shí)為電池管理系統(tǒng)提供一個(gè)新的估計(jì)方法。
關(guān)鍵詞: 安全供電系統(tǒng); 鉛酸蓄電池; 礦用; 內(nèi)化成; PID?BP神經(jīng)網(wǎng)絡(luò); SOC在線估計(jì)
中圖分類(lèi)號(hào): TN86?34; TP273 ? ? ? ? ? ? ? ? ? 文獻(xiàn)標(biāo)識(shí)碼: A ? ? ? ? ? ? ? ? ? ?文章編號(hào): 1004?373X(2018)10?0113?04
Abstract: Since accurate SOC estimation is needed when detecting whether the lead?acid battery has reached the full charge during its internal formation and when considering the battery balance problem during the assembling of the lead?acid battery in the safe power supply system of the mine refuge chamber, SOC online estimation of lead?acid battery is achieved based on PID control of BPNN by means of feedback error modification. The experimental method is adopted to obtain data, and the factors related to battery SOC are selected as the input parameters of BP neural network to perform accurate online prediction of the battery′s SOC values. The simulation results show that the lead?acid battery SOC estimation based on PID control of BPNN has improved a lot in its precision, and meanwhile provides a new estimation method for the battery management system.
Keywords: safe power supply system; lead?acid battery; mine; internal formation; PID?BPNN; SOC online estimation
礦山避難硐室安全供電系統(tǒng)是礦井安全系統(tǒng)的重要研究?jī)?nèi)容之一。特別是在研究鉛酸蓄電池內(nèi)化成效率提高問(wèn)題時(shí),判斷是否達(dá)到滿(mǎn)電荷是一個(gè)重要的研究課題,因此,充電過(guò)程中準(zhǔn)確的SOC估算至關(guān)重要。與此同時(shí),充電完畢之后,組裝蓄電池組時(shí)需要挑選SOC曲線近似吻合的單體蓄電池,這樣才可保證電池的均衡一致性,防止電池內(nèi)部能量損耗。然而,鉛酸蓄電池作為一種古老的能源電池,其能量密度等特性不如其他動(dòng)力電池,導(dǎo)致SOC的估算相對(duì)困難[1?2]。開(kāi)路電壓法、安時(shí)計(jì)量法以及內(nèi)阻法等傳統(tǒng)的SOC估算方法無(wú)法實(shí)現(xiàn)準(zhǔn)確估算[3]。隨著科學(xué)技術(shù)的不斷發(fā)展,國(guó)內(nèi)外學(xué)者將神經(jīng)網(wǎng)絡(luò)、模糊控制等控制方法應(yīng)用到蓄電池的SOC估算中,并取得了一定的成果[4]。PID與BP神經(jīng)網(wǎng)絡(luò)的結(jié)合為電池SOC估計(jì)的研究提供了一個(gè)新的估計(jì)方法。
安時(shí)積分法從電池的定義出發(fā),在線估計(jì)SOC存在無(wú)反饋修正環(huán)節(jié),從而不可避免地產(chǎn)生電流積分的累積誤差,導(dǎo)致無(wú)法準(zhǔn)確在線估計(jì)SOC值。PID?BP神經(jīng)網(wǎng)絡(luò)法(PID?BPNN)包括信號(hào)的正向傳播和誤差的反向傳播,因此,它能夠有效地模擬電池系統(tǒng)的非線性特性關(guān)系,優(yōu)化復(fù)雜的電池SOC模型,有效修正電池SOC的反饋誤差,進(jìn)一步提高了電池的SOC估算精度。將D560KT鉛酸蓄電池端電壓、環(huán)境溫度和電池放電流3個(gè)變量作為模型的輸入量,電池SOC作為模型的輸出量。仿真結(jié)果表明,基于PID?BPNN的控制方法可以準(zhǔn)確有效地估算蓄電池的SOC值。
3.1 ?獲取電池?cái)?shù)據(jù)
本文對(duì)礦山硐室安全供電系統(tǒng)用D560KT鉛酸蓄電池組進(jìn)行充放電研究:首先,環(huán)境溫度設(shè)置為25 ℃,倍率范圍設(shè)置為0.3~1 C,大電流放電儀每隔3 s記錄一次數(shù)據(jù);然后,通過(guò)電流積分法計(jì)算出訓(xùn)練樣本和測(cè)試樣本中的SOC值?,F(xiàn)選取部分實(shí)驗(yàn)數(shù)據(jù),實(shí)驗(yàn)條件為放電電流為10 A,放電容量為30%,表1為進(jìn)行了歸一化處理的數(shù)據(jù)。歸一化處理的公式為:
將表1獲取的電池?cái)?shù)據(jù)作為PID?BPNN模型的訓(xùn)練樣本,然后進(jìn)行蓄電池的內(nèi)化成實(shí)驗(yàn),則預(yù)測(cè)樣本數(shù)據(jù)如表2所示。
3.2 ?PID?BPNN訓(xùn)練與預(yù)測(cè)
