劉亮,黃宗煉,肖亞,程立金,劉紹軍
?
復合鈣鈦礦型Ba[(Co1-xMg)1/3Nb2/3]O3基微波陶瓷的結(jié)構(gòu)與性能
劉亮1,黃宗煉1,肖亞2,程立金3,劉紹軍1
(1. 中南大學 粉末冶金研究院,長沙 410083;2. 湖南省文物考古研究所,長沙 410008;3. 華中科技大學 材料成形與模具技術(shù)國家重點實驗室,武漢 430074)
采用傳統(tǒng)固相法制備復合鈣鈦礦型Ba[(Co1?xMg)1/3Nb2/3]O3(0.0≤≤0.4)微波陶瓷。通過介電性能測試,結(jié)合X射線衍射儀、拉曼光譜、透射電鏡等表征手段,系統(tǒng)研究Mg摻雜對Ba(Co1/3Nb2/3)O3微波陶瓷的B位1:2有序度與性能的影響。結(jié)果表明,Mg摻雜能顯著提高Ba(Co1/3Nb2/3)O3陶瓷的B位1:2有序度,進而提高材料的品質(zhì)因子。1 420 ℃下燒結(jié)的摻雜量=0.2的陶瓷有序度最高,在1 300 ℃退火24 h后,其B位1:2有序度進一步提高,并且第二相得以消除,獲得與傳統(tǒng)Ta基復合鈣鈦礦微波陶瓷相當?shù)奈⒉ㄐ阅埽航殡姵?shù)=30.94,品質(zhì)因子?=63 161 GHz,諧振頻率溫度系數(shù)= 4.1 ppm/℃。
微波陶瓷;鈣鈦礦;摻雜;有序–無序轉(zhuǎn)變;微波性能
移動通訊技術(shù)的迅猛發(fā)展一直是微波陶瓷技術(shù)發(fā)展的驅(qū)動力[1?4]。Ba(B′1/3B″2/3)O3(B′為Co, Zn, Mg, Ni, B″為Ta, Nb)基復合鈣鈦礦結(jié)構(gòu)的微波陶瓷因具有較高的介電常數(shù)ε,高的品質(zhì)因子?(quality?frequency)以及近零的諧振頻率溫度系數(shù)τ而得到廣泛研究[5?6]。對于Ba(B′1/3B″2/3)O3陶瓷,依據(jù)B位陽離子排列情況可分為有序和無序2種結(jié)構(gòu)。其中,無序結(jié)構(gòu)是指B位陽離子沿<111>方向呈無序排列,屬于立方晶系,其空間群為Pm3m。當B位陽離子沿<111>方向按1:2{…B′-B″-B″…}重復排列時,則屬于B位1:2有序六方晶系,其空間群為P3m1[7?9]。已有研究表明,Ba(B′1/3B″2/3)O3陶瓷的優(yōu)異微波性能與其B位原子(B′2+和B″5+)的1:2有序度密切相關(guān)[10?11]。GALASSO[12]指出1:2有序度與B位陽離子的尺寸和價態(tài)存在關(guān)聯(lián)性。除此之外,燒結(jié)溫度、非化學計量比、元素摻雜以及退火的溫度和時間等均能顯著影響B(tài)位陽離子的1:2有序度[13]。目前以Ba(Zn1/3Ta2/3)O3(簡稱為BZT)[14? 15]、Ba(Mg1/3Ta2/3)O3(簡稱BMT)[13?14]等為代表的Ta基復合鈣鈦礦微波陶瓷已實現(xiàn)了商業(yè)化。然而,由于Ta原料價格昂貴,使得結(jié)構(gòu)和化學性質(zhì)類似的Nb基鈣鈦礦陶瓷成為Ba(B′1/3B″2/3)O3類微波陶瓷的研究焦點[16?18]。其中Ba(Co1/3Nb2/3)O3(BCN)陶瓷已具備了與Ta基復合鈣鈦礦陶瓷相當?shù)奈⒉ㄐ阅埽?i>ε=33,?= 78 000 GHz,τ=?11 ppm/℃[19]。同時,相對于BZT陶瓷[20]等的高燒結(jié)溫度(~1 510 ℃),Ba(Co1/3Nb2/3) O3(BCN)陶瓷的燒結(jié)溫度[19]顯著降低(~1 400 ℃)。然而BCN陶瓷的微波性能(?值)并不穩(wěn)定。KAZUAKI等[21]認為可能與B位陽離子有序度和Co的價態(tài)穩(wěn)定性欠缺有關(guān)。而MOLODETSKY等[22]近期的研究表明,未摻雜BCN陶瓷的有序與無序的轉(zhuǎn)變溫度大約在1 400 ℃左右。當B位陽離子獲得高度1:2有序化時,其品質(zhì)因子(?=64 400 GHz)顯著高于B位陽離子完全無序時的品質(zhì)因子(?=10 800 GHz)。