孫麗敏,姜懷志
(吉林農(nóng)業(yè)大學(xué)動(dòng)物科學(xué)技術(shù)學(xué)院,吉林長(zhǎng)春 130118)
轉(zhuǎn)錄組是指在某一特定功能狀態(tài)下,細(xì)胞內(nèi)轉(zhuǎn)錄出來(lái)的所有RNA的總和,包括mRNA和非編碼RNA。狹義上,轉(zhuǎn)錄組通常指所有mRNA的總和,因?yàn)樵谒蓄?lèi)型的RNA中,mRNA是蛋白質(zhì)生成的直接模版[1]。隨著分子生物學(xué)技術(shù)的廣泛應(yīng)用,mRNA對(duì)各類(lèi)生命活動(dòng)的調(diào)控作用已有大量研究,其對(duì)動(dòng)物肌肉的生長(zhǎng)發(fā)育同樣有著重要的調(diào)控作用。miroRNA(miRNA)是一類(lèi)長(zhǎng)度為22個(gè)核苷酸的內(nèi)源性單鏈非編碼小RNA分子[2]。miRNA在轉(zhuǎn)錄后通過(guò)對(duì)靶基因抑制或降解的負(fù)調(diào)控作用發(fā)揮生物學(xué)功能。研究表明,miRNA調(diào)控作用遍及生命體的各種活動(dòng)中,其能夠解釋諸多生命現(xiàn)象的本質(zhì)、細(xì)胞行為以及疾病的發(fā)生機(jī)制,如生物體生長(zhǎng)發(fā)育、器官形成、細(xì)胞增殖分化與凋亡等[3-6]。但是,許多動(dòng)物的mRNA和miRNA的研究仍停留在以高通量測(cè)序?yàn)榛A(chǔ)的表達(dá)模式研究上,而其在動(dòng)物肌肉生長(zhǎng)發(fā)育中的作用機(jī)制研究甚少。本文就動(dòng)物肌肉形成機(jī)制、mRNA和miRNA在動(dòng)物肌肉生長(zhǎng)發(fā)育過(guò)程中發(fā)揮的調(diào)控作用及其在綿羊中的研究進(jìn)展進(jìn)行綜述,并對(duì)未來(lái)研究進(jìn)行了展望。
骨骼肌是動(dòng)物體具有重要生物學(xué)功能的可再生器官,由大量的肌纖維即肌細(xì)胞組成,其呈纖維狀結(jié)構(gòu),具有明顯的橫紋,因此又被稱(chēng)為橫紋肌。骨骼肌纖維的經(jīng)典分類(lèi)命名方法包括3種:第1種是根據(jù)骨骼肌的顏色將其分為紅肌和白??;第2種是根據(jù)骨骼肌收縮速度的快慢分為快肌或慢肌[7];第3種是根據(jù)骨骼肌中ATP酶活性和琥珀酸脫氫酶活性分為Ⅰ、Ⅱa、Ⅱb、Ⅱx型,即慢速氧化型、快速氧化型、快速酵解型和中間型[8-9]。骨骼肌的生成過(guò)程分為不同的階段,在胚胎發(fā)育時(shí)期,骨骼肌主要由中胚層發(fā)育而來(lái),中胚層的衍生結(jié)構(gòu)分化生成體節(jié)多能干細(xì)胞,體節(jié)多能干細(xì)胞分化成肌肉始祖細(xì)胞,肌肉始祖細(xì)胞再分化生成肌節(jié),肌節(jié)細(xì)胞繼續(xù)分化生成成肌細(xì)胞,大量成肌細(xì)胞不斷增殖分化融合形成肌管,肌管包括初級(jí)肌管和次級(jí)肌管,肌管中包含肌原纖維結(jié)構(gòu),肌原纖維不斷成熟分化最終形成肌纖維[10-11]。在胚胎后期和出生后,肌纖維不斷生長(zhǎng)最終發(fā)育成熟。動(dòng)物出生后,肌肉的生長(zhǎng)主要依賴(lài)于肌纖維長(zhǎng)度的增長(zhǎng)和體積的增加,肌纖維數(shù)量不再發(fā)生改變[11-13]。
肌肉生長(zhǎng)發(fā)育是一個(gè)復(fù)雜的生物學(xué)調(diào)控過(guò)程,而基因調(diào)控涉及所有生物學(xué)行為和表型。轉(zhuǎn)錄因子作為基因調(diào)控家族的主要成員,在高等動(dòng)物生長(zhǎng)發(fā)育和進(jìn)化過(guò)程中發(fā)揮著至關(guān)重要的作用[14-16]。
2.1 肌調(diào)節(jié)因子家族 生肌調(diào)節(jié)因子家族(MRFS)主要包括Myf5、Mrf4、MyoD和MyoG4個(gè)基因。該家族基因中包含的螺旋-環(huán)-螺旋結(jié)構(gòu)區(qū)域,可以介導(dǎo)結(jié)合DNA或E蛋白盒,從而啟動(dòng)諸多肌肉特異性基因的表達(dá),發(fā)揮其對(duì)肌肉生長(zhǎng)發(fā)育的調(diào)控作用[17-18]。Myf5是在中胚層中成肌細(xì)胞形成前最早表達(dá)的基因[19],當(dāng)小鼠敲除MyoD或Myf5基因后,可以通過(guò)延長(zhǎng)Myf5或MyoD表達(dá),保證肌肉的正常生成[20]。當(dāng)小鼠同時(shí)敲除MyoD和Myf5基因后,則會(huì)出現(xiàn)骨骼肌發(fā)育無(wú)法啟動(dòng)骨骼肌缺失[21]。而Myf5基因的突變會(huì)直接影響Mrf4基因發(fā)揮調(diào)控功能[22]。小鼠敲除MyoG基因后,對(duì)MyoD基因的表達(dá)量沒(méi)有影響[23]。這些研究表明,在MRFS中,Myf5和MyoD基因先表達(dá),調(diào)控骨骼肌肌原細(xì)胞的增殖分化,影響骨骼肌纖維類(lèi)型的形成[24],Myf4和MgoG基因則在肌管和肌纖維的形成過(guò)程中發(fā)揮作用,Myf4和MgoG基因是位于Myf5或MyoD基因下游發(fā)揮調(diào)控作用。
2.2 肌肉生長(zhǎng)抑制素 肌肉生長(zhǎng)抑制素(MSTN)也稱(chēng)GDF-8,是轉(zhuǎn)化生長(zhǎng)因子(TGF-β)超家族的成員之一[25]。McPherron等[26]于1997年首次在小鼠中發(fā)現(xiàn)了MSTN,在胚胎發(fā)育早期,MSTN表達(dá)僅限于發(fā)育中體節(jié)的肌節(jié)間隔部分,在胚胎后期和成熟的動(dòng)物體內(nèi),MSTN在機(jī)體不同的肌肉組織中均有表達(dá),并確定了其對(duì)肌肉生長(zhǎng)發(fā)育所發(fā)揮的抑制調(diào)控作用。自此,學(xué)者們開(kāi)始關(guān)注和研究該基因?qū)∪馍L(zhǎng)發(fā)育的調(diào)控作用,發(fā)現(xiàn)MSTN主要在以下幾個(gè)方面發(fā)揮作用:首先,對(duì)肌肉的生長(zhǎng)具有抑制作用。McPherron等[26]研究發(fā)現(xiàn),小鼠敲除MSTN基因后,小鼠肌肉重量顯著高于對(duì)照組,這依賴(lài)于肌肉細(xì)胞的增生和肥大;Lee等[27]研究發(fā)現(xiàn),小鼠敲除MSTN基因后,小鼠肌肉體積顯著高于對(duì)照組;Kambadur等[28]將比利時(shí)藍(lán)牛和皮埃蒙特牛的MSTN基因的編碼區(qū)進(jìn)行突變,出現(xiàn)了著名的“雙肌”現(xiàn)象。而Abe等[29]、Zmmers等[30]研究發(fā)現(xiàn),過(guò)表達(dá)MSTN基因可以使小鼠出現(xiàn)肌肉減少消瘦的情況。其次,MSTN基因?qū)χ敬x的調(diào)控作用。McPherron等[31]研究發(fā)現(xiàn),缺失型小鼠脂肪含量減少。Lin等[25]研究發(fā)現(xiàn),MSTN的缺失可抑制脂肪的發(fā)生過(guò)程。Argiles等[32]研究也發(fā)現(xiàn),MSTN基因在脂肪的生成過(guò)程中發(fā)揮重要作用。最后,MSTN對(duì)成肌細(xì)胞的增殖和分化具有抑制作用。van Hoef等[33]研究發(fā)現(xiàn),MSTN基因通過(guò)對(duì)p21基因的上調(diào)作用和對(duì)MyoD和MyoG基因的下調(diào)作用,抑制小鼠成肌細(xì)胞的增殖和分化。劉晨曦等[34]和Langley等[35]研究發(fā)現(xiàn),過(guò)表達(dá)MSTN基因可以顯著抑制MyoD和MyoG基因的表達(dá),從而抑制成肌細(xì)胞分化。Sartori等[36]和劉晨曦等[34]研究發(fā)現(xiàn),MSTN基因的過(guò)表達(dá)可以上調(diào)Smad3基因的表達(dá)。以上研究表明,MSTN基因可以通過(guò)調(diào)控成肌細(xì)胞的增殖和分化來(lái)對(duì)肌纖維進(jìn)行調(diào)控。