PID?BPNN模型的最大訓(xùn)練步數(shù)為200,目標(biāo)值設(shè)定為0.001,其他參數(shù)設(shè)置為默認(rèn)值,采用梯度下降訓(xùn)練算法。將表1數(shù)據(jù)輸入網(wǎng)絡(luò)中,進(jìn)行訓(xùn)練。經(jīng)過(guò)62個(gè)步長(zhǎng)的訓(xùn)練,網(wǎng)絡(luò)達(dá)到了精度要求,誤差為0.001 3,其誤差曲線圖如圖3所示。
為了驗(yàn)證PID?BPNN模型的有效性,將訓(xùn)練集電池?cái)?shù)據(jù)導(dǎo)入模型進(jìn)行仿真[8],仿真SOC與期望SOC的對(duì)比曲線如圖4所示。
鉛酸蓄電池經(jīng)過(guò)PID?BPNN模型訓(xùn)練可有效進(jìn)行電池SOC值的估算,最終SOC預(yù)測(cè)的誤差能夠保持在±3%以?xún)?nèi),達(dá)到預(yù)期效果。
本文提出基于BP神經(jīng)網(wǎng)絡(luò)的PID控制,應(yīng)用到礦山避難硐室安全供電系統(tǒng)的鉛酸蓄電池優(yōu)化成過(guò)程中電荷量檢測(cè)實(shí)現(xiàn)蓄電池SOC在線估計(jì)。由仿真結(jié)果得出,其估算精度大大提高,此優(yōu)化方法為能量管理系統(tǒng)中SOC的計(jì)算提供了一種新的估算方法。同時(shí),該方法存在陷入局部最優(yōu)問(wèn)題,估算精度有待進(jìn)一步提高,因此,進(jìn)一步研究?jī)?yōu)化問(wèn)題是下一步工作的重點(diǎn)。
[1] 胡信國(guó).動(dòng)力電池技術(shù)與應(yīng)用[M].2版.北京:機(jī)械工業(yè)出版社,2013:32?36.
HU Xinguo. Power battery technology and its application [M]. 2nd ed. Beijing: China Machine Press, 2013: 32?36.
[2] 劉瑞浩,孫玉坤,陳坤華.電動(dòng)汽車(chē)SOC利用BP神經(jīng)網(wǎng)絡(luò)模型預(yù)測(cè)方法研究[J].電測(cè)與儀表,2011,48(3):34?36.
LIU Ruihao, SUN Yukun, CHEN Kunhua. BP neural network model estimation on state of charge for electric vehicle [J]. Electrical measurement & instrumentation, 2011, 48(3): 34?36.
[3] 王標(biāo).基于電池模型的汽車(chē)鉛酸電池SOC在線估計(jì)方法研究[D].合肥:合肥工業(yè)大學(xué),2015.
WANG Biao. Research on SOC online estimation of vehicular lead?acid batteries based on battery model [D]. Hefei: Hefei University of Technology, 2015.
[4] 劉曉剛.鉛酸蓄電池容量檢測(cè)方法研究[D].武漢:華中科技大學(xué),2007.
LIU Xiaogang. Research on capacity detection of lead?acid batteries [D]. Wuhan: Huazhong University of Science and Technology, 2007.
[5] 吳池.AH計(jì)量法在Matlab環(huán)境下對(duì)鋰離子電池SOC的估算[D].天津:天津大學(xué),2007.
WU Chi. SOC estimation of Lithium?ion battery using A?H measurement method in Matlab environment [D]. Tianjin: Tianjin University, 2007.
[6] 舒懷林.PID神經(jīng)網(wǎng)絡(luò)元對(duì)強(qiáng)耦合帶時(shí)延多變量系統(tǒng)的解耦控制[J].控制理論與應(yīng)用,1998,15(6):920?924.
SHU Huailin. PID neural network for decoupling control of strong coupling multivariable time?delay system [J]. Control theory and applications, 1998, 15(6): 920?924.
[7] 劉金琨.先進(jìn)PID控制Matlab仿真[M].2版.北京:電子工業(yè)出版社,2004:162?170.
LIU Jinkun. Matlab simulation of advanced PID control [M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2004: 162?170.
[8] 蔣凱.車(chē)用鉛酸電池SOC估算研究[D].長(zhǎng)沙:中南大學(xué),2013.
JIANG Kai. SOC estimation of VRLA for electric vehicle research [D]. Changsha: Central South University, 2013.
[9] 葛哲學(xué),孫志強(qiáng).神經(jīng)網(wǎng)絡(luò)理論與Matlab R2007實(shí)現(xiàn)[M].北京:電子工業(yè)出版社,2007.
GE Zhexue, SUN Zhiqiang. Neural network theory and Matlab R2007 application [M]. Beijing: Publishing House of Electronics Industry, 2007.
[10] 高飛.Matlab智能算法超級(jí)學(xué)習(xí)手冊(cè)[M].北京:人民郵電出版社,2014:183?200.
GAO Fei. Super learning manual of Matlab intelligent algorithm [M]. Beijing: Posts & Telecom Press, 2014:183?200.