與此同時, B位的Zr和Y摻雜在提高B位1:2有序度的同時,發(fā)生B位1:1有序(沿<111>方向按1:1{…B′-B″-B′- B″…}排列)并導致其品質(zhì)因子降低。CHEOL等[19]的報道顯示,當BCN陶瓷的燒結(jié)溫度高于1 400 ℃時,Co元素揮發(fā)并形成富Ba或Nb的液相,導致BCN的1:2有序度降低。AZOUGH等[23]報道,Co的化學計量比減小會導致第二相(Ba8Co1Nb6O24和Ba5Nb4O15)和疇界的產(chǎn)生。有人通過在BCN陶瓷的B位摻雜Zn[24]和Ni[25]等來提高BMT陶瓷的有序度[21, 26]。以上研究表明,正確理解B位化學計量比、過程工藝參數(shù)與B位1:2有序度的關(guān)聯(lián)性是獲得微波性能穩(wěn)定的Ba(Co1/3Nb2/3)O3基微波陶瓷的關(guān)鍵。本文作者以BCN陶瓷為基體材料,摻雜Mg取代部分Co元素,制備Ba[(Co1?xMg)1/3Nb2/3]O3(=0, 0.1, 0.2, 0.3, 0.4)陶瓷,運用XRD,拉曼光譜和TEM等表征手段,系統(tǒng)地研究Mg摻雜對BCN基微波陶瓷致密度、B位1:2有序度與微波性能的影響,為獲得微波性能穩(wěn)定的BCN基微波陶瓷提供實驗依據(jù)。
原料采用高純BaCO3、MgO、Co3O4和Nb2O5粉末(Aladdin公司,純度≥99.9%)。采用傳統(tǒng)固相法制備Ba[(Co1?xMg)1/3Nb2/3]O3(=0,0.1,0.2,0.3,0.4)陶瓷。先合成Co1?xMgNb2O6,然后再混入BaCO3制備目標樣品。兩步合成工藝的過程相同,均為先按化學計量比稱量原料,放入尼龍罐中,以無水乙醇作為球磨介質(zhì),加入二氧化鋯球,濕混16 h,然后在75 ℃下干燥;干燥后的樣品經(jīng)高能球磨后,在1 100 ℃預燒4 h;然后加入質(zhì)量分數(shù)為5%石蠟和2%硬脂酸混合造粒,壓制成直徑10 mm,高6 mm的坯體;壓坯在1 380~1 500 ℃燒結(jié)6 h,接著以10 ℃/min冷卻至500 ℃后隨爐冷至室溫,最后在空氣氣氛中1 300 ℃退火24 h。
采用阿基米德排水法測定Ba[(Co1?xMg)1/3Nb2/3] O3陶瓷的密度。利用日本理學D/Max2500型X射線衍射儀(XRD)對該陶瓷進行物相與晶體結(jié)構(gòu)分析。Cu-Kα射線,測量范圍為10~80°,掃描速度為1 (°)/min。采用美國FEI公司TECNAI G2 F20場發(fā)射電子顯微鏡進行形貌觀察與選區(qū)電子衍射分析(SAED)。用法國Horiba Jobin 公司的S.A.S拉曼光譜儀對陶瓷樣品進行結(jié)構(gòu)分析,掃描波數(shù)范圍為0~1 000 cm?1。
陶瓷樣品經(jīng)雙面拋光后,用美國 Angilent 公司的Hakki矢量網(wǎng)絡分析儀測量其介電性能,采用TE011諧振模式測量介電常數(shù)和品質(zhì)因子,諧振頻率溫度系數(shù)由25~85 ℃范圍內(nèi)測量所得[27?28]。
圖1所示為不同溫度下燒結(jié)的Ba[(Co1?xMg)1/3Nb2/3]O3(=0,0.1,0.2,0.3和0.4)陶瓷(簡稱BCMN)的相對密度。由圖可見,隨Mg摻雜量增加,陶瓷的相對密度先增加后下降。其中=0.2、燒結(jié)溫度為1 420 ℃的陶瓷樣品相對密度達到峰值,約為97%。
圖2所示為1 420 ℃溫度下燒結(jié)的BCMN陶瓷XRD譜。從圖2左上角插圖可知,只有=0.2的樣品出現(xiàn)了極微弱的第二相(Ba3Co0.33Nb4.67O15)峰,其余摻雜量的樣品均為單相鈣鈦礦結(jié)構(gòu),這表明Mg元素是通過替換Co元素而固溶到基體晶格中。
圖1 不同溫度下燒結(jié)的Ba[(Co1?xMgx)1/3Nb2/3]O3陶瓷的相對密度
圖2 1 420 ℃燒結(jié)的Ba[(Co1?xMgx)1/3Nb2/3]O3陶瓷XRD譜
(a)=0; (b)=0.1; (c)=0.2; (d)=0.3; (e)= 0.4; (f)=0.2, annealing at 1 300 ℃for 24 h