2.3 生長(zhǎng)激素和類(lèi)胰島素生長(zhǎng)因子家族 生長(zhǎng)激素和類(lèi)胰島素因子軸對(duì)動(dòng)物體的生長(zhǎng)發(fā)育具有重要的調(diào)控作用[37]。生長(zhǎng)激素(GH)在動(dòng)物機(jī)體的生長(zhǎng)發(fā)育和肌肉細(xì)胞的增殖分化過(guò)程中發(fā)揮正向調(diào)控的作用。GH主要是通過(guò)生長(zhǎng)激素因子(GRF)促進(jìn)垂體細(xì)胞合成而分泌。GH主要通過(guò)與其受體GHR結(jié)合,或結(jié)合后產(chǎn)生類(lèi)胰島素生長(zhǎng)因子家族發(fā)揮對(duì)動(dòng)物生長(zhǎng)發(fā)育的調(diào)控作用。Draghiaakli等[38]研究發(fā)現(xiàn),GRF可以刺激GH的表達(dá)量增加,從而加快肌肉的生長(zhǎng)速度。張永亮等[39]的研究同樣發(fā)現(xiàn),家兔肌肉組織中的GRF可以促進(jìn)GH的釋放。高萍等[40]研究發(fā)現(xiàn),豬肌肉組織中GHRmRNA水平與GHmRNA水平呈現(xiàn)強(qiáng)烈的正相關(guān)關(guān)系。Maecell等[41]研究發(fā)現(xiàn),GH通過(guò)與GHR的相互作用對(duì)肌肉生長(zhǎng)發(fā)育進(jìn)行正向調(diào)控。
類(lèi)胰島素生長(zhǎng)因子家族(IGFs)主要包括2個(gè)配體(IGF-1和IGF-2)、3種受體(IGF1R、IGF2R和IGFI/InsR)、6個(gè)結(jié)合蛋白(IGFBP1~6)[42],該家族對(duì)生物體骨骼肌發(fā)育和細(xì)胞的增殖分化具有重要的調(diào)控作用。Menetrey等[43]和安靜[44]研究發(fā)現(xiàn),IGF1基因具有促進(jìn)骨骼肌細(xì)胞增殖分化,促進(jìn)骨骼肌生成的功能。Palazzolo等[45]研究發(fā)現(xiàn),過(guò)表達(dá)IGF1基因可以誘導(dǎo)骨骼肌再生和肌肉肥大增加。而Mavalli等[46]研究發(fā)現(xiàn),IGF1R的缺失,則會(huì)導(dǎo)致骨骼肌肌纖維數(shù)量和橫截面積的減少。黃治國(guó)等[47]對(duì)哈薩克羊和新疆細(xì)毛羊肌肉組織中的IGF1基因進(jìn)行了研究,驗(yàn)證了其對(duì)肌肉生長(zhǎng)發(fā)育的作用。IGF1基因可以通過(guò)調(diào)控MyoG、MyoD、MEF2和p21等基因的表達(dá)水平從而對(duì)骨骼肌成肌細(xì)胞分化發(fā)揮調(diào)控作用[48]。IGF2對(duì)動(dòng)物的生長(zhǎng)發(fā)育同樣具有調(diào)控作用[49]。Stinckens等[50]、郭玉嬌等[51]研究發(fā)現(xiàn),IGF2基因在出生后的豬肌肉和脂肪組織中表達(dá)量呈下降趨勢(shì)。張小輝等[52]發(fā)現(xiàn),南陽(yáng)牛肌肉組織中IGF2基因在出生后表達(dá)量呈逐漸下降的趨勢(shì)。Morgan等[53]、劉德武等[54]均研究發(fā)現(xiàn),IGF1R在剛出生豬肌肉組織中表達(dá)量最高,之后呈下降趨勢(shì)。Kalus等[55]研究發(fā)現(xiàn),IGFBP5在肌肉生長(zhǎng)發(fā)育方面同樣發(fā)揮重要作用。Ning等[56]研究發(fā)現(xiàn),小鼠敲除IGFBP5基因后,肌肉組織發(fā)育正常,同時(shí)敲除IGFBP5、IGFBP3和IGFBP4基因后,小鼠的肌肉組織則不能正常發(fā)育,提示這3個(gè)基因在肌肉生長(zhǎng)發(fā)育過(guò)程中發(fā)揮相似互補(bǔ)作用。Bayol等[57]和Bergstrom等[58]研究發(fā)現(xiàn),IGFBP5可能是通過(guò)與IGF2和MyoD基因的作用來(lái)發(fā)揮對(duì)骨骼肌細(xì)胞分化的調(diào)控作用。
2.4 綿羊轉(zhuǎn)錄組學(xué) 在缺乏綿羊基因組信息階段,學(xué)者們主要參考人和牛等生物基因組信息,對(duì)綿羊轉(zhuǎn)錄組進(jìn)行研究。Graham等[59]采用人類(lèi)基因芯片,對(duì)綿羊肌肉組織與肝臟組織進(jìn)行了轉(zhuǎn)錄組研究,共得到2 000多個(gè)轉(zhuǎn)錄本,每個(gè)組織差異表達(dá)的前15個(gè)基因中的大多數(shù)具有組織特異性或在相應(yīng)的組織中發(fā)揮特殊功能。Byrne等[60]采用?;蛐酒瑢?duì)妊娠80、100、120 d的綿羊胎兒以及出生后第3天和第3個(gè)月的綿羊背最長(zhǎng)肌進(jìn)行了轉(zhuǎn)錄組檢測(cè),共檢測(cè)到2 471個(gè)差異表達(dá)基因,生物信息學(xué)發(fā)現(xiàn)上調(diào)基因主要涉及氧化代謝、三羧酸循環(huán)和線粒體活性等方面,下調(diào)基因主要涉及Wnt信號(hào)通路、細(xì)胞黏著和分化等方面。Dhorne-Pollet等[61]采用?;蛐酒瑢?duì)泌乳能力具有顯著差異的綿羊乳腺組織進(jìn)行了轉(zhuǎn)錄組檢測(cè),分析獲得73個(gè)差異表達(dá)基因,并發(fā)現(xiàn)過(guò)表達(dá)的基因與肌肉收縮相關(guān),編碼膠原質(zhì)基因在低泌乳綿羊乳腺組織不表達(dá),證實(shí)了COL1A1和COL1A2在低泌乳綿羊乳腺組織不表達(dá)。Singh等[62]采用牛基因芯片,對(duì)泌乳綿羊和牛的乳腺組織轉(zhuǎn)錄組圖譜進(jìn)行了比較研究,發(fā)現(xiàn)保守的差異表達(dá)基因涉及與乳類(lèi)合成和泌乳時(shí)間相關(guān)的生物學(xué)過(guò)程,包括脂類(lèi)代謝、氨基酸的生物合成、細(xì)胞增殖分化、信號(hào)系統(tǒng)和免疫系統(tǒng)。