需要提及的是,圖2的右上角插圖顯示在2≈ 17.7°出現(xiàn)微弱的B位1:2有序峰。復合鈣鈦礦微波陶瓷的B位1:2有序度可通過有序度()定量表征。對Mg摻雜BCN陶瓷,可表示為根號下實驗測得的(100)有序峰的強度(100)與(110,012)基體衍射峰強度(110, 012)的比值,再與理論計算的比值之比。計算公式如 下[30?31]:
對于同一基體,理論計算的有序峰與基體衍射峰比值一定(0.006 6)[29],因此只需要計算實驗測得的(100)有序峰的強度與(110,012)基體衍射峰強度的比值I(100)/I(110,012)即可探究有序度變化。圖3所示為1 380 ℃和1 420 ℃燒結(jié)的BCMN陶瓷的(100)有序峰相對強度隨Mg摻雜量的變化。由圖可見,摻雜后的BCN的有序度明顯高于純BCN陶瓷的有序度,隨摻雜量增加,I(100)/I(110, 012)的值先急劇增大后緩慢減小。當x=0.2、燒結(jié)溫度為1 420℃時,陶瓷的有序峰相對強度最大,約為0.004 0,經(jīng)退火后有序度進一步增加至約0.006 0。
當BCN陶瓷從無序結(jié)構(gòu)向有序結(jié)構(gòu)轉(zhuǎn)變時,所屬的立方晶系轉(zhuǎn)變?yōu)榱骄?,同時導致/值(/理論值為1.224 7)和晶胞體積的變化。HUI[32]指出,Ba(Zn1/3Nb2/3)O3陶瓷的/值隨有序度增加而增大。圖4所示為1 420 ℃燒結(jié)的BCMN陶瓷/值與晶胞體積隨Mg摻雜量的變化。隨摻雜量增加,/值先升高后緩慢減小,在=0.2時/達到峰值,也就是說該摻雜樣品的有序度最大,這與圖3所示有序度的變化規(guī)律一致。而晶胞體積的變化與/值的變化正好相反,即隨摻雜量增加,晶胞體積先減小后增大,當=0.2時晶胞體積最小。
作為揭示細微晶格振動變化的常用表征手段,拉曼光譜對結(jié)構(gòu)變化也極為敏感。KIM等[33]的系統(tǒng)研究表明,拉曼光譜分析是一種檢測Ba(Ni1/3Nb2/3)O3和Ba(Zn1/3Nb2/3)O3等復合鈣鈦礦微波陶瓷中B位1:2有序結(jié)構(gòu)的有效方法,并且能作為定性判斷其存在與否的直接證據(jù)。通常Ba(B′1/2B″2/3)O3類B位1:2有序的復合鈣鈦礦微波陶瓷中4個主要拉曼峰所對應的聲子模如下:1) ~105 cm?1為A1g(Ba)和Eg(Ba)聲子模;2) 較弱的A1g(O)和Eg(O)聲子模位于~375 cm?1;3) Eg(O)聲子模位于~450 cm?1;4) ~800 cm?1為氧八面體伸縮振動模。除了這些較強的振動模之外,3個與1:2有序有直接關(guān)系且較弱的振動模位于150~300 cm?1之 間[34?36]。圖5所示為1 420 ℃燒結(jié)的BCMN陶瓷的拉曼光譜。所有樣品中均存在4個主要的拉曼峰。Mg摻雜的BCN在150~300 cm?1之間觀察到微弱的拉曼峰,而未摻雜的BCN陶瓷難以觀察到位于此區(qū)間的振動模。這表明Mg摻雜能使BCN的B位1:2有序度增加。
圖4 1 420 ℃燒結(jié)的BCMN陶瓷的c/a值與晶胞體積隨Mg摻雜量的變化
圖5 1 420 ℃下燒結(jié)的Ba[(Co1?xMgx)1/3Nb2/3]O3陶瓷拉曼光譜
(a)=0.0; (b)=0.1; (c)=0.2; (d)=0.3; (e)=0.4; (f)=0.2, annealing at 1 300 ℃for 24 h
圖6所示為Ba[(Co0.8Mg0.2)1/3Nb2/3]O3陶瓷的TEM形貌和SAED圖。從圖6(a)可見,該陶瓷的晶粒尺寸約為2 μm,形狀為類長方形。圖6(b)和(c)均為<110>晶帶軸下的SAED圖。由圖6(b)可見,在基礎(chǔ)衍射斑點的(±1/3,±1/3,±1/3)位置出現(xiàn)了清晰的1:2超結(jié)構(gòu)衍射斑點,如白色箭頭所示,但在圖6(c)中未發(fā)現(xiàn)。這表明摻雜樣品中確實存在1:2有序結(jié)構(gòu),但沒有實現(xiàn)完全有序化。因此Ba[(Co0.8Mg0.2)1/3Nb2/3]O3陶瓷為有序無序共存的狀態(tài)。