2010年 ,國(guó)際綿羊基因組協(xié)會(huì)在NCBI網(wǎng)站公布了第一版綿羊基因組圖譜。參考該版綿羊基因組信息,Ren等[63]以胎兒期高肉低脂肪特克賽爾羊和低肉高脂肪烏珠穆沁羊羔羊背最長(zhǎng)肌為研究對(duì)象,對(duì)其轉(zhuǎn)錄組圖譜進(jìn)行的研究發(fā)現(xiàn),差異表達(dá)基因主要涉及免疫和血液系統(tǒng)發(fā)育、脂類(lèi)代謝、細(xì)胞應(yīng)答等生物學(xué)功能,以及肌生成和成肌細(xì)胞分化等通路,如C-X-C趨化因子受體4通路和VEGF信號(hào)通路。Jager等[64]采用denovo分析方法通過(guò)高通量測(cè)序?qū)γ览蛎劰墙毓切g(shù)模型中標(biāo)準(zhǔn)與延遲骨愈合組的骨骼組織轉(zhuǎn)錄組進(jìn)行了研究,鑒定出13 987個(gè)轉(zhuǎn)錄本,其中包括12 432個(gè)未曾報(bào)道過(guò)的基因,生物信息學(xué)分析發(fā)現(xiàn)綿羊脛骨截骨術(shù)模型中標(biāo)準(zhǔn)與延遲骨愈合組差異表達(dá)基因主要涉及細(xì)胞外機(jī)制、軟骨發(fā)育、纖維收縮和趨化因子活性等。
國(guó)際綿羊基因協(xié)會(huì)在第二版綿羊基因組圖譜的基礎(chǔ)上,經(jīng)過(guò)完善和修改,于2012年在NCBI網(wǎng)站公布了綿羊第三版基因圖譜,確定綿羊基因組的長(zhǎng)度為2.62×109bp。Miao等[65-67]采用高通量測(cè)序與生物信息學(xué)結(jié)合的方法,對(duì)道賽特羊和小尾寒羊肌肉的研究中發(fā)現(xiàn)了294個(gè)上調(diào)基因和226個(gè)下調(diào)基因,分析發(fā)現(xiàn)差異表達(dá)基因主要涉及未折疊蛋白和小分子代謝等生物過(guò)程,細(xì)胞外基質(zhì)等細(xì)胞成分,以及氧化活性等分子功能;在對(duì)脂肪組織的研究中,發(fā)現(xiàn)了602個(gè)差異表達(dá)基因,生物信息學(xué)分析發(fā)現(xiàn)其涉及甘油三酯代謝過(guò)程等生物過(guò)程、脂肪代謝等通路;在繁殖力的研究中發(fā)現(xiàn),在繁殖力不同的3個(gè)組中發(fā)現(xiàn)了許多差異表達(dá)基因,生物信息學(xué)發(fā)現(xiàn)這些差異基因涉及免疫應(yīng)答、機(jī)體生長(zhǎng)、細(xì)胞分裂和凋亡、信號(hào)轉(zhuǎn)導(dǎo)和代謝過(guò)程以及免疫代謝通路、核糖體功能和吞噬作用等通路。張春蘭[68]采用高通量測(cè)序方法,構(gòu)建小尾寒羊和杜泊羊臂二頭肌轉(zhuǎn)錄組文庫(kù),共檢測(cè)到1 300個(gè)差異表達(dá)基因,生物信息學(xué)分析后篩選出31個(gè)差異表達(dá)基因,這些差異表達(dá)基因涉及肌細(xì)胞發(fā)育分化和骨骼肌生長(zhǎng)等生命過(guò)程。Fan等[69]采用高通量測(cè)序技術(shù),對(duì)不同毛色的蘇尼特羊皮膚組織轉(zhuǎn)錄組進(jìn)行了研究,檢測(cè)得到2 235個(gè)已知的差異表達(dá)基因和845個(gè)新的差異表達(dá)基因,提出這些基因可能參與調(diào)控綿羊毛色的形成。吳陽(yáng)升等[70]在綿羊卵泡中檢測(cè)到1 703個(gè)差異表達(dá)基因,生物信息學(xué)分析發(fā)現(xiàn)這些差異表達(dá)基因主要涉及酶活性的調(diào)節(jié)、細(xì)胞外基質(zhì)、細(xì)胞增殖和通訊、免疫刺激反應(yīng)等方面以及TGF-β信號(hào)通路和吞噬小體等通路。
3.1 miRNA 的生成調(diào)控機(jī)制及表達(dá)模式 自最初經(jīng)典miRNA lin-4[71]和let 7[72]的發(fā)現(xiàn)開(kāi)始,學(xué)者們開(kāi)始關(guān)注并熱衷miRNA的相關(guān)研究。現(xiàn)有研究表明,miRNA的生物合成是一個(gè)復(fù)雜的生物學(xué)過(guò)程,主要包括細(xì)胞核內(nèi)階段和細(xì)胞質(zhì)內(nèi)階段2個(gè)階段。首先,在細(xì)胞核內(nèi),編碼miRNA的基因轉(zhuǎn)錄調(diào)控有3種機(jī)制:第一,位于基因組成簇排列的miRNA基因[73],轉(zhuǎn)錄成多順?lè)醋釉嫁D(zhuǎn)錄本,生成多個(gè)不同的發(fā)夾結(jié)構(gòu)pri-miRNA;第二,位于基因間隔區(qū)的miRNA基因,以特有啟動(dòng)子和調(diào)控原件轉(zhuǎn)錄成獨(dú)立單位;第三,位于內(nèi)含子或非編碼區(qū)的miRNA基因,由宿主基因轉(zhuǎn)錄前體編碼,與編碼宿主基因一起轉(zhuǎn)錄。miRNA 主要在RNA聚合酶Ⅱ的作用下,轉(zhuǎn)錄生成由幾千個(gè)堿基對(duì)構(gòu)成的miRNA的初級(jí)轉(zhuǎn)錄物pri-miRNA。pri-miRNA 5′端加7-甲基鳥(niǎo)苷帽子,3′端加ployA尾。pri-miRNA的加工也在細(xì)胞核內(nèi)進(jìn)行,pri-miRNA在RNaseⅢ Drosha 等作用下生成長(zhǎng)度為70nt左右的發(fā)夾結(jié)構(gòu),即miRNA的前體premiRNA,Drosa酶本身的活性較低或無(wú)活性,其需要與輔助因子DGCR8結(jié)合發(fā)揮作用[74]。在此之后,premiRNA 在exportin5的作用下,被轉(zhuǎn)運(yùn)到細(xì)胞質(zhì)中[75-77]。然后,在細(xì)胞質(zhì)內(nèi),pre-miRNA在RNaseⅢ Dicer的加工作用下,生成長(zhǎng)度約為22nt的miRNA成熟鏈與互補(bǔ)鏈構(gòu)成的二聚體結(jié)構(gòu)[78],該結(jié)構(gòu)在Dicer作用下,最終被剪切生成單鏈成熟miRNA終產(chǎn)物,其不再具有5′端帽子和3′端ployA尾巴結(jié)構(gòu)[79],而是5′端磷酸基團(tuán)和3′端羥基結(jié)構(gòu),Dicer 酶需要在輔助因子TRBP的協(xié)同下發(fā)揮識(shí)別與剪切pre-miRNA的作用[80]。成熟的單鏈miRNA 5′端種子序列與靶基因3′UTR互補(bǔ)配對(duì)結(jié)合,引導(dǎo)RISC(RNA誘導(dǎo)的基因沉默復(fù)合物)對(duì)靶基因mRNA進(jìn)行降解或翻譯抑制[81],從而調(diào)節(jié)靶基因的表達(dá)。當(dāng)miRNA與靶基因完全互補(bǔ)結(jié)合時(shí),RISC使mRNA降解,當(dāng)miRNA與靶基因不完全互補(bǔ)結(jié)合時(shí),RISC抑制mRNA翻譯[81],2種調(diào)控模式可以同時(shí)發(fā)揮生物學(xué)功能。miRNA的生物合成和調(diào)控機(jī)制如圖1所示[82]。
miRNA具有高度的保守性,其表達(dá)模式具有組織特異性和時(shí)空特異性[83],并且受動(dòng)態(tài)調(diào)控[84]。同時(shí),miRNA在不同生物體中發(fā)揮相同的生物學(xué)功能?,F(xiàn)有研究表明,miRNA在小鼠[85-86]和人類(lèi)[87-88]不同組織和器官中表達(dá)具有明顯的組織特異性。同時(shí),不同miRNA在動(dòng)物胚胎期、不同生長(zhǎng)發(fā)育階段具有不同的表達(dá)趨勢(shì),其表達(dá)具有時(shí)空特異性[89]。
圖1 miRNA的生物合成和調(diào)控機(jī)制
3.2 調(diào)控肌肉生長(zhǎng)發(fā)育相關(guān)miRNA 目前,除了多種mRNA參與調(diào)控動(dòng)物機(jī)體肌肉的生長(zhǎng)發(fā)育過(guò)程,miRNA在肌細(xì)胞增殖分化等肌肉生長(zhǎng)發(fā)育相關(guān)調(diào)控過(guò)程中,同樣發(fā)揮著至關(guān)重要的生物學(xué)作用,相關(guān)研究如表1所示。其中,由于miRNA的表達(dá)具有組織特異性,目前研究發(fā)現(xiàn)了一些肌特異性miRNA,如miRNA-1、miRNA-133、miRNA-206、miRNA-208a、miRNA-208b、miRNA-486和miRNA-499,這些miRNA被命名為myomiRs家族[90]。同時(shí),一些miRNA雖然在動(dòng)物的不同組織中均有表達(dá),屬于非特異性miRNA,但這些miRNA在動(dòng)物體肌肉組織中的表達(dá)同樣在調(diào)控動(dòng)物肌肉生長(zhǎng)發(fā)育方面發(fā)揮重要作用,如miRNA-23a、miRNA-24、miRNA-26a和miRNA-27b等。
3.3 綿羊miRNA研究進(jìn)展 截止目前,在miRBase 21.0數(shù)據(jù)庫(kù)中綿羊已經(jīng)注冊(cè)的miRNA成熟體為154條,前體106 條。
在綿羊肌肉方面,張世芳等[120]通過(guò)Solexa測(cè)序與生物信息學(xué)相結(jié)合的方法,將1 879個(gè)候選 miRNA定位到了特克賽爾羊和烏珠穆沁羊染色體上的2 436個(gè)基因組位置,141條miRNA定位到了X染色體上的150個(gè)基因組位置,構(gòu)建了綿羊miRNA基因組圖譜,獲得差異表達(dá)miRNA 89個(gè),其中具有顯著差異的miRNA 10個(gè),同時(shí)預(yù)測(cè)了89個(gè)miRNA的8 737個(gè)靶基因。張偉等[103,121]采用基因芯片與生物信息學(xué)結(jié)合的方法,對(duì)不同生長(zhǎng)發(fā)育階段薩??搜蚬趋兰iRNA進(jìn)行了研究,共檢測(cè)到261個(gè)miRNA,其中58個(gè)為已知miRNA,檢測(cè)到16個(gè)miRNA前體中共計(jì)49個(gè)堿基突變,發(fā)現(xiàn)miRNA-133a前體突變與綿羊的產(chǎn)肉性狀相關(guān),同時(shí)發(fā)現(xiàn)miRNA-133過(guò)表達(dá)抑制了綿羊骨骼肌衛(wèi)星細(xì)胞增殖,可靶向調(diào)控TAGLN2、Rhoa和CDC42。Shen等[122]利用生物信息學(xué)方法,通對(duì)miRBase數(shù)據(jù)庫(kù)中49個(gè)物種6 785個(gè)miRNA 和NCBI數(shù)據(jù)庫(kù)中209 808個(gè)綿羊EST的比對(duì)計(jì)算分析,預(yù)測(cè)出綿羊中屬于24個(gè)家族的31個(gè)從未在任何物種中報(bào)道過(guò)的novel miRNA,預(yù)測(cè)出31個(gè)miRNA共計(jì)120個(gè)靶基因,并從綿羊肌肉組織中成功克隆出12個(gè)調(diào)控綿羊肌肉生長(zhǎng)發(fā)育的候選miRNA,同時(shí)對(duì)其表達(dá)模式進(jìn)行了研究。Barozai[123]利用生物信息學(xué)方法,通過(guò)對(duì)miRBase數(shù)據(jù)庫(kù)8 557個(gè)已知?jiǎng)游飉iRNA和338 368個(gè)綿羊EST比對(duì)計(jì)算分析,在綿羊上預(yù)測(cè)到172條新miRNA,140
條前體,屬于114個(gè)miRNA家族,預(yù)測(cè)的292個(gè)靶基因中轉(zhuǎn)錄因子26%、信號(hào)轉(zhuǎn)導(dǎo)19%、代謝過(guò)程18%、翻譯10%、免疫9%、癌癥及腫瘤相關(guān)為5%、生長(zhǎng)及發(fā)育為5%、結(jié)構(gòu)蛋白3%,并強(qiáng)調(diào)這些新預(yù)測(cè)的綿羊miRNA將在提高肉產(chǎn)量方面發(fā)揮重要作用。
表1 與肌肉生長(zhǎng)發(fā)育相關(guān)的miRNAs
在綿羊皮膚毛囊方面,Liu等[124]以藏羊不同時(shí)期毛囊為研究對(duì)象,鑒別了 244個(gè)miRNA,其中35個(gè)為綿羊新發(fā)現(xiàn)的miRNA,生物信息學(xué)進(jìn)一步分析發(fā)現(xiàn),這些miRNA可能通過(guò)MAPK、Wnt通路調(diào)節(jié)著毛囊的發(fā)育。唐曉惠[125]采用高通量測(cè)序方法,對(duì)藏綿羊3個(gè)不同時(shí)期皮膚毛囊的miRNA進(jìn)行檢測(cè),共檢測(cè)到406個(gè)miRNA,其中86個(gè)novelmiRNA,通過(guò)生物信息學(xué)分析,共發(fā)現(xiàn)102差異表達(dá)miRNA,同時(shí)QPCR檢測(cè)差異表達(dá)的miR-31、miR-184和miR-205,預(yù)測(cè)miR-31靶基因?yàn)镵RT17,發(fā)現(xiàn)miR-184和miR-205的候選靶基因涉及15個(gè)基因通路,它們可能是通過(guò)Wnt通路對(duì)毛囊的生長(zhǎng)周期發(fā)揮調(diào)控作用。Zhang等[126]采用了微陣列分析方法,檢測(cè)了159個(gè)miRNA在成年山羊和綿羊體側(cè)皮膚與耳部皮膚的表達(dá)量,發(fā)現(xiàn)19個(gè)miRNA在綿羊與山羊體側(cè)皮膚內(nèi)高濃度特異表達(dá),說(shuō)明這些miRNA可能對(duì)毛發(fā)生長(zhǎng)發(fā)揮作用。
在綿羊繁殖方面,Katie等[127]選擇妊娠 42 d和75 d早期綿羊胎兒的卵巢和睪丸為研究對(duì)象,分別獲得了24個(gè)miRNA和43個(gè)miRNA,生物信息學(xué)分析預(yù)測(cè)到差異表達(dá)miRNA的靶基因ESR1、CYP19A1和SOX9等,采用原位雜交方法證實(shí)了miR-22位于胎兒睪丸上,并且具有抑制雌激素分泌的生物學(xué)作用。McBride等[128]采用克隆的方法,首次對(duì)綿羊不同時(shí)期卵泡和黃體的miRNA進(jìn)行了研究,鑒別得到189個(gè)已知 miRNA 和23個(gè)novel miRNA,其中miR-21、miR-125b、let-7a 和let-7b表達(dá)豐度最高,熒光定量PCR及Northern blots證實(shí)其中 8個(gè)miRNA在卵泡向黃體轉(zhuǎn)化時(shí)其豐度增加。常衛(wèi)華[129]采用高通量測(cè)序與生物信息學(xué)結(jié)合的方法,對(duì)成年高山細(xì)毛羊卵巢和睪丸組織中miRNA進(jìn)行了篩選鑒定研究,共鑒定出486條綿羊候選novel miRNA,包括卵巢中267個(gè)和睪丸中219個(gè),同時(shí)研究共預(yù)測(cè)出486個(gè)miRNA的1 821 503個(gè)靶基因。通過(guò)GO注釋以及KEGG通路分析方法,發(fā)現(xiàn)這些novel miRNA可能參與調(diào)控卵巢和睪丸的生長(zhǎng)發(fā)育、細(xì)胞的增殖分化及凋亡等生物學(xué)過(guò)程