圖6 Ba[(Co0.8Mg0.2)1/3Nb2/3]O3陶瓷的TEM形貌和SAED圖
圖7所示為Ba[(Co1?xMg)1/3Nb2/3]O3的微波性能。隨Mg摻雜量增加, BCMN陶瓷的介電常數(shù)ε持續(xù)較緩慢地降低,從32降到約30。這一方面是由于燒結(jié)密度降低;另一方面,由XRD精修結(jié)果可知,Mg摻雜導致BCN陶瓷的晶胞體積減小,在外電場作用下電子不易發(fā)生位移極化,而介電常數(shù)與極化率成正比,因此介電常數(shù)減小。
品質(zhì)因子(?值)是微波陶瓷的介電性能中最受關(guān)注的一個參數(shù)。由圖7可見,?隨摻雜量增加而呈現(xiàn)有規(guī)律的變化:?先增加,在=0.3時達到峰值,然后開始減小。BCMN的品質(zhì)因子高于BCN陶瓷的品質(zhì)因子。這是由于Mg摻雜促進了BCN陶瓷的1:2有序化。然而盡管XRD結(jié)果顯示=0.2時BCN陶瓷的有序度最大,但品質(zhì)因子并不是最高的,這是低品質(zhì)因子第二相的存在所致。由于退火可導致第二相的消除以及有序度提高,=0.2的BCMN在1 300 ℃退火24 h后,品質(zhì)因子從24 795 GHz顯著提高至63 161 GHz。
圖7 Ba[(Co1?xMgx)1/3Nb2/3]O3陶瓷介電性能隨Mg摻雜量的變化
Fig.7 Relationship between dielectric properties and Mg doping content of Ba[(Co1?xMg)1/3Nb2/3]O3ceramics
諧振頻率溫度系數(shù)是表示微波陶瓷在不同溫度下工作時的漂移程度,為了保證工作穩(wěn)定性,要求諧振頻率溫度系數(shù)τ接近于零。研究者一般根據(jù)材料復合原則調(diào)節(jié)τ,其計算公式如下:
式中:1,2分別為復合材料的體積分數(shù);τ1,τ2分別代表復合材料的諧振頻率溫度系數(shù)。本實驗所研究的Mg摻雜BCN陶瓷,只有部分B位的Co被Mg替代,其余元素均未發(fā)生變化,因此可以認為是BCN陶瓷與BMN陶瓷復合而成。BCN陶瓷的τ是負數(shù),而BMN陶瓷的τ是正數(shù)[37]。由圖7可見,隨Mg摻雜量增加,τ由原來的?3.07 ppm/℃升高到+4.58 ppm/℃。
1) 在Ba(Co1/3Nb2/3)O3陶瓷中摻雜少量Mg,可促進Ba(Co1/3Nb2/3)O3陶瓷致密化,同時還能顯著提高陶瓷的B位1:2有序度,進而提高其品質(zhì)因子(?)。
2)退火熱處理能夠有效地消除Ba[(Co0.8Mg0.2)1/3Nb2/3]O3陶瓷中的第二相,并進一步提高其B位1:2有序度。
3) 在1 420 ℃燒結(jié)6h條件下制備的Ba[(Co0.8-Mg0.2)1/3Nb2/3]O3陶瓷,于1 300 ℃退火24 h后,獲得與原料價格昂貴的傳統(tǒng)Ta基復合鈣鈦礦微波陶瓷相當?shù)奈⒉ㄐ阅埽?i>=30.94,?=63 161 GHz,=4.1 ppm/℃。
[1] PENG S, LUO G, WU M, et al. Effect of ZrO2doping on the microwave dielectric properties of Ba(Mg1/3Nb2/3)O3ceramics[J]. Journal of Electronic Materials, 2016, 46(4): 2172?2178.
[2] SUN T L, MAO M M, CHEN X M. Effects of annealing atmospheres on microwave dielectric properties of Ba[(Mg1?xCo)1/3Nb2/3]O3ceramics[J]. Materials Research Bulletin, 2015, 68(2015): 142?149.