在分析差異表達(dá) mRNA 和miRNA的基礎(chǔ)上,為了從整體水平篩選獲得miRNA 對(duì)mRNA負(fù)調(diào)控的數(shù)據(jù),可以將mRNA數(shù)據(jù)和miRNA數(shù)據(jù)整合處理后進(jìn)行負(fù)相關(guān)分析,構(gòu)建差異miRNA 與靶差異mRNA轉(zhuǎn)錄后調(diào)控網(wǎng)絡(luò),從而篩選得到可信度更高的 miRNA 靶基因,并在轉(zhuǎn)錄后調(diào)控網(wǎng)絡(luò)水平分析差異 miRNA 與差異mRNA的靶向調(diào)控關(guān)系。近年來(lái),mRNA-miRNA整合分析的方法也被應(yīng)用到動(dòng)物肌肉生長(zhǎng)發(fā)育相關(guān)研究中。Ji等[130]采用mRNA-miRNA聯(lián)合分析的方法,對(duì)6月齡和24月齡小鼠骨骼肌進(jìn)行了研究,鑒定出34個(gè)與骨骼肌發(fā)育成熟相關(guān)的miRNAs,并發(fā)現(xiàn)miRNA通過(guò)與靶基因的相互作用在轉(zhuǎn)錄水平對(duì)骨骼肌發(fā)育成熟發(fā)揮調(diào)控作用。Hou等[131]對(duì)肌肉生長(zhǎng)和肉質(zhì)表型不同的3個(gè)品種豬骨骼肌組織進(jìn)行了mRNA-miRNA聯(lián)合分析,鑒定出與肌肉生長(zhǎng)發(fā)育相關(guān)的miRNA及其靶mRNA。Tang等[132]采用mRNA-miRNA聯(lián)合分析方法,對(duì)長(zhǎng)白豬、通城豬和五指山豬胚胎期第33、65、90天的骨骼肌進(jìn)行了研究,鑒定出33、18個(gè)和67個(gè)差異表達(dá)miRNA,以及290、91和502個(gè)靶mRNA,發(fā)現(xiàn)這些差異表達(dá)miRNA及其靶mRNA與肌肉收縮、肌肉發(fā)育和細(xì)胞分化密切相關(guān)。Liu等[133]采用mRNA-miRNA聯(lián)合分析方法,對(duì)肌肉特性具有顯著差異的杜洛克豬和皮特蘭豬肌肉組織進(jìn)行了研究,構(gòu)建了miRNA-mRNA調(diào)控網(wǎng)絡(luò),發(fā)現(xiàn)該網(wǎng)絡(luò)與肌纖維類(lèi)型,代謝酶活性和ATP產(chǎn)生等密切相關(guān),并提示該網(wǎng)絡(luò)中基因細(xì)微的調(diào)節(jié)可能最終導(dǎo)致了肌肉表型差異。而就綿羊而言,目前為止,僅Miao等[66-67]應(yīng)用該方法對(duì)道賽特羊和小尾寒羊肌肉組織及繁殖性能進(jìn)行了研究。
動(dòng)物肌肉生長(zhǎng)發(fā)育受到多種基因的共同調(diào)控。mRNA和miRNA作為動(dòng)物體內(nèi)重要基因調(diào)控因子,參與動(dòng)物生長(zhǎng)發(fā)育的各個(gè)方面。雖然隨著高通量測(cè)序及生物信息學(xué)的快速發(fā)展,越來(lái)越多的mRNA和miRNA相繼被鑒定和研究,但仍存在研究深度有限的問(wèn)題,關(guān)于相關(guān)mRNA和miRNA的調(diào)控作用和作用機(jī)制有待深入研究。隨著研究的不斷深入,mRNA和miRNA在動(dòng)物肌肉生長(zhǎng)發(fā)育中的作用機(jī)制也將得到更清晰的闡釋?zhuān)@將是該領(lǐng)域今后研究的重點(diǎn)和難點(diǎn)。
參考文獻(xiàn):
[1] Costa V, Angelini C, De Feis I,et al. Uncovering the complexity of transcriptomes with RNA-Seq[J]. J Biomed Biotechnol,2010, 5757: 853916.
[2] An J, Chen X, Chen W,et al. MicroRNA expression profile and the role of miR-204 in corneal wound healing[J]. Invest Ophthalmol Vis Sci, 2015, 56(6): 3673-3683.
[3] Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297.
[4]Carrington J C, Ambros V. Role of microRNAs in plant and animal development[J]. Science, 2003, 301(5631): 336-338.
[5]He L, Hannon G J. MicroRNAs: small RNAs with a big role in gene regulation[J]. Nat Rev Genet, 2004, 5(7): 522-531.
[6]Jones M R, Quinton L J, Blahna M T,et al. Zcchc11-dependent uridylation of microRNA directs cytokine expression[J]. Nat Cell Biol, 2009, 11(9):1157-1163.
[7]Li J B, Goldberg A L. Effects of fooddeprivation on protein synthesis and degradation in ratskeletalmuscles[J]. Am J Physiol, 1976, 231(2):441.
[8]Brooke M H, Kaiser K K.Muscle fiber types.how many and what kind?[J]. Arch Neurol,1970, 23(4):369-379.
[9]LaFramboise W A, Daood M J, Guthrie R D,et al. Electrophoretic separation and immunological identi fi cation of type 2X myosin heavy chain in rat skeletal muscle[J]. BBA- Gen Subjects,1990, 1035(1):109-112.
[10]Buckingham M, Bajard L, Chang T,et al.The formation of skeletal muscle: from somite to limb[J]. J Anat, 2003,202(1):59-68.
[11]Tang Z, Li Y, Wan P,et al. LongSAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs[J]. Genome Biol, 2007, 8(6):R115.
[12]Wigmore P M, Stickland N C. Muscle development in large and small pig fetuses[J]. J Anat,1983, 137 (Pt 2): 235-245.
[13]Buckingham M, Vincent S D. Distinct and dynamic myogenic populations in the vertebrate embryo[J]. Curr Opin Genet Dev,2009, 19(5):444-453.
[14]Chen K, Rajewsky N.The evolution of gene regulation by transcription factors and microRNAs[J]. Nat Rev Genet, 2007,8(2): 93-103.
[15]Hobert O. Gene regulation by transcription factors and microRNAs[J]. Science, 2008, 319(5871): 1785-1786.
[16]Levine M, Tjian R. Transcription regulation and animal diversity[J]. Nature, 2003, 424(6945): 147-151.
[17]Bryson-Richardson R J, Currie P D.The genetics of vertebrate myogenesis[J]. Nat Rev Genet, 2008, 9(8): 632-646.
[18]Massari M E, Murre C. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms[J]. Mol Cell Biol, 2000,20(2): 429-440.
[19]Ott M O, Bober E, Lyons G,et al. Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo[J]. Development, 1991, 111(4):1097-1107.
[20]Braun T, Rudnicki M A, Arnold H H,et al. Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death[J]. Cell, 1992, 71(3): 369-382.
[21]Rudnicki M A, Schnegelsberg P N J, Stead R H,et al. MyoD or Myf-5 is required for the formation of skeletal muscle[J]. Cell,1993, 75(7): 1351-1359.
[22]Pikarsky E, Porat R M, Stein I,et al. NF-kappaB functions as a tumour promoter in in fl ammation-associated cancer[J]. Nature,2004, 431(7007): 461-466.
[23]Hasty P, Bradley A, Morris J H,et al. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene[J]. Nature, 1993, 364(6437): 501-506.
[24]Muroya S, Nakajima I, Chikuni K. Related expression of MyoD and Myf5 with myosin heavy chain isoform types in bovine adult skeletal muscles[J]. Zoolog Sci, 2002, 19(7): 755-761.
[25]Lin J, Arnold H B, Della-Fera M A,et al. Myostatin knockout in mice increases myogenesis and decreases adipogenesis[J].Biochem Biophys Res Commun, 2002, 291(3): 701-706.
[26]Mcpherron A C, Lawler A M, Lee S J. Regulation of skeletal muscle mass in mice by a new TGF-psuperfamily member[J].Nature, 1997, 387(6628): 83.
[27]Lee S J, McPherron A C. Regulation of myostatin activity and muscle growth[J]. Proc Natl Acad Sci USA, 2001, 98(16):9306-9311.
[28]Kambadur R, Sharma M, Smith T P,et al. Mutations in myostatin(GDF8) in double-muscled Belgian Blue and Piedmontese cattle[J]. Genome Res, 1997, 7(9): 910-916.
[29]Abe S, Soejima M, Iwanuma O,et al. Expression of myostatin andfollistatin in Mdx mice, an animal model for muscular dystrophy[J]. Zoolog Sci, 2009, 26(5): 315-320.
[30]Zimmers TA, Davies MV, Koniaris LG,et al. Induction of cachexia in mice by systemically administered myostatin[J].Science, 2002, 296(5572): 1486-1488.
[31]McPherron A C, Lee S J. Suppression of body fat accumulation in myostatin-de fi cient mice[J]. J Clin Invest, 2002, 109(5): 595-601.
[32]Argilés J M, López-Soriano J, Almendro V,et al. Crosstalk between skeletal muscleand adipose tissue: A link with obesity[J]. Med Res Rev, 2005, 25(1):49-65.
[33]van Hoef V, Breugelmans B, Spit J,et al. Functional analysis of a pancreatic secretory trypsin inhibitor-like protein in insects:silencing effects resemble the human pancreatic autodigestion phenotype[J]. Biochem Mol Biol, 2011, 41(9):688-695.
[34] 劉晨曦, 唐森, 李文蓉, 等. 綿羊MSTN基因慢病毒表達(dá)載體的構(gòu)建及其對(duì)成肌細(xì)胞的分化作用[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2012, 40(4): 11-18.
[35]Langley B, Thomas M, Bishop A,et al. Myostatin inhibits myoblastdifferentiation by down-regulating MyoD expression[J]. J Biol Chem, 2002, 277(51): 49831-49840.
[36]Sartori R, Milan G, Patron M,et al. Smad2 and 3 transcription factors control muscle mass in adulthood[J]. Am J Physiol Cell Physiol, 2009, 296(6): C1248-1257.
[37]Frank S J. Growth hormone, insulin-like growth factor I, and growth: local knowledge[J]. Endocrinology, 2007, 148(4):1486-1488.
[38]Draghiaakli R, Li X, Schwartz R J. Enhanced growth by ectopic expression of growth hormone releasing hormone using an injectable myogenic vector[J]. NatBiotechnol, 1997, 15(12):1285-1289.
[39]張永亮, 連繼勤, 劉松財(cái), 等. 家兔肌肉組織表達(dá)外源性生長(zhǎng)激素釋放因子對(duì)增重的影響[J].中國(guó)獸醫(yī)學(xué)報(bào), 2003,23(1): 56-58.
[40]高萍, 傅偉龍, 朱曉彤, 等.藍(lán)塘仔豬IGF-1水平與組織IGF-1、GHR基因的表達(dá)[J].畜牧獸醫(yī)學(xué)報(bào), 2005(36): 38-42.
[41]Marcell T J, Harman S M, Urban RJ,et al.Comparison of GH,IGF-I, and testosterone with mRNA of receptors and myostatin in skeletal muscle in older men[J]. Am J Physiol Endocrinol Metab, 2001, 281(6): 1159-1164.
[42]Samani A A, Yakar S, LeRoith D,et al. The role of the IGF system in cancer growth and metastasis: overview and recent insights[J]. Endocr Rev, 2007, 28(1): 20-47.
[43]Menetrey J, Kasemkijwattana C, Day CS,et al. Growth factors improve muscle healing in vivo[J]. J Bone Joint Surg Br, 2000,82(1): 131-137.
[44]安靜. IGF1在綿羊成肌細(xì)胞增殖與分化中的作用[D]. 烏魯木齊: 新疆農(nóng)業(yè)大學(xué), 2013.
[45]Palazzolo I, Stack C, Kong L,et al. Overexpression of IGF-1 in muscle attenuates disease in a mouse model of spinal and bulbar muscular atrophy[J]. Neuron, 2009, 63(3): 316-328.
[46]Mavalli M D, DiGirolamo D J, Fan Y,et al. Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice[J]. J Clin Invest,2010, 120(11): 4007-4020.
[47]黃治國(guó), 謝莊.綿羊肌肉IGF-IR基因表達(dá)的發(fā)育性變化研究[J].安徽農(nóng)業(yè)科學(xué), 2009, 37(12): 5406-5408.
[48]Shavlakadze T, Chai J, Maley K,et al. A growth stimulus is needed for IGF-1 to induce skeletal muscle hypertrophy in vivo[J]. J Cell Sci, 2010, 123(Pt 6):960-971.
[49]Knoll A, Putnová L, Dvo?ák J,et al. ANciiPCR-RFLP within intron 2 of the porcine insulin-like growth factor 2b (IGF2)gene[J]. Animal Genet, 2000, 31(2):150.
[50]Stinckens A, Van den Maagdenberg K, Luyten T,et al. The RYR1 g.1843C>T mutation is associated with the effect of the IGF2 intron3-g.3072G>A mutation on muscle hypertrophy[J].Anim Genet, 2007, 38(1): 67-71.
[51]郭玉姣, 唐國(guó)慶, 李學(xué)偉, 等.豬脂肪組織中IGF2和IGFBP3基因表達(dá)的發(fā)育性變化及其品種差異[J]. 遺傳,2008(30): 602-606.
[52]張小輝, 高雪, 許尚忠, 等. 南陽(yáng)牛肌肉發(fā)育過(guò)程中IGF結(jié)合蛋白的表達(dá)變化研究[C]. 北京: 中國(guó)畜牧獸醫(yī)學(xué)會(huì)養(yǎng)牛學(xué)分會(huì)2011年學(xué)術(shù)研討會(huì), 2011: 3.