[3] HIGUCHI Y, TAMURA H. Recent progress on the dielectric properties of dielectric resonator materials with their applications from microwave to optical frequencies[J]. Journal of the European Ceramic Society, 2003, 23(14): 2683?2688.
[4] SEBASTIAN M T, UBIC R, JANTUNEN H. Low-loss dielectric ceramic materials and their properties[J]. International Materials Reviews, 2015, 60(7): 392?412.
[5] HUGHES H, IDDLES D M, REANEY I M. Niobate-based microwave dielectrics suitable for third generation mobile phone base stations[J]. Applied Physics Letters, 2001, 79(18): 2952? 2954.
[6] LIU S, TAYLOR R, PETROVIC N S, et al. Experimental and theoretical investigation of the structural, chemical, electronic, and high frequency dielectric properties of barium cadmium tantalate–based ceramics[J]. Journal of Applied Physics, 2005, 97(1): 1?8.
[7] DAVIES P K, TONG J. Effect of ordering-induced domain boundaries on low-loss BZT-BaZrO3perovskite microwave dielectrics[J]. Journal of the American Ceramic Society, 1997, 80(7): 1727?1740.
[8] KIM I T, KIM Y H, CHUNG S J. Order-disorder transition and microwave dielectric properties of Ba(Ni1/3Nb2/3)O3ceramics[J]. Japanese Journal of Applied Physics, 1995, 34(8R): 4096?4103.
[9] DONG H, SHI F. Effects of Synthesis temperatures on crystal structures and lattice vibration modes of (Ba0.3Sr0.7) [(Zn1–xMg)1/3Nb2/3]O3solid solutions[J]. Metallurgical and Materials Transactions A, 2012, 43(13): 5128?5139.
[10] KIM I T, KIM Y H. Ordering and microwave dielectric properties of Ba(Ni1/3Nb2/3)O3ceramics[J]. Journal of Materials Research, 1996, 12(2): 518?525.
[11] WANG Z F, HUANG B Y, WANG L X, et al. Low loss (Ba1?xSr)(Co1/3Nb2/3)O3solid solution: phase evolution, microstructure and microwave dielectric properties[J]. Journal of Materials Science: Material Electron, 2015, 26: 4273?4279.
[12] GALASSO F, PYLE J. Ordering in compounds of the A(B′0.33-Ta0. 67)O3type[J]. Inorganic Chemistry, 1963, 2(3): 482?484.
[13] DIAS A, CIMINELLI V S T, MATINAGA F M, et al. Raman scattering and X-ray diffraction investigations on hydrothermal barium magnesium niobate ceramics[J]. Journal of the European Ceramic Society, 2001, 21(15): 2739?2744.
[14] REANEY I M. Microwave dielectric ceramics for resonators and filters in mobiles phone networks[J]. Journal of the American Ceramic Society, 2006, 89(7): 2063?2072.
[15] ZHANG S, DEVONPORT A, NEWMAN N, et al. Main source of microwave loss in transition-metal-doped Ba(Zn1/3Ta2/3)O3and Ba(Zn1/3Nb2/3)O3at cryogenic temperatures[J]. Journal of the American Ceramic Society, 2015, 98(4): 1188?1194.
[16] LIU H X, TIAN Z Q, WANG H, et al. New microwave dielectric ceramics with near-zeroτin the Ba(Mg1/3Nb2/3)O3- Ba(Ni1/3Nb2/3)O3system[J]. Journal of Materials Science, 2004, 39(13): 4319?4320.
[17] SCOTT R I, THOMAS M, HAMPSON C. Development of low cost, high performance Ba(Zn1/3Nb2/3)O3based materials for microwave resonator applications[J]. Journal of the European Ceramic Society, 2003, 23(14): 2467?2471.
[18] KIM M H, JEONG Y H, NAHM S, et al. Effect of B2O3and CuO additives on the sintering temperature and microwave dielectric properties of Ba(Zn1/3Nb2/3)O3ceramics[J]. Journal of the European Ceramic Society, 2006, 26(10/11): 2139?2142.
[19] AHN C W, NAHM S, LIM Y S, et al. Microstructure and microwave dielectric properties of Ba(Co1/3Nb2/3)O3ceramics[J]. Japanese Journal of Applied Physics, 2002, 41(8): 5277?5280.
[20] DAVIES P K, TONG J. Effect of ordering-induced domain boundaries on low-loss BZT-BaZrO3perovskite microwave dielectrics[J]. Journal of the American Ceramic Society, 1997, 80(7): 1727?1740.
[21] ENDO K, FUJIMOTO K, MURAKAWA K. Dielectric properties of ceramics in Ba(Co1/3Nb2/3)O3–Ba(Zn1/3Nb2/3)O3solid solution[J]. Journal of the American Ceramic Society, 1987, 70(9): 215?218.
[22] MOLODETSKY I, DAVIES P K. Effect of Ba(Y1/2Nb1/2)O3and BaZrO3on the cation order and properties of Ba(Co1/3Nb2/3)O3microwave ceramics[J]. Journal of the European Ceramic Society, 2001, 21(15): 2587?2591.
[23] AZOUGH F, LEACH C, FREER R. Effect of nonstoichiometry on the structure and microwave dielectric properties of Ba(Co1/3Nb2/3)O3ceramics[J]. Journal of the European Ceramic Society, 2006, 26(14): 2877?2884.
[24] SURENDRAN K P, MOHANAN P, JACOB M V. The effect of dopants on the microwave dielectric properties of Ba(Mg0.333Ta0.67)O3[J]. Journal of Applied Physics, 2005, 98(9): 1?9.
[25] KIM E S, YOON K H. Effect of nickel on microwave dielectric properties of Ba(Mg1/3Ta2/3)O3[J]. Journal of Materials Science, 1994, 29(3): 830?834.
[26] YOU C C, HUANG C L, WEI C C, et al. Improved high-Q dielectric resonator sintered at low firing temperature[J]. Japanese Journal of Applied Physics, 1995, 34: 1911?1915.
[27] HAKKI B W, COLEMAN P D. A dielectric resonator method of measuring inductive capacities in the millimeter range[J]. IRE Transactions on Microwave Theory and Techniques, 2002, 8(4): 402?410.
[28] COURTNEY W E. Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators[J]. IEEE Transactions on Mocrowave Theory and Techniques, 1970, 18(8): 476?485.
[29] SHANNON R D. Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides[J]. Acta Crystallographica, 1976, 32(SEP1): 751?767.