[53]Morgan CJ, Coutts A G P, Mcfadyen M C,et al. Characterization of IGF-I receptors in the porcinr small intestine during postnatal development[J]. J Nutr Biochem, 1996, 7(7): 339-347.
[54]劉德武, 趙云翔, 任廣彩, 等.藍(lán)塘豬和長(zhǎng)白豬肝臟和肌肉中IGF-Ⅰ、IGF-ⅠR和IGFBP3基因表達(dá)的發(fā)育性變化[J].畜牧獸醫(yī)學(xué)報(bào), 2008, 39(7): 866-872.
[55]KalusW ,RennerM Z. Structure of the IGF-binding domain of the insulinlike growth factor-binding protein-5 (IGFBP-5).implications for IGF and IGF-I receptor interactions[J]. Embo J, 1998, 17(22): 6558-6572.
[56]Ning Y, Schuller A G, Bradshaw S,et al. Diminished growth and enhanced glucose metabolism in triple knockout mice containing mutations of insulin-like growth factor binding protein-3, -4, and -5[J]. Mol Endocrinol, 2006, 20(9): 2173-2186.
[57]Bayol S, Loughna P T, Brownson C. Phenotypic expression of IGF binding protein transcripts in muscle, in vitro and in vivo[J]. Biochem Biophys Res Commun, 2000, 273(1): 282-286.
[58]Bergstrom D A, Penn B H, Strand A,et al. Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression[J]. Mol Cell, 2002, 9(3): 587-600.
[59]Graham N S, May S T, Daniel Z C,et al. Use of the Affymetrix Human GeneChip array and genomic DNA hybridisation probe selection to study ovine transcriptomes[J]. Animal, 2011, 5(6):861-866.
[60]Byrne K, Vuocolo T, Gondro C,et al. A gene network switch enhances the oxidative capacity of ovine skeletal muscle during late fetal development[J]. BMC Genomics, 2010, 11: 378.
[61]Dhorne-Pollet S, Robert-Granié C, Aurel M R,et al. A functional genomic approach to the study of the milking ability in dairy sheep[J]. Anim Genet, 2012, 43(2):199-209.
[62]Singh M, Thomson P C, Sheehy P A,et al. Comparative transcriptome analyses reveal conserved and distinct mechanisms in ovine and bovine lactation[J]. Funct Integr Genomics, 2013, 13(1):115-131.
[63]Ren H, Li L, Su H,et al. Histological and transcriptome-wide level characteristics of fetal myofiber hyperplasia during the second half of gestation in Texel and Ujumqin sheep[J].BMC Genomics, 2011, 12:411.
[64]Jager M, Ott C E, Grunhagen J,et al. Composite transcriptome assembly of RNA-seq data in a sheep model for delayed bone healing[J]. BMC Genomics, 2011, 12: 158.
[65]Miao X, Luo Q, Qin X. Genome-wide analysis reveals the differential regulations of mRNAs and miRNAs in Dorset and Small Tail Han sheep muscles[J]. Gene, 2015, 562(2): 188-196.
[66]Miao X, Luo Q, Qin X,et al.Genome-wide mRNA-seq pro fi ling reveals predominant down-regulation of lipid metabolic processes in adipose tissues of Small Tail Han than Dorset sheep[J]. Biochem Biophys Res Commun, 2015, 467(2): 413-420.
[67]Miao X, Qin Q L. Genome-wide transcriptome analysis of mRNAs and microRNAs in Dorset and Small Tail Han sheep to explore the regulation of fecundity[J]. Mol Cell Endocrinol,2015, 402: 32-42.
[68]張春蘭.小尾寒羊和杜泊羊臂二頭肌轉(zhuǎn)錄組及肌球蛋白輕鏈基因家族結(jié)構(gòu)特征分析[D].泰安: 山東農(nóng)業(yè)大學(xué), 2014.
[69]Fan R, Xie J, Bai J,et al. Skin transcriptome pro fi les associated with coat color in sheep[J]. BMC Genomics, 2013, 14: 389.
[70]吳陽(yáng)升, 林嘉鵬, 汪立芹,等.綿羊小卵泡與中卵泡轉(zhuǎn)錄組差異特征分析[J]. 江蘇農(nóng)業(yè)學(xué)報(bào), 2016, 32(4): 832-842.
[71]Lee R C, Feinbaum R L, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843-854.
[72]Reinhart B J, Slack F J, Basson M,et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature, 2000, 403(6772): 901-906.
[73]Zhang Y, Zhang R, Su B. Diversity and evolution of MicroRNA gene clusters[J]. Sci China C Life Sci, 2009, 52(3): 261-266.
[74]Triboulet R, Chang H M, Lapierre RJ,et al. Post-transcriptional control of DGCR8 expression by the Microprocessor[J]. RNA,2009, 15(6): 1005-1011.
[75]Yi R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs[J]. Genes &Development ,2003,17(24):3011-3016.
[76]Lund E, Güttinger S, Calado A,et al. Nuclear export of MicroRNA precursors[J]. Science, 2004, 303(5654): 95-98.
[77]Gwizdek C, Ossareh-Nazari B, Brownawell AM,et al.Exportin-5 mediates nuclear export of minihelix-containing RNAs[J]. J Biol Chem, 2003, 278(8): 5505-5508.
[78]Okamura K, Liu N, Lai E C. Distinct mechanisms for microRNA strand selection by Drosophila Argonautes[J]. Mol Cell, 2009,36(3): 431-444.
[79]Lee Y, Jeon K, Lee JT,et al. MicroRNA maturation: stepwise processing and subcellular localization[J]. EMBO J, 2002,21(17): 4663-4670.
[80] Harris K S, Zhang Z, McManus M T,et al. Dicer function is essential for lung epithelium morphogenesis[J]. Proc Natl Acad Sci USA, 2006, 103(7): 2208-2213.
[81]Ambros V.The functions of animal microRNAs[J]. Nature,2004, 431(7006): 350-355.
[82]Fazi F, Nervi C.MicroRNA: basic mechanisms and transcriptional regulatory networks for cell fate determination[J]. Cardiovasc Res, 2008, 79(4):553-561.
[83]Mishima Y, Giraldez A J, Takeda Y,et al. Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430[J]. Curr Biol, 2006, 16(21): 2135-2142.
[84]Suzuki H I, Yamagata K, Sugimoto K,et al. Miyazono K.Modulation of microRNA processing by p53[J]. Nature, 2009, 460(7254):529-533.
[85]Babak T, Zhang W, Morris Q,et al. Probing microRNAs with microarrays: tissue specificity and functional inference[J].RNA, 2004, 10(11): 1813-1819.
[86]Lagos-Quintana M, Rauhut R, Yalcin A,et al. Identification of tissue-specific microRNAs from mouse[J]. Curr Biol, 2002,12(9): 735-739.
[87]Liang Y, Ridzon D, Wong L,et al. Characterization of microRNA expression profiles in normal human tissues[J]. BMC Genomics, 2007, 8: 166.
[88]Guo Z, Maki M, Ding R,et al. Genome-wide survey of tissuespeci fi c microRNA and transcription factor regulatory networks in 12 tissues[J]. Sci Rep, 2014, 4 (22):5150.
[89]Cao L, Kong L P, Yu Z B,et al. microRNA expression pro fi ling of the developing mouse heart[J]. Int J Mol Med, 2012, 30(5):1095-1104.
[90]Horak M, Novak J, Bienertova-Vasku J. Muscle-specific microRNAs in skeletal muscle development[J]. Dev Biol, 2016,410(1): 1-13.
[91]Chen J F, Tao Y, Li J,et al. microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7[J]. J Cell Biol, 2010,190(5):867-879.
[92]Chen J F, Mandel E M, Thomson J M,et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation[J]. Nat Genet, 2006, 38(2):228-233.