[30] WU H, DAVIES P K. Influence of non-stoichiometry on the structure and properties of Ba(Zn1/3Nb2/3)O3microwave dielectrics_ I. Substitution of Ba3W2O9[J]. Journal of the American Ceramic Society, 2006, 89(7): 2239?2249.
[31] JACOBSO A J, COLLINS B M, FENDE B E F. A powder neutron and X-ray diffraction determination of the structure of Ba3Ta2ZnO9: An investigation of perovskite phases in the system Ba-Ta-Zn-O and the preparation of Ba2TaCdO5.5and Ba2CeInO5.5[J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1976, 32(4): 1083?1087.
[32] WU H, DAVIES P K. Influence of non-stoichiometry on the structure and properties of Ba(Zn1/3Nb2/3)O3microwave dielectrics_ II. compositional variations in Pure BZN[J]. Journal of the American Ceramic Society, 2006, 89(7): 2050?2063.
[33] KIM B K, HAMAGUCHI H O, KIM I T, et al. Probing of 1:2 ordering in Ba(Ni1/3Nb2/3)O3and Ba(Ni1/3Nb2/3)O3ceramics by XRD and Raman Spectroscopy[J]. Journal of the American Ceramic Society, 1995, 78(11): 3117?3120.
[34] CHEN M Y, CHIA C T, LIN I N, et al. Microwave properties of Ba(Mg1/3Ta2/3)O3, Ba(Mg1/3Nb2/3)O3and Ba(Co1/3Nb2/3)O3ceramics revealed by Raman scattering[J]. Journal of the European Ceramic Society, 2006, 26(10/11): 1965?1968.
[35] DIAO C L, WANG C H, LUO N N, et al. First-principle calculation and assignment for vibrational spectra of Ba(Mg1/3Nb2/3)O3microwave dielectric ceramic[J]. Journal of Applied Physics, 2014, 115(11): 1?12.
[36] MOREIRA R L, MATINAGA F M, DIAS A. Raman- spectroscopic evaluation of the long-range order in Ba(B1/3′B2/3″)O3ceramics[J]. Applied Physics Letters, 2001, 78(4): 428?430.
[37] KIM Y W, PARK J H, PARK J G. Local cationic ordering behaviour in Ba(Mg1/3Nb2/3)O3ceramics[J]. Journal of European Ceramics Society, 2004, 24(6): 1830?1834.
(編輯 湯金芝)
Crystal structure and dielectric properties of complex perovskite Ba[(Co1?xMg)1/3Nb2/3]O3microwave ceramics
LIU Liang1, HUANG Zonglian1, XIAO Ya2, CHENG Lijin3, LIU Shaojun1
(1. Powder Metallurgy Research Institute, Central South University, Changsha 410083, China; 2. Hunan Provincial Institute of Cultural Relics and Archaeology, Changsha 410008, China; 3. State Key Laboratory of Material Processing and Die & Mould Technology,Huazhong University of Science and Technology, Wuhan 430074, China)
Ba[(Co1?xMg)1/3Nb2/3]O3(0.0≤≤0.4) microwave ceramics were prepared by the conventional solid reaction method. The relationship between the B site 1:2 ordering and microwave dielectric properties of Mg-doped Ba(Co1/3Nb2/3)O3microwave ceramics were clarified using dielectric performance test XRD, Raman and TEM. The results show that the?of Mg-doped Ba(Co1/3Nb2/3)O3ceramics is increased because the B site 1:2 ordering degree is enhanced. The highest ordering degree of the ceramics doped with=0.2 is obtained at 1 420 ℃. After annealing at 1 300 ℃ for 24 h, the ordering degree of 1:2 in B site is further improved, and the second phase is eliminated. Microwave properties with=30.94,?=63 161 GHz,=4.1 ppm/℃comparable to those of conventional Ta based composites perovskite microwave ceramics are obtained.
microwave ceramics; perovskite; doping; order-disorder transition; microwave properties
TM22
A
1673-0224(2018)01-78-07
國家科學自然基金資助項目(51172053)
2017?04?01;
2017?07?31
劉紹軍,研究員,博士。電話:13974953502;E-mail: liumatthew@csu.edu.cn