[93]Wang L, Chen X, Zheng Y,et al. MiR-23a inhibits myogenic differentiation through down regulation of fast myosin heavy chain isoforms[J].Exp Cell Res, 2012, 318(18):2324-2334.
[94]Sun Q, Zhang Y, Yang G,et al. Transforming growth factor-betaregulated miR-24 promotes skeletal muscle differentiation[J].Nucleic Acids Res, 2008, 36(8): 2690-2699.
[95]Dey B K, Gagan J, Yan Z,et al. miR-26a is required for skeletal muscle differentiation and regeneration in mice[J]. Genes Dev,2012, 26(19): 2180-2191.
[96]Wong C F, Tellam R L. MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis[J]. J Biol Chem, 2008, 283(15): 9836-9843.
[97]Crist C G, Montarras D, Pallafacchina G,et al. Muscle stem cell behavior is modified by microRNA-27 regulation of Pax3 expression[J]. Proc Natl Acad Sci USA, 2009, 106(32): 13383-13387.
[98]Wei W, He H B, Zhang W Y,et al. miR-29 targets Akt3 to reduce proliferation and facilitate differentiation of myoblasts in skeletal muscle development[J]. Cell Death Dis, 2013, 4: e668.
[99]Ge Y, Sun Y, Chen J. IGF-II is regulated by microRNA-125b in skeletal myogenesis[J]. J Cell Biol, 2011, 192(1): 69-81.
[100] Huang M B, Xu H, Xie S J,et al. Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis[J]. PLoS One, 2011, 6(12): 29173.
[101] Boutz P L, Chawla G, Stoilov P,et al. MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development[J]. Genes Dev, 2007, 21(1): 71-84.
[102] Chen X, Wang K, Chen J,et al. In vitro evidencesuggests that miR-133a-mediated regulation of uncoupling protein 2 (UCP2)is an indispensable step in myogenic differentiation[J]. J Biol Chem, 2009, 284(8): 5362-5369.
[103] 張偉. 綿羊骨骼肌高表達(dá)miRNA靶基因的高通量獲取及部分候選靶基因生物功能研究[D]. 石河子: 石河子大學(xué),2015.
[104] Zhang J, Ying Z Z, Tang Z L,et al. MicroRNA-148a promotes myogenic differentiation by targeting the ROCK1 gene[J]. J Biol Chem, 2012, 287(25): 21093-21101.
[105] Seok H Y, Tatsuguchi M, Callis TE,et al. miR-155 inhibits expression of the MEF2A protein to repress skeletal muscle differentiation[J]. J Biol Chem, 2011, 286(41): 35339-35346.
[106] 熊燕, 王禹, 衛(wèi)寧, 等.過(guò)表達(dá)miR-155抑制C2C12成肌分化[J].生物工程學(xué)報(bào), 2014(30): 182-183.
[107] Naguibneva I, Ameyar-Zazoua M, Polesskaya A,et al. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation[J]. Nat Cell Biol,2006, 8(3): 278-284.
[108] Dey B K, Gagan J, Dutta A. miR-206 and -486 induce myoblast differentiation by downregulating Pax7[J]. Mol Cell Biol, 2011,31(1): 203-214.
[109] Rosenberg M I, Georges S A, Asawachaicharn A,et al. MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206[J]. J Cell Biol, 2006, 175(1): 77-85.
[110] Anderson C, Catoe H, Werner R. MIR-206 regulates connexin43 expression during skeletal muscle development[J].Nucleic Acids Res, 2006, 34(20): 5863-5871.
[111] Kim H K, Lee Y S, Sivaprasad U,et al. Muscle-specific microRNA miR-206 promotes muscle differentiation[J]. J Cell Biol, 2006, 174(5): 677-687.
[112] Nakao K, Minobe W, Roden R,et al. Myosin heavy chain gene expression in human heart failure[J]. J Clin Invest, 1997,100(9): 2362-2370.
[113] van Rooij E, Quiat D, Johnson BA,et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance[J]. Dev Cell, 2009, 17(5):662-673.
[114] Cardinali B, Castellani L, Fasanaro P,et al. Microrna-221 and microrna-222 modulate differentiation and maturation of skeletal muscle cells[J]. PLoS One, 2009, 4(10): 7607.
[115] Juan A H, Kumar R M, Marx J G,et al. Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells[J]. Mol Cell, 2009, 36(1): 61-74.
[116] Liu J, Luo X J, Xiong A W,et al. MicroRNA-214 promotes myogenic differentiation by facilitating exit from mitosis via down-regulation of proto-oncogene N-ras[J]. J Biol Chem,2010, 285(34): 26599-26607.
[117] Sarkar S, Dey B K, Dutta A. MiR-322/424 and -503 are induced during muscle differentiation and promote cell cycle quiescence and differentiation by down-regulation of Cdc25A[J]. Mol Biol Cell, 2010, 21(13): 2138-2149.
[118] Nachtigall P G, Dias M C, Carvalho R F,et al. MicroRNA-499 expression distinctively correlates to target genes sox6 and rod1 profiles to resolve the skeletal muscle phenotype in Nile tilapia[J]. PLoS One, 2015, 10(3): 0119804.
[119] Wang X, Ono Y, Tan S C,et al. Prdm1a and miR-499 act sequentially to restrict Sox6 activity to the fast-twitch muscle lineage in the zebrafish embryo[J]. Development, 2011,138(20): 4399-4404.
[120] Zhang S, Zhao F, Wei C,et al. Identi fi cation and characterization of the miRNA transcriptome of Ovis aries[J]. PLoS One, 2013,8(3): 58905.
[121] Zhang W, Wang L, Zhou P,et al. Identification and analysis of genetic variations in pri-miRNAs expressed speci fi cally or at a high level in sheep skeletal muscle[J]. PLoS One, 2015, 10(2):0117327.
[122] Sheng X, Song X, Yu Y,et al. Characterization of microRNAs from sheep (Ovis aries) using computational and experimental analyses[J]. Mol Biol Rep, 2011, 38(5): 3161-3171.
[123] Barozai M Y. The novel 172 sheep (Ovis aries) microRNAs and their targets[J]. Mol Biol Rep, 2012, 39(5): 6259-6266.
[124] Liu G, Liu R, Li Q,et al. Identification of microRNAs in wool follicles during anagen, catagen, and telogen phases in Tibetan sheep[J]. PLoS One, 2013, 8(10): 77801.
[125] 唐曉惠.藏綿羊毛囊不同發(fā)育時(shí)期miRNAs表達(dá)變化研究[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2012.
[126] Wenguang Z, Jianghong W, Jinquan L,et al. A subset of skinexpressed microRNAs with possible roles in goat and sheep hair growth based on expression profiling of mammalian microRNAs[J]. OMICS, 2007, 11(4): 385-396.
[127] Torley K J, da Silveira J C, Smith P,et al. Expression of miRNAs in ovine fetal gonads: potential role in gonadal differentiation[J]. Reprod Biol Endocrinol, 2011, 9: 2.
[128] McBride D, Carre W, Sontakke S D,et al. Identification of miRNAs associated with the follicular-luteal transition in the ruminant ovary[J]. Reproduction, 2012, 144 (2): 221.
[131] Hou X, Yang Y, Zhu S,et al. Comparison of skeletal muscle miRNA and mRNA profiles among three pig breeds[J]. Mol Genet Genomics, 2016, 291(2): 559-573.
[132] Tang Z, Yang Y, Wang Z,et al. Integrated analysis of miRNA and mRNA paired expression profiling of prenatal skeletal muscle development in three genotype pigs[J]. Sci Rep, 2015,5:15544.
[133] Liu X, Trakooljul N, Hadlich F,et al. MicroRNA-mRNA regulatory networking fi ne-tunes the porcine muscle fi ber type,muscular mitochondrial respiratory and metabolic enzyme activities[J]. BMC Genomics, 2016, 17: 531.